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Recently there has been an increasing interest in exploiting computational and statistical
techniques for the purpose of component analysis of indirect calorimetry data. Using these
methods it becomes possible to dissect daily energy expenditure into its components and
to assess the dynamic response of the resting metabolic rate (RMR) to nutritional and
pharmacological manipulations. To perform robust component analysis, however, is not
straightforward and typically requires the tuning of parameters and the preprocessing of
data. Moreover the degree of accuracy that can be attained by these methods depends on
the configuration of the system, which must be properly taken into account when setting
up experimental studies. Here, we review the methods of Kalman filtering, linear, and
penalized spline regression, and minimal energy expenditure estimation in the context of
component analysis and discuss their results on high resolution datasets from mice and
rats. In addition, we investigate the effect of the sample time, the accuracy of the activity
sensor, and the washout time of the chamber on the estimation accuracy. We found that
on the high resolution data there was a strong correlation between the results of Kalman
filtering and penalized spline (P-spline) regression, except for the activity respiratory
quotient (RQ). For low resolution data the basal metabolic rate (BMR) and resting RQ
could still be estimated accurately with P-spline regression, having a strong correlation
with the high resolution estimate (R2 > 0.997; sample time of 9 min). In contrast, the
thermic effect of food (TEF) and activity related energy expenditure (AEE) were more
sensitive to a reduction in the sample rate (R2 > 0.97). In conclusion, for component
analysis on data generated by single channel systems with continuous data acquisition
both Kalman filtering and P-spline regression can be used, while for low resolution data
from multichannel systems P-spline regression gives more robust results.
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INTRODUCTION
In the last two decades, metabolic chambers employing open
flow indirect calorimetry have become a standard tool in the
study of obesity in humans and rodent models. The time-
dependent character of the data generated by such devices con-
tains a wealth of information and provides detailed insights into
energy metabolism and changes therein due to physical activity
(PA), feeding, and experimental interventions. Using the proper
experimental protocol and device settings, it becomes possible to
quantify the components that make up total energy expenditure
(TEE) and to determine the time response to metabolic challenges
(Even and Nadkarni, 2012).

Central to component analysis of indirect calorimetry data
that is obtained in freely moving animals or humans is the
separation of activity and resting energy expenditure. Several
mathematical methods have been proposed for this purpose over
the years, amongst which linear regression (Ravussin et al., 1986;
Kumahara et al., 2004; Bjursell et al., 2008), Kalman filtering
(Even et al., 1991), and penalized spline regression (Van Klinken

et al., 2012). The correct application of these methods in the anal-
ysis of indirect calorimetry data is challenging and care has to
be taken that the derived biological parameters provide an accu-
rate reflection of energy metabolism. Moreover, the performance
of these methods depends on several factors such as the sam-
pling frequency of the respiratory exchange, the chamber washout
time, and the type of activity sensor. Therefore, understanding of
how these mathematical methods work and of how experimental
settings affect the data and, in turn, the precision of the energy
component estimates is vital for designing optimal experiments
and for maximally exploiting indirect calorimetry datasets.

We here discuss the computational procedures that can be used
for inferring energy components from time-dependent indirect
calorimetry data and we discuss the various factors that affect the
precision and performance of these methods. To provide practi-
cal and quantitative insight into how each approach works and
what their differences are, we analysed high resolution datasets of
mice and rats and investigated the effect of several experimental
settings.
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ESTIMATION OF ENERGY COMPONENTS
GENERAL PRINCIPLES
TEE in animals and man can be subdivided into four main com-
ponents: the basal metabolic rate (BMR), which is the minimum
amount of energy that is needed by the body to sustain vital
functions, the activity related energy expenditure (AEE), which
is the energy associated with muscular work, the thermic effect
of food (TEF), which is the energy associated with the digestion,
absorption and storage of food, and the energy expenditure due to
thermoregulation (TR), which is the additional heat generated to
keep the body at a constant temperature (Blaxter, 1989; Bursztein
et al., 1989; Cannon and Nedergaard, 2011).

Employing calorimetric techniques one can have direct access
only to the TEE, and experimental interventions and dedicated
computational techniques are required to disentangle its compo-
nents. The set of procedures that is involved with decomposing
TEE is referred to as component analysis. For indirect calorimetry
data obtained in freely moving subjects, the first step of com-
ponent analysis consists of separating the activity related energy
component from the resting component.

TEE(t) = AEE(t) + BMR(t) + TEF(t) + TR(t)
�����������������������������������������������������������������������������������������������������������������������������������������������������������

= AEE(t) + RMR(t) (1)

The energy component not involved in PA is commonly referred
to as the resting metabolic rate (RMR) (Blaxter, 1989; Bursztein
et al., 1989), or the background metabolism (Even et al., 1991),
and comprises the BMR, TEF, and energy expenditure due to TR.
Since each energy component can show large variations in inten-
sity during the course of a day or over longer periods, the time
dependence (t) is explicitly stated in (1).

For freely moving animals the decomposition of TEE into an
activity related and resting component can be achieved by exploit-
ing the time correlation that exists between recorded activity

patterns and the TEE. As an example, in Figure 1A the time-
dependent TEE and the activity pattern of a mouse are displayed,
clearly showing that the fast increases in TEE overlap with the
onset of periods of PA. Importantly, since the changes in TEE
due to activity are much quicker than the time variation in the
other components, it becomes statistically feasible to identify the
activity related component in the TEE. More specifically, the basic
assumption of TEE decomposition is that—for successive mea-
surements taken in the same subject—the intensity of PA has a
strong linear correlation with the AEE

AEE(t) = CCA(t) · PA(t) + e(t) (2)

with CCA the caloric cost of activity, which is the relative amount
of energy needed for an activity bout, and e the residual energy
expenditure, which is assumed to be a normally distributed ran-
dom variable with zero mean. Since different types of activity can
have different caloric costs (Meyer and Guillot, 1986; Heglund
and Taylor, 1988), the CCA is time dependent. The CCA is an
interesting variable in itself and has been suggested as a mea-
sure of the mechanical efficiency of an organism and the coupling
between oxygen consumption and ATP production in muscles
(Even and Nadkarni, 2012). It is important to note though that
the estimate of the CCA also depends on the type of activity sen-
sor, and therefore the validity of biological interpretations of the
CCA ultimately depends on the quality of the activity sensor and
on how accurately it quantifies the intensity of activity.

The first step in component analysis revolves around estimat-
ing the CCA, which permits determining the time-dependent
RMR by Equations (1) and (2). Computational techniques for
estimating CCA, AEE, and RMR from indirect calorimetry data
will be discussed in the next section. The second step of compo-
nent analysis consists of decomposing RMR further with experi-
mental interventions. The energy component related to TR can
be removed by housing animals in thermoneutral conditions,

FIGURE 1 | (A) Typical dataset of total energy expenditure (TEE) and
physical activity (PA) of a mouse measured in a metabolic cage
employing open flow indirect calorimetry. From the time patterns in TEE
and PA it can be clearly seen that the fast fluctuations in the TEE are
correlated with the PA. At 10:00 (dashed line) a single meal was given,
after which TEE increased due to the thermic effect of food (TEF). (B)

Decomposition of TEE consists of exploiting the correlation between the
fast time fluctuations in TEE and PA to infer the resting metabolic rate
(RMR) and the activity related energy expenditure in a time dynamic
fashion. The basal metabolic rate (BMR) is calculated here as the RMR
after an overnight fast and the TEF is quantified as the increase in RMR
above the BMR after feeding.
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which for mice lie around 30◦C and for rats 28◦C (Cannon
and Nedergaard, 2011; Tschöp et al., 2011; Even and Nadkarni,
2012). Lately, it has been argued that thermoneutrality should
be the standard condition for evaluating energy expenditure in
rodents rather than at typical ambient temperatures of 20–23◦C
(Cannon and Nedergaard, 2011; Even and Nadkarni, 2012). The
first reason is that under these conditions rodents represent a
better model for obesity in humans, since humans normally live
under thermoneutral conditions because of clothing. Secondly,
below thermoneutral temperatures non-shivering thermogenesis
is a variable energy component that can compensate for—and
hence mask—variation in other components such as the AEE
(Humphries and Careau, 2011; Virtue et al., 2012).

