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Abstract: There exists a natural trade-off in public key encryption (PKE) schemes based on ring
learning with errors (RLWE), namely: we would like a wider error distribution to increase the
security, but it comes at the cost of an increased decryption failure rate (DFR). A straightforward
solution to this problem is the error-correcting code, which is commonly used in communication
systems and already appears in some RLWE-based proposals. However, applying error-correcting
codes to those cryptographic schemes is far from simply installing an add-on. Firstly, the residue
error term derived by decryption has correlated coefficients, whereas most prevalent error-correcting
codes with remarkable error tolerance assume the channel noise to be independent and memoryless.
This explains why only simple error-correcting methods are used in existing RLWE-based PKE
schemes. Secondly, the residue error term has correlated coefficients leaving accurate DFR estimation
challenging even for uncoded plaintext. It can be found in the literature that a tighter DFR estimation
can effectively create a DFR margin. Thirdly, most error-correcting codes are not well designed
for safety considerations, e.g., syndrome decoding has a nonconstant time nature. A code good
at error correcting might be weak under a variety of attacks. In this work, we propose a polar
coding scheme for RLWE-based PKE. A relaxed “independence” assumption is used to derive an
uncorrelated residue noise term, and a wireless communication strategy, outage, is used to construct
polar codes. Furthermore, some knowledge about the residue noise is exploited to improve the
decoding performance. With the parameterization of NewHope Round 2, the proposed scheme
creates a considerable DRF margin, which gives a competitive security improvement compared to
state-of-the-art benchmarks. Specifically, the security is improved by 28.8%, while a DFR of 2−149 is
achieved a for code rate pf 0.25, n = 1024, q = 12,289, and binomial parameter k = 55. Moreover,
polar encoding and decoding have a quasilinear complexity O(N log2 N) and intrinsically support
constant-time implementations.

Keywords: ring LWE; polar codes; public key encryption; error dependency; decryption failure rate

1. Introduction
1.1. Error-Correcting for Ring-LWE-Based Public Key Encryption

The ring LWE (RLWE) problem was firstly introduced in 2010 [1], expanding on the
classical version of the problem (i.e., LWE) introduced by Regev in [2]. Key establishment
mechanisms based on RLWE, for example NewHope [3], are among the most attractive
postquantum proposals. Their quantum security relies on the worst-case approximate
shortest independent vector problem (SIVP), and they give better efficiency compared to
plain LWE because of the ring structure. One topic of pressing importance is to refine such
schemes for better efficiency and security. In this work, we focus on the issue of error
correcting for RLWE-based public key encryption.

The key establishment based on RLWE is differentiated into two approaches regarding
how to share the secret information. One is the “reconciliation-based approach” proposed
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by Ding et al. in [4] where Alice and Bob extract common information from the noisy secret
with a robust extractor. However, Ding et al.’s reconciliation approach was observed to
produce a biased secret, which cannot be used as a secret key. Peikert proposed another rec-
onciliation method in [5], which directly produces a uniform secret key. In the initial version
of NewHope [3], four-dimensional lattice codes and lattice quantization are used to design
the reconciliation mechanism. To ease the reconciliation-based NewHope, Alkim et al.
replaced the reconciliation with trivial repetition codes, which encode one bit of message
into four coefficients of a polynomial in Rq. This gives rise to the second approach, i.e., the
“encryption-based” approach. The encryption-based NewHope enjoys the same security
properties and almost the same bandwidth requirement as the reconciliation-based one.

For most of the RLWE-based PKE schemes (e.g., NewHope, LIMA), one can en-
able a conversion from an indistinguishability under chosen plaintext attack (IND-CPA)-
secure PKE to an indistinguishability under chosen ciphertext attack (IND-CCA)-secure
scheme by applying the Fujisaki–Okamoto (FO) transform or its variants in a postquantum
setting [6–8]. An obvious drawback of the FO transform is that it relies on the perfect
correctness of the CPA-PKE scheme, which is not true due to the small residue noise
after decryption. Although robust transforms against correctness errors were designed
by Hofheinz et al. in [9], the advances of CCA attacks based on the decryption failure put
current PQC candidates under threat. As a high-level description, the decryption failures
in an RLWE-based PKE are somehow related to the secret information. If an adversary
manages to observe enough failures and identify a correlation between failures and the
secret, the security will be compromised. Therefore, the decryption failure rate (DFR) is a
significant factor affecting the security level, and it should be precisely calculated. Most
NIST submissions choose 2−128 as a target DFR.

D’Anvers et al. designed attacks exploiting the decryption failures, namely the “failure
boosting” and “directional failure boosting”, in [10,11]. Using these techniques, an adver-
sary can deliberately find “weak” ciphertexts that are more likely to trigger decryption
failures. These failures are used to analyze the secret statistically. These attacks are verified
on some basic versions of ring-/module-LWE-/LWR-based KEMs with comparable pa-
rameterization to NIST candidates, e.g., NTRUEncrypt, KYBER, and SABER, showing that
the security of these KEM schemes is impacted under the proposed attacks assuming an
unlimited number of decryption queries is allowed. In addition, Guo et al. proposed a CCA
attack [12] targeting another RLWE-based NIST proposal, LAC. Furthermore, this novel
attack exploits the high decryption failure rate of some ciphertexts caused by a certain
weight property of the secret key. Though LAC was modified to resist those attacks, it was
not selected as NIST’s finalist due to a variety of investigated and “hidden” attacks.

Some error-correcting codes, i.e., BCH and XEf, are used to improve the DFR in LAC
and Round5, respectively [13,14]. This “unusual design” distinguishes them from other
lattice-based schemes, e.g., NewHope uses repetition codes, while CRYSTALS-KYBER
leaves the message uncoded. On the one hand, error-correcting codes can considerably
increase the noise tolerance, improve the security, and save bandwidth. We noticed that the
BCH, XEf, and repetition codes in above schemes are decoded according to hard decision
metrics, e.g., the Hamming distance. We expect to see an impressive improvement if more
powerful error-correcting codes (e.g., polar codes, low-density parity-check (LDPC) codes)
are adopted. On the other hand, what comes with the usage of error-correcting codes
is the risk of side-channel attacks based on timing/caching. Again, we take LAC as an
example. Given polynomial v′ = v− u · s after decryption, the decoding of BCH codes
proceeds in three steps: (1) recovering the codewords according to a hard decision metric,
(2) calculating the syndrome, and (3) locating the errors if detected and correcting them.
Obviously, the if · · · else statement in the last step is not constant-time.

Attempts to adapt modern error-correcting codes (e.g., LDPC) can be found in [15].
Experimental results were given to show how much LDPC codes can improve the DFR
of NewHope Simple for a reasonably large enough binomial parameter k. Furthermore,
the theoretical estimation of the upper bound on DFR using error-correcting codes was
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given based on an “independence” assumption claiming that the correlation between the
coefficients of the residue noise e · t− s · e′ + e′′ is negligible. However, these were actually
not, and the soft decision decoding of LDPC assumes i.i.d. channels. The dependency
among the noise coefficients is obvious in the vector representation of e · t− s · e′ + e′′, i.e.,

e0 −en−1 · · · −e1
e1 e0 · · · −e2
...

...
. . .

...
en−1 en−2 · · · e0

t−


s0 −sn−1 · · · −s1
s1 s0 · · · −s2
...

...
. . .

...
sn−1 sn−2 · · · s0

e′ + e′′. (1)

We have to be careful about the “independence” assumption: the assumption will over-
estimate (underestimate) DFR for schemes without (with) error-correction, and therefore
underestimate (overestimate) the security. This “independence” assumption was relaxed
by D’Anvers et al. in [16]. Specifically, the i-th coefficient of the noise term e · t− s · e′+ e′′ is
refined in the form of cTs + g where vector c is essentially determined by polynomials e, e′,
vector s by s, t, and scalar g by the ith coefficient of e′′. They assumed cTs + g to be i.i.d.
conditional on the l2-norm of c and s. The DFR of LAC is interpreted as a weighted DFR
averaged over all possible values of ‖s‖, ‖c‖. The ternary error terms in LAC make the
calculation tractable. However, for a more general ring- (module)-LWE-based encryption
with error terms drawn over Z, calculating the marginal distribution Pr{‖s‖} and Pr{‖c‖}
is no longer trivial. In their prior work [17], they gave another assumption, namely the
“Gaussian” assumption, to ease the calculation.

Song et al. interpreted NewHope as a digital communication system in [18]. At the
transmitter’s end, binary message m ∈ {0, 1}256 is encoded as a codeword enc(m) by
repeating m n/256 times. Then, enc(m) is modulated as a vector in {0, bq/2c}n. At the
receiver’s end, upon receiving v′ = e · t− s · e′ + e′′ + bq/2c · enc(m), the additive thresh-
old decoder calculates v′′i = ∑n/256−1

l=0 v′i+256l for i = 0, 1, · · · 255 and recovers m by hard
decision decoding. To analyze the DFR, one needs to take into account two types of
dependencies in the noise term: (a) the dependency between the coefficients of v′ con-
veying the same message bit of m, i.e., v′i+256l for l = 0, 1, · · · , n/256− 1; (b) the depen-
dency between the n/4 coefficients of v′′. In [18], v′′i was elegantly written in the form of
v′′i = ∑511

j=0 Wi,j + ∑n/256−1
l=0 ni+256l as was the sum of 512 i.i.d. random variables Wi,j and

n/256 i.i.d. random variables ni+256l for any fixed i. Therefore, the first-type dependency
was addressed. As for the second type, Song et al. proved the error term v′′i to be identically
distributed for any i = 0, 1, · · · , n/4, and therefore gave a union bound on the DFR. Conse-
quently, a tighter upper bound on the DFR is derived, which is less than 2−418 for n = 1024
and 2−399 for n = 512 (The NewHope submission claims to have an upper bound on DFR
to be 2−216 for n = 1024 and 2−213 for n = 512). The improved DFR margin enhances the
security level without any changes to the original protocol.

The motivation of this work was to investigate how to handle the dependency of
RLWE-based PKE and how to adapt modern error-correcting codes to it. We sought a
security improvement using the derived DFR margin. A concurrent work can be found
in [19], where canonical embedding was employed to derive i.i.d. fading channels with
channel state information (CSI) available to the recipient and polar codes were constructed.
However, in reality, we do not expect to engagein canonical embedding because we
can: (a) spare ourselves the trouble of switching between the canonical and polynomial
representation; (b) avoid the error tolerance loss due to the tailored constellation diagram
as [19] illustrated; (c) make the overall scheme comply with the most popular and practical
RLWE-based PKE framework where we only deal with integers on the interval [0, q).

1.2. Contribution

The contribution of this paper is as follows.
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1. We formulated the RLWE-based PKE as an i.i.d. mod 2Z additive Gaussian noise
channel with channel state information (CSI) available to the receiver under a relaxed
“independence” assumption;

(a) Given the residue noise term e · t− s · e′ + e′′, we formulated the RLWE-based
PKE as a mod 2Z additive Gaussian noise channel within exactly one code
block. We assumed the mod 2Z additive Gaussian channel to be independent
under a relaxed assumption compared to the one in [15];

(b) Alice, the decoder, can considerably improve the DFR by exploiting the advan-
tage that the polynomials e and s are generated on her side and she can figure
out the precise distribution of the Gaussian noise;

2. We employed a telecommunication-engineering strategy, namely outage, to construct
polar codes for RLWE-based PKE. The encoding and decoding routines allow quasi-
linear (i.e., (N log2 N)) and constant-time implementations. Experimental results and
theoretical estimation of DFR are also given. Specifically, we derived a new DFR of
2−149 by SC decoding for NewHope parameters q = 12,289, n = 1024 and code rate
= 0.25 and a larger central binomial parameter k = 55. The DFR margin enabled us
to improve the security by 28.8% while keeping the target DFR of 2−140 (as is the
benchmark in the work of [15,18]) achievable.

1.3. Roadmap

This paper is organized as follows. A review of the ring-LWE-based public key
encryption and some basics of channel models and polar codes can be found in Section 2.
The problem formulation and methodology are introduced in Section 3. In Section 3.1, we
explain how to formulate a typical RLWE-based PKE scheme as a mod 2Z channel with
additive Gaussian noise. A relaxed “independence” assumption is used to derive i.i.d.
channels. We explain the soundness of the proposed scheme in Section 3.2 and demonstrate
how to construct and decode polar codes explicitly in Section 3.3. In Section 4, we analyze
the DFR theoretically and experimentally when polar decoding (SC decoding) is applied.
We, in Section 5, discuss the security improvement, the constant-time implementation,
and communication overhead increase by polar encoding and decoding. We conclude this
paper in Section 6.

2. Preliminaries
2.1. Ring-LWE Public Key Encryption Scheme

The public key encryption scheme based on ring-LWE was first described in [20]
and formally defined in a subsequent work [21]. We use the “informal” definition of
ring-LWE given in [20], as it then became the most prevalent version in implementations,
e.g., NewHope [22] and Peikert’s KEM [5]. The scheme is parameterized by an integer

modulus q, dimension n, a power of two, and a ring of integers R :=
Z[X]

xn + 1
and its

quotient ring Rq := R/qR. We define an error distribution χ over R. We take the example
of NewHope and define sampling from χ to be sampling each coefficient of a polynomial
in R from a discrete Gaussian over Z. The scheme proceeds as follows:

• Alice firstly samples a ∈ Rq uniformly at random, then she samples a secret key s
together with an error e according to χ. She publishes as the public key a ring-LWE
sample (a, b) = (a, a · s + e mod q) ∈ Rq × Rq;

• Bob encrypts a message m ∈ {0, 1}n as (c1, c2) = (a · t + e′ mod q, b · t + e′′ + b q
2c ·m

mod q), where e′, e′′, t are sampled independently from χ;
• Alice decrypts using s by computing d := c2 − c1 · s = b q

2c ·m + e · t− s · e′ + e′′.

Alice then recovers the message m by decoding: if the ith coordinate of d is closer to
zero than bq/2c, Alice assumes the ith coordinate of m was zero, otherwise she assumes
it was one. We observe a few key facts about this scheme that we need for our work.
Firstly, although its formal security proof may be found in [21], the main idea is that
b, c1, and c2 leak no information about the secret s and the plaintext m because they
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are ring-LWE samples, which are assumed to be pseudorandom by the hardness of the
ring-LWE decision problem. Therefore, one could alternate the encoding term b q

2c · m
without affecting security, as long as the encoding is independent of the actualization of
the variables s, e, e′, e′′, t. We use this fact implicitly while constructing polar codes in the
sequel. Secondly, we observe that Alice knows the actualization of s and e, and so may use
these for decoding.

2.2. Channel Models

In wireless communications, the additive white Gaussian noise (AWGN) channel is
the most primary and frequently used model to characterize how noises interfere with the
channel input. A typical discrete-time AWGN channel is defined as:

yi = xi + zi, i = 1, · · · , N,

where xi ∈ R is the channel input, yi ∈ R is the channel output, and zi is an additive
white Gaussian noise, and there are N time slots in total. Ideally, these variables are
independent in different time slots indicated by subscript i. A fading channel arises due to
a time-varying attenuation of signal quality caused by either the propagation environment
or by the movement of the transmitter/receiver. We consider a fading channel model W as:

yi = hixi + zi, i = 1, · · · , N,

where hi is the channel gain and zi is additive white Gaussian noise. Denote by Tc the
coherence interval of a fading channel W. In the context of a fading channel with memory,
the channel gain hi is believed to be a constant within one coherence interval and varies
independently as the next coherence interval approaches. The realization of hi is called
channel state information (CSI), and the distribution of hi is called channel distribution
information (CDI). In the special case of Tc = 1, channel W is referred to as an identically
independently distributed (i.i.d.) fading channel. The design and performance of error-
correcting codes for i.i.d. fading channels with/without CSI is well studied [23–27].