The RMR at thermoneutrality, or RMRt (Speakman et al.,
2004), consists of the BMR and TEF. The BMR can be deter-
mined by estimating the RMRt after a period of fasting to remove
the TEF component. There is some debate on the optimal length
of the fasting period to reliably assess BMR in rodents. Some
researchers advise a relatively short period of 4–5 h (Speakman,
2013), in order to prevent the animal to go into a state of torpor
which decreases the BMR (Hudson and Scott, 1979), while oth-
ers use a period of overnight fasting (typically more than 12 h)
to be sure that the TEF component is completely removed from
the RMRt (Even and Nadkarni, 2012). We will abstain here from
advocating either approach but simply state that for the commu-
nication of experimental results it is important to clearly declare
how BMR was measured and how long animals were fasted in
order to make the comparison of results from different studies
possible.

After a period of fasting the TEF can be determined by pre-
senting a single meal and subsequently calculate the area under
the curve of the increase in RMRt above the BMR (Figure 1B)
(Even et al., 1994). The same protocol is used for determining TEF
in humans, with the exception that energy expenditure is then
determined after the consumption of a meal in a resting, supine
posture, which makes the correction for activity unnecessary
(Reed and Hill, 1996). An alternative approach for determining
the TEF that allows subjects to freely move and consume multiple
meals during the day is to use regression analysis to simultane-
ously estimate AEE and TEF from the time variations in the TEE
(Van Milgen et al., 1997; Van Milgen and Noblet, 2000). However,
since the dynamic response of energy expenditure on food intake
is much slower than PA, statistically it is only possible to dis-
cern TEF from the RMR using regression if meals are consumed
separated by large enough time intervals—typically around three
meals per day—such that sufficient time variation in the TEE is
caused by food intake. As a consequence, this approach cannot be
applied to rodents that are given ad libitum access to food, as then
moments of food intake will occur with a high frequency (Moran,
2003).

It is important to note that except for a transient increase in
energy expenditure, food intake can also have additional effects
on energy metabolism. For instance, as was shown by Feldmann
et al. (2009), adrenergic thermogenesis is increased in wild type
mice when put on a high fat diet under thermoneutral conditions.
Disentangling the effect of diet composition on energy expendi-
ture from the TEF may be difficult in data from single animals

because the two processes will overlap in time. Rather, the effects
of diet composition must be assessed by comparing energy com-
ponents between groups of mice that have been put on different
diets.

An interesting extension of component analysis is to decom-
pose the time-dependent oxygen consumption and carbon diox-
ide production separately (Van Milgen et al., 1997). In this way
it becomes possible to calculate the respiratory quotient (RQ)
related to activity and resting metabolism, which permits to
investigate fuel selection in greater detail. For instance, from the
dynamic response of the activity and resting RQ after food intake
or other metabolic challenges, insight can be gained into the regu-
lation of substrate oxidation and metabolic flexibility (Kelley and
Mandarino, 2000; Even and Nadkarni, 2012).

METHODS
ALIGNMENT OF ACTIVITY AND ENERGY EXPENDITURE DATA
Over the years several computational methods have been pro-
posed for estimating the activity related part of TEE. These
methods are based on assumption (2), namely on that there
exists a strong correlation between the time patterns of AEE and
PA. However, the correlation between the raw time sequences
of the PA and energy expenditure is usually very poor and pre-
processing of the data is needed to maximize their correlation
and make TEE decomposition possible. The most important
step in data preprocessing is to take into account the fact that
the time pattern in the respiratory exchange is dampened due
to gas mixing in the metabolic chamber, while activity mea-
surements are instantaneous (Arch et al., 2006; Lighton, 2008).
Modeling the chamber as a linear compartment, the effect of
gas mixing is mathematically described by the impulse response
function h(t)

h(t) =
{

1
τ

e− t−τdelay
τ t ≥ τdelay

0 t < τdelay

(3)

with τ the washout time of the chamber, which in the case of ideal
mixing is equal to the chamber volume divided by the air flow,
and τdelay the delay introduced by the tubing and gas dryers that
are situated between the outlet of the chamber and the gas sen-
sors. In practice τ may be found 5–10% lower than its theoretic
value—that is, the ratio of the chamber volume and air flow—
because of dead spaces in the chamber. A more precise model
of gas diffusion also takes into account the gas diffusion inside
the body, which extends (3) to a two compartment model; for
details, see Van Klinken et al. (2012). However, since the washout
time induced by the chamber is typically much larger than that of
the animal (often by a factor of least 10) the single compartment
model normally gives a reasonable approximation.

Given τ and τdelay, there are two possible solutions to align
the raw PA and TEE time sequences. The first approach consists
of applying the impulse response h(t) on the activity data and
thus induce the same deformation as on the gas exchange. This
approach is computationally the simplest and involves the appli-
cation of a so-called infinite impulse response filter to the activity
data. For a single compartment model and a sequence of activity
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data PA(i) measured with sample time T, the diffusion corrected
activity PA∗(i) is calculated as

PA∗(i) = a · PA∗(i − 1) + b · PA(i) (4)

with i the index in the PA sequence and a and b the filter coeffi-
cients derived from the impulse invariance method (Oppenheim
et al., 1999)

a = exp

(
−T

τ

)
b = 1 − exp

(
−T

τ

)

where τ and T are expressed in the same time units. In addition,
a linear shift must be applied to account for τdelay. This approach
works well for both high and low resolution data, but requires the
washout time τ to be relatively small such that the fast variations
in TEE due to activity are not dampened to the extent that the
correlation between TEE and PA is lost. Alternatively, if τ is large,
as is the case for human metabolic chambers or those for large
mammals, the instantaneous TEE needs to be calculated, which
is a mathematical procedure called deconvolution (Arch et al.,
2006; Lighton, 2008; Tokuyama et al., 2009). Deconvolution of the
TEE time series, though, is a more complicated procedure because
it is very susceptible to sensor noise and therefore requires the
application of filtering techniques to attenuate the effect of noise.
Consequently, deconvolution can only be applied on frequently
sampled data, as this increases the ability of filters to get rid of
sensor noise while leaving the original signal intact.

LINEARISATION OF ACTIVITY AND ENERGY EXPENDITURE DATA
In addition to the correction for gas mixing effects, it may some-
times be necessary to apply a non-linear transformation to the
raw activity data in order to linearize the relation between activ-
ity and energy expenditure. Other mathematical functions that
can be applied to the activity signal are a threshold to correct
for a baseline activity signal or a kernel to smoothen noisy activ-
ity data; for details, see Van Klinken et al. (2012), supplemental
text 2. Whether or not there is a need to transform activity data
can be investigated by inspecting the scatter plot of the diffusion
corrected activity and the TEE or the residuals from component
analysis. If non-linear trends are perceivable in these plots then
an appropriate function must be chosen to transform the activ-
ity data, since otherwise the linearity assumption (2) is violated
and decomposition may become unstable. The best practice for
selecting the free parameters of the non-linear transformation is
to minimize the residual variation that results from the decom-
position method. Since the same transformation must be applied
to the activity data from all subjects participating in an experi-
ment, it is important to minimize the sum of residuals from all
datasets.

As an example, Figure 2A shows the relation between the
energy expenditure and the activity signal from piezo-electric sen-
sors measured in 11 mice. To properly overlap the data of all mice,
the activity (x-axis) has been multiplied by the subject specific
CCA that resulted from penalized spline (P-spline) regression.
The scatter plot shows that there exists a slight non-linear rela-
tion between the activity and the energy expenditure, which is

confirmed by the scatter plot of the residual energy expenditure
and the activity. Moreover, the activity signal contains a non-zero
baseline, which needs to be subtracted from the total activity sig-
nal to prevent the AEE estimate from being biased. Applying a
threshold and an exponent of 0.6 linearizes the relation and shifts
the left tail of the point cloud to the origin (Figure 2B).

An alternative approach for aligning TEE and PA data is to bin
both signals into intervals of a given length; e.g., see Nonogaki
et al. (2003), Bjursell et al. (2008), and Virtue et al. (2012).
Technically this procedure corresponds to the application of a low
pass filter to both signals, which makes sense because the low fre-
quency TEE and PA signals correlate better in time. Nevertheless,
the resulting correlation is less strong as when applying the linear
compartment model, as is illustrated in Figure 2C. Consequently,
using the linear compartment model (i.e., Equation 4) should be
the preferred approach for aligning TEE and PA data for the pur-
pose of regression analysis, since this gives a smaller residual error
and therefore more accurate regression estimates.

REGRESSION ANALYSIS
The classical technique for estimating CCA and decomposing
TEE into an activity and resting related part is by performing
linear regression of TEE against PA for each subject separately
(Ravussin et al., 1986; Nonogaki et al., 2003; Kumahara et al.,
2004; Bjursell et al., 2008). Using this approach, the intercept
of the regression line with the y-axis corresponds to the average
RMR and the slope to the CCA. The advantage of this method is
that it is relatively simple to use and can be executed by standard
(spreadsheet) software packages. However, one of the main dis-
advantages is that it does not take into account the time variation
that is present in the resting energy expenditure, which increases
the amount of uncertainty in the CCA and RMR estimates and
can introduce a bias into the results.

As was first put forward by Brown and colleagues (1991), it
is possible to take into account the time variation of the RMR
by modeling the RMR with a more complex, time-dependent
function. Recently we proposed a solution for regression based
component analysis in which the time-dependent RMR is mod-
eled with P-spline functions (Van Klinken et al., 2012). This
makes it possible to obtain an estimate of the time variation in
the RMR, but also increases the accuracy with which the CCA and
AEE are estimated. In addition, this method has demonstrated to
be relatively robust to low sample frequencies and noisy activity
measurements, which is important when performing component
analysis on data generated by multiplexed systems.

When using P-spline regression for component analysis, first
the number of knots has to be chosen in the spline function that
models the time variation in the RMR. This parameter determines
how quickly the RMR can vary with time. In our earlier study
we showed that with approximately 2k knots per day, frequency
components in the RMR of up to k day−1 can be estimated (Van
Klinken et al., 2012). Importantly, slow time variations in the
RMR can be estimated with a higher robustness than fast time
variations, but they will also introduce a bias when RMR changes
quickly. In practice, inspection of the time-dependent plots of
the TEE, PA and fitted RMR is needed for determining the right
amount of knots.
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FIGURE 2 | (A) Scatterplot of the activity signal from piezo-electric
sensors corrected for gas mixing and the total energy expenditure (TEE)
minus the resting metabolic rate (RMR) in mice (n = 11) (top) and the
residual energy expenditure TEE – RMR – AEE (bottom). The AEE and
RMR were calculated with P-spline regression. The relation between
energy expenditure and activity is slightly curved, which is accentuated
when plotting the residuals of the fitted P-spline model against the
activity. Moreover, a non-zero baseline is present in the activity signal.
(B) Applying a threshold to correct for the baseline activity signal and an
exponent of 0.6, the relation between activity and energy expenditure is

sufficiently linearized. As a result of the preprocessing, the standard
deviation in the residuals is reduced from σe = 1.54 × 10−2 W to
σe = 1.38 × 10−2 W. The preprocessing parameters were fitted by
minimizing the residuals of the P-spline model summed over all mice.
(C) Instead of applying the linear compartment model to the PA signal to
increase the correlation between the TEE and PA time series, they can
also be binned in a given time interval (here 15 min). Although this
procedure increases the correlation between both signals with respect
to the untransformed data, binning does give inferior results when
compared to the linear compartment model (B).

KALMAN FILTERING
An alternative approach to regression analysis is to decompose
TEE using Kalman filtering, as was originally proposed by Even
and Nicolaidis (1984) and Even et al. (1991). The basic assump-
tion of this method is that the RMR and CCA can be modeled
as Gaussian random processes that vary in time. The relation
between the RMR, CCA, AEE, and TEE and the effects of gas
mixing are expressed in a state space model, which permits the
estimation of the state variables by means of Kalman filtering.
Kalman filtering is a numerical filtering technique that works by
continuously predicting the future state of the system and then
correcting the prediction with the measured data. This procedure
relies on the fact that data has been sampled with a relatively
high frequency, and it is therefore best suited for analysing data
generated by single channel indirect calorimetry systems with
continuous data acquisition (Even and Nadkarni, 2012). Since
the state space model already includes the effects of gas mixing
on the measured respiratory exchange, the data must not be cor-
rected for these effects as part of preprocessing. Importantly, the

performance of the Kalman filter depends on the choice of filter
parameters, which must be set in advance by the user by tuning
the filter.

MINIMAL METABOLIC RATE
A popular approach for estimating the BMR from indirect
calorimetry datasets in animals is to take the minimum energy
expenditure that is reached after a period of fasting (Selman
et al., 2001; Speakman, 2013). Since random fluctuations in the
resting energy expenditure can induce a downward bias in the
BMR estimate obtained in this way, normally the minimal energy
expenditure is taken averaged over a short, e.g., 5 min, interval.
The advantage of this method is that it does not involve correlat-
ing PA and TEE—activity does not even have to be measured. A
potential downside, however, is that the BMR estimate is influ-
enced by several experimental settings. Most importantly, the
registered minimum metabolic rate depends on the duration of
the interval over which is sampled and on the sampling frequency,
since sampling for a longer period or with a higher frequency
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will increase the likelihood of finding a low measurement by
chance (Cooper and Withers, 2010). Also, the washout time of the
metabolic chamber influences the BMR estimate, since if the mea-
sured respiratory exchange needs too long to return to base level
after an activity bout has occurred then the BMR estimate will be
biased upward. Finally, the measured minimum metabolic rate
depends on the activity pattern of the animal, since animals that
rest more often or have longer pauses will exhibit more minima.