How to design xi to reliably transmit information at the highest rate via a specific
channel has been widely and comprehensively studied over the past decades. A branch of
this study is to construct capacity-achieving lattice codes for an AWGN channel and its
fading variants [28–31]. At the transmitter’s end, lattice coding maps binary codes to a
constellation diagram in Euclidean space, called lattice modulation. At the recipient’s end,
the decoder recovers the binary codes by the bounded distance decoding or preferably
maximum likelihood decoding for better performance. This leads to the definition of mod
Λ channel and Λ/Λ′ channel where Λ is a lattice and Λ′ is a sublattice of Λ. We omit the
formal definition here, but give an example of a mod Z channel and a Z/2Z channel, which
will be used in Section 3.1.

Example 1. A mod Z channel is an additive white Gaussian noise (AWGN) channel with input
restricted to a ∈ V(Z) where V(Z) is the fundamental region (A fundamental region of a lattice Λ
is a region that includes one and only one point from each coset of Λ in Rn. Algebraically, V(Λ) is a
set of coset representatives for all the cosets of Λ in Rn, e.g., we can define V(Z) to be [0, 1), but not
necessarily to be the fundamental Voronoi cell [−0.5, 0.5).) of Z. At the receiver’s end, there is a
mod V(Z) operation giving the equivalent channel output as:

y = a + n mod Z = (a + n′) mod Z,

where n is the AWGN noise and n′ = n mod Z.

Example 2. A Z/2Z channel is an AWGN channel with input restricted to r ∈ (Z+ a) ∩ V(2Z)
for some offset a ∈ R. At the receiver’s end, the equivalent channel output is:

y = r + n mod 2Z = r + n′ mod 2Z.
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It can be viewed as a mod 2Z channel with input restricted to a set of elements of Z+ a that
fall in V(2Z).

2.3. Polar Codes for BDMS Channels

Polar codes, introduced by Arıkan in [32], are linear block codes of length N = 2n for
a positive integer n that achieves the capacity of any binary input discrete memoryless
symmetric (BDMS) channels asymptotically (In fact, the generalizations of polar codes
are extended to arbitrary code length and a large class of channels.). We firstly recall
some basics of polar coding for a BDMS channel. Given a BDMS channel W, there are
two commonly used metrics in information theory to measure the quality of W: the
mutual information (The maximum mutual information over all possible channel input
distributions is the channel capacity.) and the reliability.

Definition 1 (Mutual information of BDMS channels). The mutual information I(W) of a
channel W is the maximum rate at which information can be successfully transmitted from the
transmitter to the receiver. For a BDMS channel W : X → Y , I(W) ∈ [0, 1] is defined as:

I(W) , ∑
y∈Y

∑
x∈X

1
2

W(y|x) log2
W(y|x)

1
2 W(y|0) + 1

2 W(y|1)
.

Here, we use the definition of symmetric mutual information assuming a uniform
channel input, which is also the capacity of the BDMS channel. We use the notations I(W)
and I(Y; X) interchangeably to denote the mutual information of W.

Definition 2 (Bhattacharyya parameter of BDMS channels). The Bhattacharyya parameter
Z(W) is a measure of channel reliability. For a BDMS channel W, Z(W) ∈ [0, 1] is defined as:

Z(W) , ∑
y∈Y

√
W(y|0)W(y|1).

A small Z(W) indicates a more reliable channel, while a large Z(W) implies a channel with
more inferences.

The capacity-achieving nature of polar codes arises from the so-called channel po-
larization phenomenon as a result of recursive applications of Arıkan’s transform to
identical Ws and their synthesized derivatives. The overall recursive transform can be
performed in a channel-combining phase and a channel-splitting phase. In the channel-
combining phase, a linear transformation defined as X1:N = U1:NGN is performed on a

vector U1:N ∈ X 1:N over GF(2), where GN = BN

[
1 0
1 1

]⊗n

. BN is a permutation matrix:

if U′1:N = U1:N BN and n = log2 N, the i′ = ((bn, · · · , b2, b1)2 + 1)-th coordinate of U′1:N is
the i = ((b1, b2, · · · , bn)2 + 1)-th coordinate of U1:N . By taking X1:N as the raw input of W,
one derives a combined channel WN : X 1:N → Y1:N with a transition probability of:

WN(y1:N |u1:N) = ∏
i∈{1,··· ,N}

W(y(i)|x(i) = (u1:NGN)i), (2)

where (·)i denotes i-th coordinate. Since GN induces a one-to-one mapping between U1:N

and X1:N , the mutual information of WN is:

I(WN) = I(Y1:N ; U1:N) = NI(W). (3)
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In the channel-splitting phase, WN is further split back into N synthesized channels W(i)
N :

X → YN ×X i−1 whose transition probability is defined by:

W(i)
N (y1:N , u1:i−1|u(i))= ∑

Ui+1:N∈X N−i

1
2N−1 WN(Y1:N |U1:N). (4)

We now demonstrate how to perform Arıkan’s transform. We begin with the transform
on two i.i.d. BDMS channels W : {0, 1} → Y as shown in Figure 1. Let X1:2 = (X(1), X(2)) ∈
{0, 1}2 be the raw input vector of two W and X1:2 = (Y(1), Y(2)) ∈ Y2 be the raw channel
output vector. Denote by U1:2 = (X(1), X(2)) ∈ {0, 1}2 the message vector. The symbol ⊕
indicates a mod-2 operation.

(a) Channel combining

(b) Channel splitting

Figure 1. An example of channel combining and splitting for N = 2.

At the channel-combining stage, the message vector U1:2 is transformed into X1:2 =

U1:2G2 mod 2 where G2 =

[
1 0
1 1

]
. The two parallel Ws are seen as a combination chan-

nel W2 : {0, 1}2 → Y2. Since there exists a bijection between U1:2 and X1:2, the transition
probability of W2 is:

W2(y1:2|u1:2) = W(y(1)|u(1) ⊕ u(2))W(y(2)|u(2)).

The channel capacity of W2 and W satisfies:

I(W2) = 2I(W). (5)

At the channel-splitting stage, the combination channel W2 is split into two synthesized
channels W(1)

2 : {0, 1} → Y2 and W(2)
2 : {0, 1} → Y2 × {0, 1}. To be specific, channel W(1)

2

takes U(1) as the only input and gives Y(1), Y(2) as the output. As for channel W(2)
2 , it
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takes U(2) as the only channel input and gives Y(1), Y(2) and U(1) as the channel output.
The channel transition probabilities of W(1)

2 and W(2)
2 are:

W(1)
2 (y1:2|u(1)) = ∑

u(2)∈{0,1}

W2(y1:2|u1:2) · P(u(1:2))

P(u(1))

(a)
=

1
2 ∑

u(2)∈{0,1}
W(y(1)|u(1) ⊕ u(2))W(y(2)|u(2)) (6)

and:

W(2)
2 (y1:2, u(1)|u(2)) =

W2(y1:2|u1:2) · P(u(1:2))

P(u(2))

(b)
=

1
2

W(y(1)|u(1) ⊕ u(2))W(y(2)|u(2)). (7)

Note that the equalities (a) (b) are derived because U(1), U(2) are i.i.d. and they
are uniformly distributed over {0, 1}. More generally, a proposition follows to show the
relation between (W(i)

N , W(i)
N ) and (W(2i−1)

2N , W(2i)
2N ).

Proposition 1 ([32]). For i = 1, · · · , N,

W(2i−1)
2N (y1:2N , u1:2i−2|u(2i−1))

=
1
2 ∑

u(2i)

W(i)
N (y1:N , u1:2i−2

o ⊕ u1:2i−2
e |u(2i−1) ⊕ u(2i)) ·W(i)

N (yN+1:2N , u1:2i−2
e |u(2i)) (8)

W(2i)
2N (y1:2N , u1:2i−1|u(2i))

=
1
2

W(i)
N (y1:N , u1:2i−2

o ⊕ u1:2i−2
e |u(2i−1) ⊕ u(2i)) ·W(i)

N (yN+1:2N , u1:2i−2
e |u(2i)), (9)

where u1:2i−2
o and u1:2i−2

e indicate a subvector of u1:2i−2 of odd and even indices, respectively.

It was proven in [32] that Arıkan’s transform preserves the mutual information in the
sense that:

I(WN) = NI(W) = ∑
i∈{1,··· ,N}

I(W(i)
N ).

More importantly, the quality of the synthesized channels polarizes asymptotically as
the recursion proceeds.

Theorem 1 (Channel polarization of mutual information [32]). For any BDMS channel W,
the synthesized channels W(i)

N polarize in the sense that, for any fixed δ ∈ (0, 1), as N goes to infinity

through powers of two, the fraction of indices i ∈ {1, · · · , N} for which I(W(i)
N ) ∈ (1− δ, 1] goes

to I(W) and the fraction for which I(W(i)
N ) ∈ [0, δ) goes to 1− I(W).

The channel polarization theorem from above can also be stated in the metric of the
Bhattacharyya parameter by replacing I(W(i)

N ) by Z(W(i)
N ).

For any desired transmission rate R < I(W), we can partition {1, · · · , N} into a subset
A and its complement AC such that (i) |A| = bNRc and (ii) for any i ∈ A and j ∈ AC ,
Z(W(i)

N ) ≤ Z(W(j)
N ). Denote by GN(A) (resp. GN(AC)) the rows of GN indexed by A (resp.
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AC). Given the most reliable bNRc channels indexed by A, one can construct polar codes
following the encoding rule:

X1:N = UAGN(A)⊕UACGN(AC), (10)

where UA is the useful information vector of length bNRc and UAC is a predetermined
vector, named frozen bits, known to both the encoder and decoder, e.g., UAC = 0. In this
manner, the useful information is transmitted via the most reliable synthesized channels.
A question may arise about how to efficiently calculate Z(W(i)

N ). A brief review can be

found in Sections 2.4 and 3.3. As a high-level description, calculating Z(W(i)
N ) according to

Definition 2 for a BDMS channel with a large or even continuous output alphabet is not easy
because the output alphabet of the synthesized channel W(i)

N increases exponentially with a
factor of log2 N. One solution to handle this problem is to firstly construct an approximate
channel W ′ of W using a degrading/upgrading technique such that W ′ has a countable
output alphabet of a size no greater than µ and only minor and traceable capacity loss [33].
Then, one applies Arıkan’s transform recursively to W ′, deriving synthesized channels as
Proposition 1 indicates. At each recursion, one applies a merging technique to approximate
the synthesized channels such that the approximation is stochastically degraded with the
original one and has an output alphabet no greater than a predetermined value (e.g., ν) [34].
In this way, one can finally derive an approximation of W(i)

N with an output alphabet no
larger than ν and negligible capacity difference. Now, one is able carry out the encoding as
in Formula (10).

The successive cancellation (SC) decoder is the initial decoding algorithm for polar
codes. It gives an estimation of u(i), the i-th coordinate of U1:N , in the natural order of i.
Given a polar code parameterized by code length N, information setA, and frozen bits UAC ,
one can derive the recovered message ū(i) of u(i) in sequential order of index i according to
the decoding rule specified as:

ū(i) =


u(i) i ∈ AC ,

0 L(i)
N (y1:N , ū1:i−1) ≥ 1 and i ∈ A,

1 otherwise,

(11)

where ū1:i−1 is the estimation of u1:i−1 recovered before ū(i) and L(i)
N (y1:N , ū1:i−1) is the

likelihood ratio function defined as:

L(i)
N (y1:N , ū1:i−1) =

W(i)
N (y1:N , ū1:i−1|u(i) = 0)

W(i)
N (y1:N , ū1:i−1|u(i) = 1)

.

The computational complexity of SC decoding, as is dominated by the recursive
calculation of L(i)

N (see Appendix A), is O(N log2 N).
Denote by Pe the average probability of block decoding error. As a result of polar

encoding and SC decoding, it was proven in [32] that Pe is upper bounded as follows.

Theorem 2 (Decoding performance [32]). For any BDMS channel W and any choices of
parameter (N, R,A),

Pe ≤ ∑
i∈A

Z(W(i)
N ).

2.4. Channel Degradation and Upgradation

The construction of polar codes can be addressed if all the Bhattacharyya parameters of
synthesized channels can be efficiently calculated. In [32], an efficient solution to compute
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Z(W(i)
N ) for binary erasure channels (BEC) was given, while it was suggested to use the

Monte Carlo method to deal with more general BDMS channels. R. Mori and T. Tanaka
made an attempt to solve this problem for arbitrary binary input memoryless symmetric
(BMS) channels using the density evolution [35–37] of belief propagation (BP) decoding.
However, they also mentioned that it was unclear how to handle the computational
efficiency when the code length N was large and the requirement for precision was high.
In [33], a quantization method was proposed to construct a degraded and upgraded
approximation of a general BMS channel. If the degraded or upgraded relation exists, one
can approximate Z(W(i)

N ) efficiently.

Definition 3 (Degraded and upgraded channel [33]). A channelQ : X → Z is (stochastically)
degraded with respect to a channelW : X → Y if there exists a channel P : Y → Z such that:

Q(z|x) = ∑
y∈Y
W(y|x)P(z|y)

for all z ∈ Z and x ∈ X . We denote by Q � W the relation that Q is degraded with respect to
W . Conversely, we denote by Q′ � W the relation that Q′ is upgraded with respect toW if there
exists a channel Q′ : X → Z ′ and a channel P : Z ′ → Y such that:

W(y|x) = ∑
z′∈Z ′

Q′(z′|x)P(y|z′)

for y ∈ Y and x ∈ X .

Moreover, the synthesized channels of Q,W ,Q′ under Arıkan’s transform also fulfill
the channel degradation and upgradation relation.

Lemma 1 (Restatement of Lemma 4.7 in [38]). Given BMS channels W ,Q, and Q′, we
denote by W (i)

N , Q(i)
N , and Q′(i)N for i ∈ [1, N] the synthesized channels obtained by Arıkan’s

transformation. If Q′ � W � Q for all i, then Q′(i)N � W
(i)
N � Q

(i)
N .

If the channel degradation or upgradation relation is set up, their channel capacity,
reliability, and error probability will be related as follows.

Lemma 2 ([33]). LetW be a BMS channel, and suppose there exists another channel Q such that
Q � W . Then:

C(Q) ≤ C(W),

Z(Q) ≥ Z(W),

Pe(Q) ≥ Pe(W).

The inequality will reverse if we replace “degraded” by “upgraded”.

3. Materials and Methods
3.1. RLWE-Based PKE Channel Model with Outage

In the field of telecommunication, a signal outage occurs if the signal power at the
receiver’s end falls below a threshold, which is related to the minimum signal-to-noise ratio
(SNR) acceptable to the communication performance. The outage probability is defined
as the probability with which signal outage occurs. The analysis of outage probability
is of great importance to estimate fading capacities in a fading environment. A typical
example is the outage estimation for fading multiple-input and multiple-output (MIMO)
channels [39,40].
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We already gave an RLWE-based PKE instance in Section 2. We now consider the
problem of decoding the message m given the polynomial:

y = b q
2
c ·m + e · t− s · e′ + e′′ mod Rq, (12)

where e · t and s · e′ are polynomial multiplications in Z[x]/(1 + xn). It can be written in
vector form as:

b q
2
cm +


e0 −en−1 · · · −e1
e1 e0 · · · −e2
...