COMPARISON OF METHODS
EXPERIMENTAL DATA
To make a baseline comparison between the results that are
obtained by decomposition methods, we tested Kalman filter-
ing and P-spline regression on high resolution datasets of mice
(n = 11) and rats (n = 47) that have been made available by P. C.
Even. In short, for each animal respiratory exchange was mea-
sured during 24 h with a sample time of either 2 or 5 s. Mice
were housed at 30◦C and rats at 28◦C under a standard 12 h:12 h
light/dark cycle. Activity was measured with piezo-electric force
transducers and was averaged over periods equal to the sample
time. Animals were placed in the metabolic chamber at 18:00
with water but no food and were fasted overnight, after which
they were fed a single meal between 9:00 and 10:00. Weir’s
equation was used to calculate energy expenditure from oxygen
consumption and carbon dioxide production rates (Weir, 1949).

We performed P-spline regression to estimate the time-
dependent activity related and resting respiratory exchange using
a spline function containing 8 knots. Also the CCA was allowed
to vary in time and was modeled using a spline function with 16
knots. Because the meal induced a very rapid rise in the energy
expenditure, we applied P-spline regression separately on the pre-
feeding data and the data obtained 20 min after food intake; the
intermediate 20 min interval was interpolated using a 2nd order
polynomial function. To increase robustness in the RMR esti-
mate, weighed regression was used where measurements were
given a weight of 0.2 during periods of activity and a weight
of 1.0 during resting periods. The smoothing parameter λ was
estimated automatically using the generalized cross validation

criterion as previously reported (Van Klinken et al., 2012) and
was subsequently averaged separately for mice and rats.

Kalman filtering was performed on the data under two dif-
ferent conditions: with the filter parameters fitted to minimize
the difference between the time-dependent RMR estimates of the
Kalman filter and the P-spline model, and with the filter param-
eters manually tuned without taking the results of the P-spline
model into account. The initial estimate of the state vector was
obtained by linear regression; the initial 4 h of data were used for
the Kalman filter to converge and were not used in the further
analysis. To account for the rapid change in energy metabolism
after feeding, the process noise variance associated with the CCA
was increased by a factor of 10 for a window of 120 min after
feeding. For both the Kalman filter and the P-spline regression
approach a threshold and non-linear transform was applied to the
raw activity data as explained in Figure 2. All calculations were
performed in MATLAB (The MathWorks).

COMPARISON OF THE TIME-DEPENDENT RMR
From a visual comparison of the time-dependent RMR estimates
it followed that even in the case that the Kalman filter was tuned
manually there was a good consensus between both methods for
most subjects (Figure 3). A general difference that we observed
was that the RMR estimated by the Kalman filter exhibited more
variation than the result of P-spline regression, especially during
periods of activity. This divergence can be explained by the way
how both methods operate: the Kalman filter assumes that there is
a small residual signal and attributes fast fluctuations to the RMR
whereas the P-spline regression model assumes that the RMR
varies slowly in time and attributes most of the fast fluctuations
to the residuals.

Some care has to be taken when interpreting the fast, non-
activity related, time fluctuations in the respiratory exchange as
they can have both biological and technical origins. Fast fluctua-
tions of a biological origin are those associated with the sudden
increases in energy expenditure due to (endogenous) nervous
and hormonal changes. In contrast, variations that are character-
ized by a negative spike and a subsequent more blunted positive

FIGURE 3 | Time plots of the total energy expenditure, activity and

estimated RMR of a mouse and a rat using P-spline regression and

Kalman filtering with manually tuned parameters. On average there is a

good correspondence between the results from both methods, with the
Kalman filter showing slightly more variation in the RMR estimate than the
P-spline method.
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peak are indicative of short periods of apnea and therefore reflect
respiratory dynamics rather than true changes in energy expen-
diture (Speakman, 2013). Importantly, fluctuations observed in
the non-activity energy expenditure during activity bouts are
often caused by the non-perfect match between the registered
activity and the energy expenditure—e.g., due to noise in the
activity sensor or to the non-ideal mixing of air in the metabolic
chamber—and can therefore be technical in nature.

COMPARISON OF INFERRED METABOLIC PARAMETERS
In addition to comparing the time-dependent results we investi-
gated how well the estimates of a number of metabolic parameters
corresponded between the Kalman filter and P-spline regression.
In detail, we derived the following metabolic parameters from
the time-dependent activity and resting VO2 and VCO2 of each
method: the BMR, calculated as the average RMR over a period
of 90 min prior to feeding; the TEF, calculated as the area under
the curve in RMR above the BMR after feeding for a period of 5 h;
the AEE and CCA during the fasting period; the resting (activity)
RQ during fasting, calculated as the total resting (activity) VCO2

produced divided by the total resting (activity) VO2 consumed
during a 5 h period prior to feeding; and the increase in resting
(activity) RQ due to feeding, calculated as the total resting (activ-
ity) VCO2 produced divided by the total resting (activity) VO2

used during a 5 h period after feeding, minus the fasting resting
(activity) RQ.

Figure 4 shows Bland Altman plots for each of the eight
metabolic parameters that were estimated from the results of
P-spline regression and Kalman filtering with parameters fitted
to minimize the difference with the time-dependent RMR of the
P-spline model. It follows that there was a very high correla-
tion between both methods for most metabolic measures, which
shows that both methods can give virtually identical results on
high resolution data as long as the parameters of the Kalman filter
are tuned by using an external criterion. When the filter param-
eters were tuned manually the correlations generally dropped
(Table 1), but were still very good for the BMR, resting RQ dur-
ing fasting and the increase in resting RQ, with R2 > 0.95 for both
mice and rats. There was also a high agreement between the AEE
estimates with R2 around 0.97, but this dropped to R2 = 0.91
for rats when manually tuning the filter. The correlation was also
strong for the TEF with R2 between 0.87 and 0.91, while for the
CCA the correlation was considerably lower with R2 between 0.59
and 0.80. The reason why the R2 of the CCA is much lower than
that of the AEE is that the CCA varies less between animals than
the AEE: the coefficient of variation of the CCA is 0.09 in mice
and 0.08 in rats whereas for the AEE it is 0.27 in mice and 0.20
in rats. Consequently, the denominator of the fraction of unex-
plained variance is relatively smaller in the CCA, which explains
why the R2 is lower. The correlation of the activity related RQ
during fasting and the increase after feeding in mice dropped con-
siderably when manually tuning the filter, which shows that this
measure is very sensitive to the choice of filter parameters. For
rats the correlation was worse than for mice, which was probably
caused by the fact that rats were overall much less active after pro-
longed fasting and after refeeding, inducing thus a larger degree
of uncertainty in the activity RQ estimates.

The results in Figure 4 show that on high resolution data there
is an overall good agreement between the metabolic parameters
as determined from the decomposition results of the Kalman fil-
ter and P-spline regression method, except for the activity related
RQ in rats. The differences between the metabolic parameter esti-
mates are due to the different assumptions that are at the base
of both methods, most notably regarding how the time variation
in the RMR and CCA is modeled: the Kalman filter uses ran-
dom Gaussian processes, which exhibit very fast changes, while
the P-spline method models the RMR and CCA with spline func-
tions that vary slowly in time. This difference is magnified during
periods of activity (Figure 3), which explains why the metabolic
measures related to resting metabolism are more accurate than
those related to activity.