...
. . .

...
en−1 en−2 · · · e0

t−


s0 −sn−1 · · · −s1
s1 s0 · · · −s2
...

...
. . .

...
sn−1 sn−2 · · · s0

e′ + e′′mod q.

(13)
Since the receiver knows matrices E, S and we observe that the norm of each row of

E, S stays the same within one code block, the channel model of RLWE-based PKE can be
described in a fading channel form as:

Yi = b
q
2
cmi + H ∗ Zi, mod q, i = 1, · · · n, (14)

where mi ∈ {0, 1}, Zi ← N (0, r2) and the channel gain H is H =
√

1 + ∑n
1 e2

i + ∑n
1 s2

i
where ei and si are coefficients of polynomials e and s for i ∈ [n], respectively. Note that we
assume the error distribution χ to be a normal distribution N (0, r2) for the convenience of
analysis. A similar setting can be found in [41] where χ is defined on R/[0, q).

Independence assumption: Taking a close look at the channel model in Formula (14),
we derive a group of n identically distributed channels rather than i.i.d. channels because
every Zi is related to every coordinate of t and e′. To apply polar codes to the encoding
and decoding step, we assume that the correlation between the Zis are negligible and will
not affect the decoding performance, as is a common assumption when applying modern
error-correcting codes to RLWE-based PKE [15].

Now, we denote by ε ∈ (0, 1) the outage probability and denote by Hε the threshold
such that Pr{H > Hε} = ε. Unlike in a telecommunication system where the uncertainty
of channel gain would introduce difficulties in estimating the outage probability, in our
RLWE channel, how the fading behaves is clearly known to the receiver. In the RLWE-based
PKE instance in Section 2, both participants of the PKE process know the distribution of H.
Moreover, Alice, who plays the role of the receiver in telecommunication, precisely knows
the value of H, i.e., the channel state information. Examples of how Hε is defined can be
seen in Figure 2 where ε = 0.01 and r is the parameter of normal distribution N (0, r2).

The revised public key encryption proceeds as follows:

• The key generation step is the same as the RLWE-based PKE instance in Section 2;
• At the encryption step, Bob takes the RLWE channel as a mod 2Z additive Gaus-

sian channel (To be precise, it is a b q
2cZ/qZ channel with additive Gaussian noise

N (0, r2H2) or, equivalently, a Z/2Z channel. To ease the notation, we instead use
the mod 2Z channel with input restricted to {0,1}. The two channels are statistically
equivalent.) with the Gaussian distribution to be N (0, r2H2

ε ). Then, he constructs
polar codes of code length N = n for this channel as described in Section 2.3 and
carries out encryption as normal;

• At the decryption step, Alice firstly calculates H =
√

1 + ∑n
1 e2

i + ∑n
1 s2

i . If H >

Hε, Alice goes back to the key generation step, and the whole process is restarted;
otherwise, she decrypts and carries out SC decoding for the mod 2Z channel with
additive Gaussian noise N (0, r2H2). (An explicit illustration of polar encoding and
decoding is given in Section 3.3.)
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Figure 2. Outage probability and threshold Hε, ε = 0.01, n = 1024.

3.2. The Soundness and Security of the Proposed Scheme

In the above revised RLWE-based PKE scheme, we construct polar codes for a mod
2Z channel with additive noiseN (0, r2H2

ε ), then apply the codes to a mod 2Z channel with
additive noise N (0, r2H2) where H ≤ Hε. The soundness is guaranteed by the channel
degradation relationship between the two channels.

Lemma 3. If σ1 < σ2, the N (0, σ2
2 ) mod 2Z channel is degraded with respect to the N (0, σ2

1 )
mod 2Z channel.

Proof. Suppose the channel input is X, and let N1 ← N (0, σ2
1 ) and N2 ← N (0, σ2

2 ) be
additive noises. We also define an auxiliary additive noise denoted by Naux, which is drawn
fromN (0, σ2

2 − σ2
1 ). At the recipient’s end, the channel output after the mod 2Z operation is

Y = (X + N2) mod 2Z = ((X + N1) mod 2Z+ Naux) mod 2Z. As a result, N2 mod 2Z
can be interpreted as a concatenation of N1 mod 2Z and Naux mod 2Z. The proof is
complete according to the definition of channel degradation as in Section 2.4.

We now have the degradation relation between the channel models Bob and Alice
have access to, i.e., N (0, H2

ε r2) mod 2Z � N (0, H2r2) mod 2Z. Recall that Lemma 2
quantitatively shows from what aspect one channel is degraded to the other and Lemma 1
shows that Arıkan’s transform preserves the channel degradation relation. Meanwhile,
constructing polar codes is performed by selecting the most reliable synthesized channels
to convey the message. As a result, the polar code customized for N (0, H2

ε r2) mod 2Z is
a subcode of the polar codes customized for the channel N (0, H2r2) mod 2Z. A similar
technique by which one can construct a polar code for a degraded channel and apply it to
the channel in reality can be found in [30]. The explicit polar encoding and SC decoding
processes are given in Section 3.3.
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Definition 4 (CPA indistinguishability experiment [42]). Consider a public key encryption
scheme Π = (Gen, Enc, Dec) and an adversary A; the chosen plaintext attack (CPA) indistin-
guishability experiment PubKcpa

A,Π(n) is defined as follows:

1 Gen(1n) is run to obtain keys (pk, sk);
2 Adversary A is given pk, as well as oracle access to Encpk(·). The adversary outputs a pair of

messages m0, m1 of the same length (these messages must be in the plaintext space associated
with pk);

3 A random bit b← {0, 1} is chosen, and then, a ciphertext c← Encpk(mb) is computed and
given to A. We call c the challenge ciphertext;

4 A continues to have access to Encpk(·) and outputs a bit b′;
5 The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition 5 (CPA secure [42]). A public-key encryption scheme Π = (Gen, Enc, Dec) has
indistinguishable encryptions under a chosen plaintext attack (or is CPA secure) if for all probabilistic
polynomial-time adversaries A there exists a negligible function negl such that:

Pr[PubKcpa
A,Π(n) = 1] ≤ 1

2
+ negl(n).

For properly chosen parameters n, q and error distribution χ (e.g., in NewHope setting
n = 512, 1024, q = 12,289; χ is the central binomial of parameter k = 8), RLWE-based
PKE is CPA secure assuming the hardness of ring-LWE decision problem, and a concrete
CPA-secure protocol was described in [43].

Proposition 2. The revised RLWE-based PKE in Section 3.1 preserves the CPA security assuming
that the standard RLWE-based PKE with properly chosen parameters n, q and χ is CPA secure.

Proof. A standard RLWE-based PKE scheme Π is CPA secure assuming the hardness of
the ring-LWE decision problem, i.e., Pr[PubKcpa

A,Π(n) = 1] ≤ 1
2 + negl(n). There are two

modifications we made to the standard RLWE-based PKE. Firstly, at the encryption stage,
Bob uses polar codes instead of uncoded plaintext. This operation has no influence on
the distribution of the ciphertext and therefore preserves the security. Secondly, at the

decryption step, Alice first calculates H =
√

1 + ∑n
1 e2

i + ∑n
1 s2

i ; then, she decides to repeat
the key generation step if and only if H > Hε. Since the adversary is passive and has no
idea if H > Hε or not, he/she cannot determine if the ciphertext given to him/her is a
valid one or not. Therefore, a polynomial-time adversary in the experiment PubKcpa

A,Π′(n)
behaves no better than in the experiment PubKcpa

A,Π(n), i.e.,

PubKcpa
A,Π′(n) ≤ PubKcpa

A,Π(n) ≤ 1
2
+ negl(n).