MEASUREMENT OF BMR
Since the RMR is relatively stable when it has converged to the
BMR after a period of fasting, the BMR can also be estimated
by methods that assume a constant resting energy expenditure.
We compared the BMR estimate of the Kalman filter and P-spline
regression with the minimal energy expenditure (Figures 5A,B)
and with the BMR estimated by linear regression using the lin-
ear compartment model for gas diffusion effects (Figures 5C,D).
Both methods were applied on the data obtained during the
90 min period prior to feeding. To reduce the downward bias
caused by randomly occurring dips in the RMR, we calculated
the minimum averaged energy expenditure for a 5 min window.

Both the minimal EE as the BMR estimate from linear regres-
sion had a good correspondence with that of Kalman filtering
and P-spline regression (R2 > 0.94). However, the minimal EE
was biased downwards with respect to the BMR estimate of the
Kalman filter and P-spline regression, which means that addi-
tional postprocessing of the results to correct for the bias is
necessary when using this method. In comparison, the BMR
estimate by linear regression was not biased and also strongly
correlated with the result of the Kalman filter and P-spline regres-
sion, suggesting that linear regression is an adequate alternative
for estimating the BMR when the RMR has stabilized. Estimating
the BMR with linear regression while binning PA and TEE in
15 min intervals gave worse results than the linear compartment
model (Figures 5E,F). The larger divergence from the Kalman fil-
ter and P-spline regression estimates can be explained both by the
larger residual variance obtained by binning (Figure 2C) and by
the larger uncertainty that is present in the BMR estimate because
regression was based on less data points.

INFLUENCE OF EXPERIMENTAL VARIABLES
The accuracy with which the computational methods described
in the previous section are able to partition the TEE into a time
sequence of the activity and resting energy component depends
on a number of properties and settings of the indirect calorime-
try system. Most importantly, these are the sampling frequency
with which the respiratory exchange and activity are measured,
the type and accuracy of the activity sensor, and the size of the
chamber in proportion to the flow rate. Since the estimates of the
TEF, BMR, and activity and resting RQ are derived from the result
of the decomposition method, it is important to know how the
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FIGURE 4 | Correspondence of metabolic parameter estimates from

indirect calorimetry datasets of mice and rats using Kalman

filtering and P-spline regression. Bland Altman plots are shown of
the BMR (A), TEF (B), AEE (C), CCA (D), resting RQ during fasting

(E), activity RQ during fasting (F), increase in resting RQ after feeding
(G), increase in activity RQ after feeding (H). The coefficient of
determination (R2) and 95% confidence interval (CI) are shown
separately for mice and rats.

experimental settings affect a method’s robustness and, in turn,
that of the inferred metabolic measures.

We here tested how the eight metabolic measures presented in
the last section are affected by changes in the sampling resolution,

the accuracy of the activity sensor, and the system’s washout time
for the existing experimental data. For each case the effects of a
change in the experimental setting was simulated on the existing
data, and subsequently component analysis was performed on the
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Table 1 | The coefficient of determination (R2) of the correlation for

metabolic measures based on the results of P-spline regression

model and of the Kalman filter with automatically and manually

tuned filter parameters.

Mice Rats

Automatic Manual Automatic Manual

BMR 0.990 0.987 0.976 0.958

TEF 0.906 0.911 0.899 0.866

AEE 0.974 0.975 0.966 0.908

CCA 0.799 0.777 0.762 0.589

Resting RQ 0.999 0.995 0.992 0.978

Activity RQ 0.940 0.878 0.635 0.372

� Resting RQ 0.988 0.962 0.990 0.987

� Activity RQ 0.815 0.373 0.315 0.188

Automatically tuned parameters of the Kalman filter were fitted as to minimize

the difference with the time-dependent RMR estimate of the P-spline regression

model, resulting therefore in energy component estimates that are as close to

the result of the P-spline regression model as possible. In contrast, manually

tuned parameters were based on visual criteria and did not include prior knowl-

edge of the results of P-spline regression. The agreement between metabolic

measure estimates is typically worse when the Kalman filter is manually tuned,

though correspondence is still good for the BMR, TEF, AEE, and the resting RQ.

For the CCA the correlation is less strong, while for the activity RQ during fasting

in rats and the increase in activity RQ after feeding the correlation is very poor,

showing that these measures are very sensitive to the specific method that is

used and to how the parameters were tuned.

new data; for details regarding the simulation procedure, see the
respective sections. The estimate of each parameter on the new
data was then compared with its basal estimate and used to cal-
culate the mean squared error (MSE) relative to the total variance
for the Kalman filter and P-spline regression:

relative MSE(x) =
∑

i

(
xi − xbasal

ii

)2

∑
i

(
xbasal

ii
− x̄basal

i

)2 · 100%

with xi the estimate of metabolic measure x for subject i on the
new data and xbasal

i the estimate on the original data. Importantly,
the relative MSE approximates the unexplained variance 1 – R2,
except that it also penalizes a difference in the mean estimates; this
property assists in the interpretation of the relative MSE since it
can be directly related to the R2. It should also be noted that since
the relative MSE is auto-referenced (i.e., to the basal estimate) it
does not include systemic errors due to drift in the CO2 and O2

sensors or the mass flow controller.
Since the choice of the filter parameters became sub-optimal

when applying the Kalman filter on the data with the simulated
experimental changes, we adjusted these parameters as to min-
imize the total MSE of the Kalman filter. No parameters were
changed for the P-spline regression method on the new data.

SAMPLING RESOLUTION
The sampling frequency with which the respiratory exchange can
be measured depends on the type of indirect calorimetry system.

For single channel systems a set of O2 and CO2 analysers con-
tinuously measure the respiratory exchange in a single chamber,
and therefore there are no restraints on the sampling frequency
other than technical limitations related to data storage and data
handling. Gas sensors, though, are rather expensive and therefore
most commercial manufacturers of indirect calorimetry systems
have opted for a multiplexed design where a single set of gas
sensors measure the air from multiple chambers in succession.
This comes at the cost of reducing the time resolution that can
be attained, because now the tubing between each chamber and
the sensors needs to be purged every time a new measurement is
taken.

Sampling frequency can have a huge impact on the perfor-
mance of decomposition algorithms and also puts a limit on the
amount of detail that can be attained in the estimate of the time-
dependent RMR. In fact, recently it has been questioned whether
detailed component analysis is even possible on data that has been
generated by multichannel systems (Even and Nadkarni, 2012).
Hence, it is important to quantify the influence sampling fre-
quency has on the precision with which metabolic parameters are
estimated, in order to understand what can be achieved with a
certain indirect calorimetry system or experimental design. We
therefore performed TEE decomposition on a range of down-
sampled versions of the original high resolution VO2 and VCO2

time sequences and compared the estimates of the eight metabolic
parameters with their basal estimates. To simulate a dataset with
a sample time of T seconds we took every N-th measurement of
the VO2 and VCO2 while discarding the rest, where N is defined
as T divided by the sample time of the original dataset. Since there
are typically no limitations on the sampling frequency with which
activity can be measured, we did not perform downsampling of
the activity data.