3.3. Polar Encoding and SC Decoding for RLWE Channel Using Outage

In this section, we show how Bob constructs polar codes using outage at the encryp-
tion step and how Alice performs decoding at the decryption step. Denote by W : X → Y
the N (0, H2r2) mod 2Z channel and by W ′ : X → Y its degradation N (0, H2

ε r2) mod 2Z
channel. Given the channel degradation relationship, one is able to construct polar codes
for W ′ and apply it to W in reality. Recall in Section 2.3 that the first step to construct
polar codes is to calculate the Bhattacharyya parameters for every synthesized channel
W ′(i)N for i = 1, · · · , N. However, as mentioned in Section 2.3, a practical solution to

calculate Z(W ′(i)N ) is to firstly quantize the continuous output alphabet of W ′, then con-
struct an approximate channel of the synthesized channel at each recursion of Arıkan’s
transform [33,34]. This solution proceeds as follows.
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We define the likelihood ratio of W ′ as:

λ(y) :=
W ′Y|X(y|0)

W ′Y|X(y|b
q
2c)

, y ∈ [0, q). (15)

Since N (0, h2
εr2) mod 2Z is stochastically equivalent to 2Z-periodic additive Gaussian

noise with variance h2
εr2, the transition probability W ′Y|X is defined as:

W ′Y|X(y|0) = ∑
λ∈qZ

g0,h2
εr2(y + λ)

W ′Y|X(y|b
q
2
c) = ∑

λ∈qZ
gb q

2 c,h2
εr2(y + λ),

where ga,b2(x) is the density function of the Gaussian noise with mean a and variance b2.
The channel W ′ is symmetric because there exists a permutation π(y) = (b q

2c − y)
mod q such that W ′(y|0) = W ′(π(y)|b q

2c). Intuitively, a symmetric channel with binary
input and continuous output can be seen as a combination of infinite binary symmetric
channels (BSCs). If we focus on the likelihood ratio λ(y) ≥ 1, the crossover probability of
any one of these BSCs is 1

λ(y) . The capacity of this BSC is:

C[λ(y)] = 1− λ(y)
λ(y) + 1

log2
λ(y) + 1

λ(y)
− 1

λ(y) + 1
log2(λ(y) + 1), λ(y) ≥ 1.

If we ignore the minor geometrical error introduced by rounding operation b·c, we
observe that the intervals satisfying λ(y) ≥ 1 is:

A := [0, b q
2
c] ∪ [q− b q

2
c, q].

Because C[λ(y)] is a strict monotonic function of λ(y), we divide A into ν segments
such that for j ∈ {1, · · · ν}:

Aj =

{
y ∈ A :

j− 1
ν
≤ C[λ(y)] ≤ j

ν

}

=

y ∈ A :
1

h−12

(
ν−i+1

ν

) − 1 ≤ λ(y) <
1

h−12 ( ν−i
ν )
− 1

, (16)

where h2(·) is the entropy function of a Bernoulli random variable. Each Aj corresponds to
a BSC channel with crossover probability:

pj =

∫
Aj

W ′Y|X(y|b
q
2c)dy∫

Aj
W ′Y|X(y|b

q
2c)dy +

∫
Aj

W ′Y|X(y|0)dy
, (17)

where: ∫
Aj

W ′Y|X(y|0)dy =
∫

Aj
∑

λ∈qZ
g0,(hεr)2(y + λ)dy

∫
Aj

W ′Y|X(y|b
q
2
c)dy =

∫
Aj

∑
λ∈λ∈qZ

gb q
2 c,(hεr)2(y + λ)dy.

If we define zj and its conjugate z̄j to be the channel output of the BSC associated with Aj,
we obtain the quantized output alphabet of W ′ as:

Z := {z1, z̄1, z2, z̄2, · · · , zν, z̄ν}.
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If we denote by W ′Q the quantized version of the channel W ′, the output alphabet of W ′Q is
Z := {z1, z̄1, · · · , zν, z̄ν}. The following lemma claims that W ′Q is degraded with respect
to W ′.

Lemma 4. The channel W ′Q : X → Z is degraded with respect to W ′.

Proof. We supply an intermediate channel WP : Y → Z such that:

WP(z|y) =


1,
1,
0,

if z = zj, y ∈ Aj,
if z = z̄j, π(y) ∈ Aj,

otherwise.

We can find that there exits a channel degradation relationship in the sense that:

W ′Q(z|x) =
∫

W ′Y|X(y|x)WP(z|y)dy.

Now, we have a degraded version of W ′ with a finite output alphabet. Next, we apply
Arıkan’s transform recursively to W ′Q and calculate the Z(W ′(i)QN). As the channel-combining

and -splitting processes continue, the alphabet size of the synthesized channels W ′(i)QN will
increase exponentially as the recursion proceeds. To handle this problem, we employed a
merging technique proposed in [34], which can reduce the alphabet size of a BDMS channel
with negligible and traceable loss of performance. Specifically, a BDMS channel W ′Q gives
rise to BDMS synthesized channels under Arıkan’s transform [32]. Any BDMS channel
can be seen as a combination of BSCs. The merging technique gives an approximation of
a BDMS channel by combing some of the BSCs of which it is comprised. In other words,
merging approximates a BDMS channel with less BSCs, therefore a smaller output alphabet.
Applying merging to the synthesized channels derived after every recursion of Arıkan’s
transform can effectively restrict the output alphabet. In this manner, we can approximate
the synthesized channels W ′(i)QN with an output alphabet no larger than a predetermined

value. This makes calculating Z(W ′(i)QN) feasible.

After we finish computing the Bhattacharyya parameters of all the W ′(i)QN , we can define
the information set A and frozen set Ac. We construct the polar codewords as:

x1:N = uAGN(A)⊕ uAc GN(Ac). (18)

Upon observing the channel output y1:N , the recipient, Alice, invokes her knowledge of
the CSI h and decides to apply the decoding or to restart the protocol. The successive
cancellation (SC) decoder calculates the likelihood ratio of every synthesized channel and
gives an estimation of uA according to the decision function:

u(i) =

{
0,
1,

if L(i)
N (y1:N , u1:i−1) ≥ 1

otherwise
, (19)

where the likelihood ratio L(i)
N (y1:N , u1:i−1) ,

W(i)
N (y1:N , u1:i−1|0)

W(i)
N (y1:N , u1:i−1|1)

can be calculated recur-

sively by the SC decoding algorithm in [32]. The input of SC decoder λ(y) is given as:

λ(y) :=
WY|X(y|0)

WY|X(y|b
q
2c)

, y ∈ [0, q),
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where the transition probability WY|X is defined as:

WY|X(y|0) = ∑
λ∈qZ

g0,(hr)2(y + λ),

WY|X(y|b
q
2
c) = ∑

λ∈qZ
gb q

2 c,(hr)2(y + λ).

A block-decoding error occurs if u1:N 6= u1:N ; we may interchangeably use the block error
probability and DFR in this work. The complexity of both polar encoding and SC decoding
is O(N log2 N). Additionally, both algorithms require constant steps of operations for
fixed choices of K, N,A, making constant-time implementations plausible. According to
Theorem 2, the block error probability Pe(N, K,A) of SC decoding is upper bounded by
the sum of Z(W(i)

N ). Since we have W ′Q �W ′ �W and W ′(i)QN �W ′(i)N �W(i)
N according to

Lemmas 1 and 2, we have:

Pe(N, K,A) ≤ ∑
i∈A

Z(W ′(i)NQ). (20)

4. Results: Decoding Performance Analysis

Theorem 2 gives the upper bound on the decoding error probability (DFR of PKE
equivalently) of polar codes constructed for the N (0, r2H2

ε ) mod 2Z channel and applied
to the N (0, H2r2) mod 2Z channel in reality. Figure 3 depicts the upper bound on the
DFR if polar codes constructed as above are used in our revised RLWE-based PKE. In the
standardization process of PQC initialized by NIST, the target DFR at code rate 1/4 is 2−128.
We targeted a more conservative benchmark DFR = 2−140 as was used in [15,18]. Similar to
NewHope, which employs a central binomial distribution with parameter k to approximate
the discrete Gaussian distribution (The variance of central binomial distribution is k/2,
and the variance of a discrete Gaussian distribution is r2. When calculating the upper bound
on the DFR, we used a continuous Gaussian distribution instead of its discrete version
to ease the analysis. However, we used the central binomial of the same variance in the
experiments in Figure 4), we used the parameter k = 2r2 to denote different distributions χ
from which e, t, s, e′, e′′ were drawn. We observed that by using our polar coding scheme,
we could achieve the target DFR of 2−140 for k as large as 55, which is significantly larger
than the current choice k = 8 in NewHope. A larger k benefits the security level of the
overall scheme. Please note that schemes as NewHope compress the ciphertext before
sending it out, which leads to additional compression noise. However, in this work, we
only focused on the additive noise in the channel model.

The advantages of the RLWE channel model with outage are concluded as follows.
Firstly, we employed an “independence” assumption so that we derived a group of i.i.d.
channels. This is actually a relaxed assumption compared to the one in [15]. For example,
the polynomial product e · t has correlated coefficients because of the polynomial convolu-
tion. However, we resolved the correlation produced by e by seeing it as a constant fading
coefficient H over exactly one code block. The correlation left in our channel model only
comes from t.

Secondly, the decoder is able to exploit the CSI, while the encoder makes use of the
knowledge of CDI. This benefits the decoding performance significantly if compared to
coding schemes that take the residue additive error term as a whole. Thirdly, the channel
degradation relation makes the polar codes constructed for the degraded channel precisely
fit in with the real channel. We verify our polar coding scheme in RLWE-based PKE by sim-
ulation in Figure 4. The dotted lines are the experimental results of the DFR, and the solid
lines are the DFR upper bounds. At least for reasonably large code rates, the simulation
results verified our estimation of the upper bounds, whereas the performance at the target
code rate 1/4 was unable to be experimentally checked.



Entropy 2021, 23, 938 17 of 24

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

code rate

10
-100

10
-50

10
0

P
e

k=50

k=55

k=60

k=65

k=72

(0.25,2
-128

)

Figure 3. Upper bound on the frame error probability of SC decoding, ε = 0.01, N = 1024.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

code rate

10
-6

10
-4

10
-2

P
e

k=50

k=55

k=60

k=65

k=72

k=50

k=55

k=60

k=65

k=72

Figure 4. Decoding performance: analytical upper bound vs. simulation results



Entropy 2021, 23, 938 18 of 24

5. Discussion
5.1. Security Improvement

The new DFR margin can be exploited to increase the Gaussian noise parameter r (or
the central binomial parameter k = 2r2) such that the security level is increased and the
DFR requirement is properly satisfied. In Table 1, we illustrate to what extent the security
of RLWE-based PKE was improved for n = 1024, q = 12,289 compared to NewHope
Round 2 if different error-correcting codes and schemes are employed. As in [15,18],
a conservative target DFR was selected to be 2−140. The concrete security analysis of RLWE-
based PKE, so far, has been based on the hardness of LWE [22]. The security level was
estimated at the cost of primal attack and dual attack (The security estimator is available at
https://github.com/tpoeppelmann/newhope (accessed on 3 March 2021)).

Table 1. Improved security level of RLWE-based PKE for n = 1024, q = 12,289 using different
error-correcting codes.

ECC Schemes k DFR Classical/Quantum (bits) Improvement
Primal Dual

NewHope Round 2 8 2−216 259/235 257/233 –

Polar codes
in this work 55 2−149 332/301 330/300 28.8%

Polar codes [19] 16 2−156 282/256 281/255 9.4%

Song et al. [18] 14 2−156 278/252 276/250 7.2%

Fritzmann et al. [15] 66 2−140 341/309 338/307 31.76%

It was observed that the polar coding scheme described in this work gives significant
security improvement compared to the one in the concurrent work using polar codes [19].
We acquired this security gain because we used the original constellation diagram {0, b q

2c}
rather than the closer and tailored one in [19]. Furthermore, our polar coding scheme gives
a security improvement as attractive as the state-of-the-art record of 31.76% in [15], which
employed nonconstant-time BCH and LDPC codes.

5.2. Constant-Time Implementation

When applying modern error-correcting codes to RLWE-based PKE, we should always
be careful if the encoding and decoding enables constant-time implementations. BCH code
has a good error correction capability, but its decoding proceeds in two steps: (a) locate the
errors by calculating the syndrome, and (b) correct the errors if there are t/2 or fewer errors
where t is the code distance. This is obviously not a constant-time design. LDPC code also
has nonconstant-time decoding because the decoding procedure is iterative and it comes
to an end when either a correct codeword is found or the maximum number of iterations
is reached. Unlike the error-correcting codes (e.g., BCH, LDPC) adopted by RLWE-based
PKE in the literature [15], the encoding and decoding of polar codes intrinsically enable
constant-time implementations.

As for the encoding, one calculates the Bhattacharyya parameters Z(W(i)
N ) first and

then carries out the encoding function as in Formula (18) (see Section 3.3). The most
time-consuming step is to calculate Z(W(i)

N ); however, this can be performed offline once
for all as far as the channel model in Formula (14) is known (i.e., the RLWE PKE parameters
n, q, the error distribution χ, and the code rate are known). The encoding step is carried
out online, and it consists of exactly N/2 log2 N many XOR gates. An example of polar
encoding for code length N = 8 is given in Figure 5. It can be concluded that the mod-2
additions of polar encoding are only related to the code length N, and therefore, a constant-
time implementation is feasible for any fixed N.

https://github.com/tpoeppelmann/newhope
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Figure 5. An example of polar encoding for code length N = 8.

As for polar decoding, the running time does not vary with different actualization of
the message m or error term drawn from χ, as is not the case for BCH and LDPC. Given the
RLWE channel output y1:N derived from decryption, the SC decoder recursively calculates
L(i)

N (y1:N , u1:i−1) and recovers the message u1:N according to Formula (19). The LR calcu-
lations dominate the overall complexity of decoding, which is described in Appendix A,
as well as an example for code length N = 8. It can be concluded that for any fixed
code length N (N = parameter n of RLWE-based PKE), the SC decoding require exactly
N ∗ log2 N steps of LR calculations as in Formulas (A1) and (A2) no matter what other
parameters q, χ and the code rate are. In addition, the decision-making step in Formula (19)
is also constant-time because the information set A is uniquely determined by the channel
model in Formula (14) and the parameters n, q, χ and code rate.

5.3. Complexity and Communication Overhead

Compared with the repetition codes in NewHope Round 2 [43], the proposed polar
encoding and decoding scheme will for sure significantly increase the complexity. We,
in this paper, mainly focused on the DFR performance and security improvement while
benchmarks of the proposed scheme are not provided. Nonetheless, seeing that LDPC
codes have much higher complexity than polar codes at a relatively low code rate as is
explained in Appendix B (also see [44]), polar encoding and SC decoding will incur a much
smaller complexity increase compared to that of 650% for LDPC, as given in [15].

Since Alice, the recipient, calculates H =
√

1 + ∑n
1 e2

i + ∑n
1 s2

i and goes back to the
public key generation step if H > Hε, the averaged communication overhead is supposed
to increase by a percentage of approximately ε for a relatively small ε. In this work, we set
the outage probability ε to be a small value of 0.01, incurring a communication overhead
increase by approximately 1% on average. Therefore it almost preserves the communication
overhead. In addition, the proposed polar coding scheme was designed to address the
additive residue noise after decryption rather than the compression noise, and we did not
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improve the bandwidth efficiency compared to an improvement of 5.9% and 12.8% in [18]
and [15], respectively.