Figure 6 shows the relative MSE of Kalman filtering and
P-spline regression in estimating each metabolic parameter for a
sample time ranging from 5 s to 20 min. In general, the deviance
of each estimated parameter from its basal estimate grows with
increasing sample time. The BMR and resting RQ during fasting
seem to be the parameters that are most robust against increas-
ing sample time. At a sample time of T = 9 min, the MSE of the
BMR estimated with P-spline regression is 0.3% for mice and
rats, and the MSE of the resting RQ during fasting lies around
0.2%, showing that for these measures there is an exception-
ally high correlation of R2 > 0.997 with the basal estimate for
T = 9 min. The MSE of the increase in resting RQ after feed-
ing in mice is with 0.9% larger than that of the resting RQ
during fasting, but still very robust. Surprisingly, also the AEE
and TEF can still be estimated with a decent amount of accu-
racy at T = 9 min: the AEE has an MSE of 2.2% (mice) and
1.4% (rats) and the TEF has an MSE of 2.2% (mice) and 1.1%
(rats). In comparison, the other measures are more susceptible to
increasing sample times. At T = 9 min, the MSE of the CCA is
20.3% (mice) and 11.4% (rats) and the MSE of the activity RQ
during fasting is 19.7% (mice) and 7.6% (rats). These errors cor-
respond to an R2 with the basal estimate in the range of 0.8–0.9,
which clearly show that these parameters cannot be measured
with a high degree of accuracy in data coming from multichannel
systems.
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FIGURE 5 | Correspondence of BMR estimates from indirect calorimetry

datasets of mice and rats with the minimal energy expenditure

approach, linear regression, Kalman filtering and P-spline regression.

Bland Altman plots are shown of BMR estimates of Kalman filtering and

P-spline regression against minimal EE (A,B), linear regression using a linear
compartment model to account for gas mixing effects (C,D), and linear
regression using binning (E,F). The coefficient of determination (R2) and 95%
confidence interval (CI) are shown separately for mice and rats.

These results show that, in general, the measures calculated
from the resting respiratory exchange are less sensitive to decreas-
ing sample rates than those related to activity metabolism. The
larger sensitivity of the activity related measures, but also the TEF,
is mostly due to the fact that their calculation explicitly depends
on the time-dependency of the AEE and RMR estimates, and
therefore suffer more heavily from the loss in time resolution. The
difference in the robustness between the AEE and CCA is due to
the fact that there is a much smaller basal variance in the CCA,
which makes the denominator of the relative MSE smaller.

In comparison, the estimates of the metabolic parameters
based on the decomposition of the Kalman filter are less robust
to lower sample rates, in both mice and rats. We have found the
same result in our earlier study, where we compared the perfor-
mance of both methods on simulated data (Van Klinken et al.,
2012). We think that the main cause for the difference in robust-
ness is that, by its design, the Kalman filter estimates the AEE and

RMR at a single time point using only a few past measurements
whereas the P-spline model takes into account a larger set of local
measurements which ensures more stable estimates. In addition,
P-spline regression first applies the linear compartment model on
the high resolution activity data and then resamples it to the mea-
surement times of the respiratory exchange, which yields a much
better correlation between the PA and TEE than when the activ-
ity data is first downsampled and then the gas mixing effects are
applied, which is what occurs in the Kalman filter.

It is important to note that in our analysis we did not include
the effect of additional measurement errors in the O2 and CO2

data that can occur due to switching between chambers by a mul-
tiplexer. When the switching between chambers occurs too fast
with respect to the system configuration then old air will remain
in the tubes and will affect the new measurement. In practice a
choice will have to be made between a higher time resolution on
one hand, and therefore more data and a better decomposition,

Frontiers in Physiology | Integrative Physiology May 2013 | Volume 4 | Article 94 | 10

http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive


van Klinken et al. Estimation of energy components in rodents

FIGURE 6 | Dependence of the estimation accuracy on the sample time.

The relative mean squared error is shown of the BMR (A), TEF (B), AEE (C),
CCA (D), resting RQ during fasting (E), activity RQ during fasting (F), increase
in resting RQ after feeding (G), increase in activity RQ after feeding (H) as
estimated by the Kalman filter (orange) and P-spline regression (red) on data

from mice (solid) and rats (dashed) with a sample time of 4, 9, 14, and
20 min. The relative mean squared error was calculated as the difference of
the measure’s estimate for a given sample time with the basal estimate at a
sample time of 5 s, divided by the basal variance for that measure in mice
and rats.

and a higher accuracy of O2 and CO2 measurements on the
other. In our experience the presence of old air can be modeled
with an exponential decay curve, which means that the relative
error induced by old air can be quantified as a function of the
decay rate and the purging time of the system. As an example,
for the multiplexed indirect calorimetry system we have currently
in our facility the decay rate is approximately 10 s at an excur-
rent flow rate of 0.4 l/min, which means that with a purging
time of 60 s, 99.8% of the old air is purged, yielding a total sam-
ple time of 9 min given an 8 cage system and an empty cage for
reference air.

ACTIVITY MEASUREMENTS
Several devices exist for quantifying the level of spontaneous
PA in rodents, such as photocell sensors (Nonogaki et al., 2003;
Bjursell et al., 2008; Kotz et al., 2008), piezo-electric force trans-
ducers (Even et al., 1991, 1994), microwave radar systems (Brown
et al., 1991; Pasquali et al., 2006) and video-tracking systems
(Poirrier et al., 2006). A frequently used approach in commer-
cially available metabolic chamber systems is to measure PA as
the number of infrared beam interruptions. It has been suggested,
however, that infrared beam interruptions may miss out on the
more subtle types of activity (Even and Nadkarni, 2012), which
would make this type of sensor less suitable for TEE decom-
position. Another disadvantage is that count data is inherently
noisy because of the random character of beam interruption

occurrences. The electrical signal generated by piezo-elements has
been proposed as a more accurate alternative for measuring PA
in rodents and has been suggested to correlate more tightly with
the AEE and be more sensitive to small movements (Even and
Nadkarni, 2012).

Since the datasets used in this study were measured only
with piezo-electric force transducers, we were not able to make
a direct comparison between this and other types of sensors.
We therefore investigated what the effect is of the accuracy of
the activity sensor on TEE decomposition in general, by adding
noise to the measured activity data. Noise was simulated by mul-
tiplying the activity time sequence with the random sequence
1 + ePA(t), where ePA(t) is a slowly varying random process
that has been modeled with spline functions. In detail, we took
ePA(t) = �i εi Bi(t) with Bi(t) the cubic B-spline basis func-
tion with randomly distributed coefficients εi ∼ N(0, σ2) and
with 20 knots/h. The reason to model ePA(t) as autocorre-
lated noise and not as white noise is that in the former case
the situation is emulated where each activity bout has a dif-
ferent CCA, which is a reflection of what happens when an
activity sensor is less sensitive for detecting certain kinds of
activity.

Figure 7 shows the deviance of the estimated metabolic
parameters for various levels of activity noise ePA(t). Since from
the result of TEE decomposition it is not possible to discern
between noise present in the activity sequence and natural
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FIGURE 7 | Dependence of the estimation accuracy on the accuracy of

the activity sensor. The relative mean squared error is shown of the BMR
(A), TEF (B), AEE (C), CCA (D), resting RQ during fasting (E), activity RQ
during fasting (F), increase in resting RQ after feeding (G), increase in activity
RQ after feeding (H) as estimated by the Kalman filter (orange) and P-spline
regression (red) on data from mice (solid) and rats (dashed) with different
levels of simulated noise on the activity data. The relative mean squared error

was calculated as the difference of the measure’s estimate for a given noise
level with the basal estimate with no added noise, divided by the basal
variance for that measure in mice and rats. The noise level (x-axis) is
quantified as the amount of time variation σCCA in the CCA assuming a
multiplicative model CCA(t) = CCAconst · [1 + eCCA(t)] The baseline σCCA

estimates and standard deviation are 0.136 ± 0.025 for mice and
0.099 ± 0.047 for rats.

variations in the CCA, we used the amount of variation σCCA

that was present in the CCA estimate as a combined measure of
the activity noise. In this way we were able to determine the effect
of the simulated noise on top of the basal level of variation in
CCA and could make comparisons with the basal σCCA of other
activity sensors. For the time variation in the CCA we assumed a
multiplicative model

CCA(t) = CCAconst × (1 + eCCA(t)) (5)

with CCAconst and eCCA(t) the constant and time-varying part
of the CCA. The variation σCCA was estimated using maximum
likelihood; for details see Van Klinken et al. (2012), supplemen-
tal material 1. The basal CCA variation (mean ± SD) was found
to be 0.136 ± 0.025 in mice and 0.099 ± 0.047 in rats. In our
earlier study we measured respiratory exchange in a mouse at
a high resolution using infrared beam sensors to quantify activ-
ity (Van Klinken et al., 2012); from this data we estimated σCCA

to be 0.164, which lies within the 95% confidence interval of
the σCCA estimate for piezo-electric sensors. Future research is
needed to make a more sound comparison between these activ-
ity sensors, performing experiments in which activity is measured
simultaneously with both sensors.

From Figure 7 it follows that the estimates of the resting RQ
during fasting and the increase after food intake are very robust

to activity noise, having a relative MSE of less than 0.2% for
all σCCA. Also the BMR was relatively robust, having a MSE of
0.4% (mice) and 0.7% (rats) at a level of twice the basal CCA
variation. The AEE estimate was more sensitive to activity noise
with an MSE of 1.0% (mice) and 2.7% (rats) at twice the basal
CCA variation, and the TEF had an MSE of 4.2% (mice) and
3.7% (rats). The activity RQ during fasting was very sensitive
to the activity noise using P-spline regression but not using the
Kalman filter, which had an MSE of 1.7% (mice) and 1.5% (rats)
at twice the basal σCCA. Investigating this specific observation
we found that the additional uncertainty that comes with fitting
the activity noise that is part of the P-splines regression algo-
rithm had caused the larger MSE. For the other measures the
P-spline regression proved to be more robust to increasing activ-
ity noise than the Kalman filter. This result is related to the use
of weighed regression, which mitigates the effect of noisy activity
data, and also to the choice we made for a relatively low num-
ber of knots, which prevented the P-spline model to overfit to the
activity noise.

CHAMBER WASHOUT TIME
Because of the mixing process of the exhaled air with the air in the
metabolic chamber, the time pattern in the O2 consumption and
CO2 production rate measured at the chamber’s outlet becomes
dampened. In the ideal case, gas mixing acts as a first-order low-
pass filter on the instantaneous respiratory exchange, attenuating
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the high frequency variations that are due to activity. The extent
of the dampening effect is directly related to the washout time τ,
i.e., to the proportion of the chamber size to the rate of the air
flow: all frequencies above the cutoff frequency of f = (2πτ)−1

are attenuated by the mixing process. Since component analy-
sis ultimately relies on the time correlation between the energy
expenditure and activity signal, it is important to know what
effect the washout time τ has on the accuracy of the estimated
components.

In order to determine the deviance from the basal estimate for
varying τ, we deconvoluted the original data for the washout time
of the respective experiments, and subsequently re-convoluted
the data for a range of different τ’s. Since re-convolution with
a larger washout time implied that high frequency sensor noise
was attenuated, we added white noise such that the power of fre-
quency components above 1 min−1 was equal for each derived
dataset.

When initially comparing the results between P-spline regres-
sion and the Kalman filter, we found that the estimates of the
Kalman filter were much more robust to increasing washout times
than those from P-spline regression, having a smaller MSE by
a factor of 2–10 depending on the metabolic measure. The rea-
son for the bad performance of the P-spline model is that the
decomposition is based on the regression of the TEE on the

PA, which becomes increasingly more difficult for larger τ since
the correlation between TEE and PA fades away. In contrast,
the Kalman filter inherently performs deconvolution, which is
the preferred approach when τ is large. We therefore also per-
formed P-spline regression on data where the VO2 and VCO2

time sequences had been deconvoluted. As shown in Figure 8,
the results of P-spline regression on deconvoluted data gave much
more accurate results, yielding estimation errors that are only a
fraction of those that are obtained when increasing sample times
or activity noise. For all measures, except the activity RQ and delta
activity RQ, the relative MSE is smaller than 0.1% for the whole
range of τ using P-spline regression.

It is important to note that in this experiment we modeled the
gas diffusion effects of the larger (simulated) chamber as a linear
compartment, which was also the main assumption of the decon-
volution process. In this idealized situation deconvolution gives
extremely accurate results, because the only source of the esti-
mation error is the amplified sensor noise. In practice, therefore,
the performance of P-spline regression and Kalman filtering on
data measured with a large washout time will be worse because
of deviance from the linear compartment model due to non-
ideal mixing. Nevertheless, the key point here is that P-spline
regression—and any other type of regression approach for that
matter—can only work directly on indirect calorimetry data if

FIGURE 8 | Dependence of the estimation accuracy on the chamber

washout time. The relative mean squared error is shown of the BMR (A),
TEF (B), AEE (C), CCA (D), resting RQ during fasting (E), activity RQ during
fasting (F), increase in resting RQ after feeding (G), increase in activity RQ
after feeding (H) as estimated by the Kalman filter (orange), P-spline
regression (red) and P-spline regression using deconvolution (black) on data
from mice (solid) and rats (dashed) with simulated chamber washout times of
5, 15, 30, and 45 min. The relative mean squared error was calculated as the

difference of the measure’s estimate for a given washout time with the basal
estimate at a washout time of 5 min, divided by the basal variance for that
measure in mice and rats. Graphs focus on showing the difference between
the relative MSE of the Kalman filter and P-spline regression with
deconvolution; as a result, the MSE of the ordinary P-spline model lies
outside the range of the y-axis for most washout times. Note that because
part of the Kalman filter’s MSE of the TEF estimate is composed of a mean
difference, the MSE does not increase monotonically for τ.
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the washout time is small, preferably with a chamber volume
to air flow ratio of less than 10 min; otherwise the data needs
to be deconvoluted first in order to perform robust component
analysis.

DISCUSSION
Component analysis has evolved to become an integral part of
indirect calorimetry data analysis, and has proved valuable in
studies of obesity to elucidate the interaction of energy expendi-
ture with PA (Girardier et al., 1995; Speakman and Selman, 2003;
Novak et al., 2006; Kotz et al., 2008; Maclean et al., 2009; Virtue
et al., 2012) and food intake (Maclean et al., 2004; Hambly et al.,
2005; Johnston et al., 2007). In addition, component analysis has
been used to investigate the influence of body composition on
the BMR (Johnson et al., 2001; Selman et al., 2001) and of gene
mutations (Mokhtarian et al., 1996; Nonogaki et al., 2003). In
order to be able to get quantitative insight into these complex
interactions and shed light on the mechanisms of body weight
regulation, it is essential that the energy components are esti-
mated with maximum accuracy. In this work we discussed the
computational techniques that can be used for component analy-
sis and we dealt with issues regarding data preprocessing and the
effect of different experimental settings on the estimation accu-
racy. To fully test the capabilities of these algorithms and compare
their results we have used indirect calorimetry data measured in
mice and rats.

Making a basal comparison between a set of metabolic mea-
sures that were derived from the results of the Kalman filter and
P-spline regression, we found that for the BMR, TEF, AEE and
resting RQ there was a high agreement between both methods
(R2 > 0.86), meaning that for these parameters there is virtually
no difference in what method is used. For the CCA the correlation
was less strong (R2 = 0.59–0.80), which was mainly caused by the
low within group variance for this parameter. In contrast, for the
activity RQ in rats large differences were reported between both
methods, suggesting that this measure is difficult to estimate reli-
ably, especially if periods of activity are few and short. With the
current data it was not possible to determine whether estimates
based on the results of either the Kalman filter or P-spline regres-
sion were superior. Future research is required to investigate this
issue in more depth, for instance by comparing the activity RQ
with measures of muscle function.

An important advantage of Kalman filtering and P-spline
regression is that they provide time-dependent estimates of the
activity and resting VO2 and VCO2, which makes it possi-
ble to assess the dynamic response of energy metabolism on
food intake and other metabolic challenges. Other computa-
tional approaches, such as ordinary linear regression and minimal
energy expenditure estimation, assume that the RMR is constant
and can therefore not be used to look at the time variation in
the RMR. These methods are tailored to estimate the RMR on
relatively short time intervals when the RMR has stabilized, for
instance to determine the BMR.

We compared the BMR estimate obtained by linear regres-
sion and the minimal energy expenditure with the estimates from
Kalman filtering and P-spline regression, and found that there
was a strong correlation between these methods (R2 > 0.94).

However, the minimal energy expenditure estimate displayed a
downward bias with respect to the other methods, which means
that postprocessing of the results of this method is required to
correct for this effect. In addition we showed that binning is not
as accurate as the linear compartment model to account for the
gas mixing effect and to align indirect calorimetry and activity
data, because it gives a larger residual error and more uncertainty
in the BMR estimate.

Importantly, linear regression in conjunction with binning is
not advised for determining the daily AEE and RMR from indirect
calorimetry datasets spanning over multiple days, since the result-
ing estimates will be strongly biased due to the circadian rhythm
in the resting energy expenditure. Specifically, the low-pass fil-
ter functioning of binning will make it difficult to distinguish
between the AEE and the increase in RMR that occurs during the
active period of the 24 h cycle, resulting in that the estimate of the
daily RMR will approach the RMR of the inactive period of the
24 h cycle, while the AEE will include the increase in RMR dur-
ing the active period of the 24 h cycle. Therefore, linear regression
should always be performed on intervals during which the RMR
is stable and by employing a linear compartment model to either
convolute the activity data with the impulse response h(t) of the
chamber or else deconvolute the calorimetry data.

The ability of the Kalman filter and the P-spline regression
model to reliably estimate the time dependency in the resting and
activity metabolism comes at the cost of an increased complexity
of these methods. Most importantly for the user this means that a
number of parameters needs to be set in advance, which affect the
performance of the method. For the Kalman filter five parameters
need to be set, of which the most important ones are the process
noise variances associated with the CCA and RMR. These vari-
ances control how quickly each process is allowed to fluctuate and
determine whether a change in energy expenditure is attributed
to (a change in) the CCA, RMR or measurement noise. The P-
spline method has comparable parameters, namely the number
of knots that is used in the spline function of the RMR and CCA.
An additional parameter that we introduced in this study is the
amount of weight that is given in the regression to data measured
during activity periods. A weight of zero discards data measured
during activity bouts, which has the advantage of decreasing the
sensitivity to inaccuracies in the activity data, but it also increases
the uncertainty in the global estimate because less data points are
used. We found that on the data analysed in this study a relative
weight for activity periods of 0.2 gave robust estimates.

It went beyond the scope of the present study to investigate
more technical issues regarding the sensitivity of both methods
to the choice of their parameters. This is an important direction
for future research because some metabolic measures, such as
the activity RQ, show a large sensitivity to the parameter choice
(Table 1). Therefore, more objective criteria need to be found
to assist in the standardization of time-dependent component
analysis and to eliminate the subjective bias introduced into the
estimates of sensitive metabolic measures by the manual tuning
of parameters.

The standard for component analysis is to use high time-
resolution data, that is, measured with a sample time of 10 s
or less, and to use relatively small cages in order to diminish
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the effect of gas mixing on the time pattern of the respiratory
exchange. Many experimental studies, however, are done in mul-
tiplexed systems where respiratory exchange is sampled at a much
lower rate and activity is measured with infrared beam breaks.
This raises the question of whether any useful metabolic param-
eters can be derived from the datasets generated by these systems
(Even and Nadkarni, 2012). We found in the present study that
the BMR and resting RQ during fasting were robust measures
against an increasing sample time: for a sample time of 9 min
the increase in estimation error in these measures with P-spline
regression was not more than 0.3% of the within group variance.
The � resting RQ after feeding and the TEF and AEE were less
robust to changes in the sample time but were still estimated with
reasonable accuracy, having a relative error of 3% for a sample
time of 9 min. In contrast, the CCA and activity RQ showed a very
large sensitivity and could therefore not be reproduced at lower
sample rates. Overall the estimation error of the Kalman filter was
found to be more sensitive to an increasing sample time than P-
spline regression, showing that the latter approach is preferred for
analysing data from multiplexed systems.

Based on these data it is difficult to say when the additional
estimation error introduced by a lower sample rate has become
too large to reliably estimate a given parameter. This will depend
on the particular experimental study and, more specifically, on
whether the larger number of rodents that can be simultane-
ously measured in multichannel systems and the fact that animals
can typically reside longer in such cages can compensate for the
increase in estimation error and the reduction in statistical power.
A potential solution to increase the sample rate is to perform con-
tinuous data acquisition in multiplexed systems, which permits
to predict the actual O2 and CO2 concentrations in the present
chamber by extrapolating the transitional O2 and CO2 concen-
tration of the mixed air by fitting a series of exponential decay
curves to the data.

Interestingly, we found that the effect of a reduction in the
accuracy of the activity sensor and a larger washout time on the
decomposition methods is smaller than the effect of measuring at
a low time resolution. In fact, the effect of larger washout times on
the estimation accuracy can almost be eliminated, as long as data

is measured with a high time-resolution such that deconvolution
can be performed. This means that having frequently sampled
data is more important for performing robust component anal-
ysis than having high accuracy activity sensors or a small washout
time.

Concluding, component analysis is an important part of indi-
rect calorimetry data analysis that can provide great additional
insight into these datasets. Preferably component analysis is
performed on data with a high time-resolution, because this
increases the robustness of the decomposition methods, enables
the assessment of fast dynamic responses of metabolism on
experimental interventions, and permits the calculation of the
instantaneous respiratory exchange by means of deconvolution.
On low time-resolution data component analysis can be used
to measure the BMR or the gradual changes in the RMR asso-
ciated with circadian rhythm and long term adaptations. The
assessment of AEE and TEF can also be feasible in certain
cases, but only if the sample time does not exceed 10 min
and with the knowledge that the power of subsequent statisti-
cal tests may be substantially reduced. On high resolution data
from indirect calorimetry systems with continuous data acqui-
sition the Kalman filter and P-spline regression model give very
similar results and can therefore both be used. In contrast,
for data generated by multichannel system the P-spline regres-
sion is advised since it is more robust to infrequently sampled
data.
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