6. Conclusions

In this work, we demonstrated how to construct polar codes for RLWE-based PKE.
Theoretical and numerical results were given to verify the proposed coding scheme. The mo-
tivation for doing so was to give constructive guidance on how to at least relax the “de-
pendency” and on how to design practical and efficient error-correcting codes to lower the
DFR and increase the security of RLWE-based PKE.

The pros and cons of the polar coding scheme using outage are given as follows:

• The polar coding scheme using outage considerably improves the error tolerance. It
significantly improves the security level (measured by bits of security) of RLWE-based
PKE in the NewHope setting by 28.8%, which is as attractive as the highest record
in [15];

• The proposed polar coding scheme has lower encoding and decoding complexity
at a low code rate compared to other error-correcting schemes in the literature [15].
Furthermore, it intrinsically supports constant-time implementations;

• Compared with the polar coding scheme in [19], this scheme is carried out in poly-
nomial representation and uses the original modulation constellation diagram rather
than the shrunk one. This avoids the trouble of switching between the polynomial
and canonical representation, and the modulation space is not compromised;

• Since the standard process of RLWE-based PKE is amended, how it will behave
under a variety of attacks is left for future work, and we proved it to be at least CPA
secure nonetheless.

In conclusion, using the proposed polar coding scheme in this work, one can derive
a new DFR margin and therefore improve the security of a typical RLWE-based PKE
scheme (e.g., NewHope). The polar coding scheme will not increase the communication
overhead. For a relatively low code rate (e.g., 0.25), polar encoding and decoding are
efficient compared to other modern error-correcting codes such as LDPC. Moreover, polar
codes support constant-time implementations, whereas other error-correcting codes such as
LDPC and BCH do not. Future work will include a solid implementation of the proposed
scheme, as well as a specific benchmarking. Besides, the hidden vulnerabilities of the
proposed scheme under a variety of attacks will be investigated.
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Appendix A. Computational Complexity of SC Decoding

Consider the SC decoding for an arbitrary polar code of length N. To recover u1:N

according to the rules in Formula (11), one needs to calculate the full set of LRs. Let
W : X → Y denote a BDMS channel with input X and output Y with transition probability
W(Y|X) = P(Y|X). As shown in Proposition 1, the channel polarization transform com-
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bines N i.i.d. copies of W in a recursive manner such that for any 0 ≤ m ≤ n, M = 2m,
N = 2n, 1 ≤ κ ≤ M/2, the decoder calculates the LRs at the m-th layer of recursion as:

L(2κ−1)
M (yM

1 , û2κ−2
1 ) =

L(κ)
M/2

(
yM/2

1 , û2κ−2
1,o ⊕ û2κ−2

1,e

)
L(κ)

M/2

(
yM

M/2+1, û2κ−2
1,e

)
+ 1

L(κ)
M/2

(
yM/2

1 , û2κ−2
1,o ⊕ û2κ−2

1,e

)
+ L(κ)

M/2

(
yM

M/2+1, û2κ−2
1,e

) , (A1)

and:

L(2κ)
M (yM

1 , û2κ−1
1 ) =

[
L(κ)

M/2

(
yM/2

1 , û2κ−2
1,o ⊕ û2κ−2

1,e

)]1−2û2κ−1 · L(κ)
M/2

(
yM

M/2+1, û2κ−2
1,e

)
, (A2)

where the notation û2κ−2
1,o (resp. û2κ−2

1,e ) represents a subvector of {û(1), · · · , û(2κ−2)} with
odd (resp. even) indexes (Section VIII, [32]). The stopping condition of the recursion is
L(1)

1 (y) = W(y|0)
W(y|1) .

Observe that to calculate any LR pair
(

L(2κ−1)
M (yM

1 , û2κ−2
1 ), L(2κ)

M (yM
1 , û2κ−1

1 )
)

at the

m-th layer of the recursion, the decoder needs to know another LR pair
(

L(κ)
M/2(y

M/2
1 ,

û2κ−2
1,o ⊕ û2κ−2

1,e ), L(κ)
M/2(y

M
M/2+1, û2κ−2

1,e )
)

at the (m− 1)-th layer. The calculation of N LRs at
layer m requires exactly N LR assembling at layer m− 1. One can reversely compute the
LRs layer-by-layer until reaching the zeroth layer, which is exactly the LR of raw channel
W. Suppose that assembling an LR pair of the (m− 1)-th layer into one LR of the m-th
layer takes one complexity unit, then computing all the N LRs of the n-th layer requires
N(1 + log2 N) units in total.

An example of SC decoding for code length N = 8 is given in Figure A1. The SC de-
coder recursively calculates L(2κ−1)

M (yM
1 , û2κ−2

1 ) and L(2κ)
M (yM

1 , û2κ−2
1 ) according to

Equations (A1) and (A2) from Layer 0 to Layer 3. There are in total 8 ∗ log2 8 many
LR calculations.

Figure A1. An example of SC decoding for code length N = 8.

Appendix B. Complexity: LDPC vs. Polar Codes

As discussed previously, polar encoding requires O(N ∗ log2 N) XOR operations,
while LDPC encoding requires O(N2) matrix element multiplications [45].

To give a relatively fair comparison of decoding, the complexity can be evaluated
by observing the number of addition/subtraction, multiplication, division, comparison,
max/min process, and table look-up operations. In general, most of these operations



Entropy 2021, 23, 938 22 of 24

correspond to one equivalent addition, e.g., the product of two LRs can be transferred to
the sum of two logarithms as is commonly used in the decoding of both LDPC and polar
codes. A comparison operation in most cases corresponds to two equivalent additions,
and a look-up operation takes six equivalent additions [44–46].

Normally, LDPC has larger decoding complexity than polar codes for small code
rates. For both LDPC and polar codes, the basic operation at the core of decoding is the
likelihood ratio (LR) calculation or equivalently the LR calculation in the log domain (LLR).
Therefore, their complexity units, LR/LLR, are real numbers, and normally, we use their
floating-point representations in software implementations and fixed-point on hardware.
In Table A1, the decoding complexity of LDPC and polar codes is given where N, R, M
denote the code length, code rate, and number of parity bits, respectively. Let L be the list
size of polar SCL decoding. Denote by Imax the maximum number of iterations of LDPC
decoding (sum-product/min-sum algorithm), by dv the average variable degree of LDPC,
and by dc the average check degree of LDPC. When analyzing the decoding complexity,
we include the number of multiplications within additions by considering log domain
processing. Generally speaking, for a small code rate, a regular LDPC has a relatively
large parity check matrix with relatively more nonzero elements because the code rate
R = 1− dv/dc. This will increase the message-passing complexity because there are more
edges between check nodes and variable nodes.

Table A1. Complexity of LDPC and polar decoding (complexity unit: fixed/floating-point numbers) [44].

Coding Scheme Additions max(min)/Comparison Look-Up Table Operations

LDPC
(min-sum) Imax · (2Ndv + 2M) Imax · (2dc − 1) ·M —

LDPC
(sum-product) Imax · (2Ndv + M · (2dc − 1)) — Imax ·M · dc

Polar (SC) [47] N/2 log2 N N/2 log2 N —

Polar (SCL) [47,48] L · N/2 log2 N L · N/2 log2 N —

In Table A2, a specific complexity evaluation is given. Practically, the maximum
number of iterations of LDPC decoding ranges from 20 to 50. The values of Imax and the
list size L are selected such that the min-sum, sum-product, and SCL have comparable
complexity. However, in reality, an L as large as 20 suffices in most scenarios. It can be
concluded that for at least a small code rate, polar codes have lower decoding complexity
than LDPC.

Table A2. Decoding complexity for an information bit length of 200 and a code rate of 1/3 (complexity
unit: fixed/floating-point numbers) [44].

Coding Scheme dv dc Imax List Size Complexity Percentage

LDPC
(min-sum) 2.576 3.864 47 — 309,400.40 100.0%

LDPC
(sum-product) 2.576 3.864 20 — 301,149.40 97.3%

Polar SC
(200,512) — — — — 4808.00 1.6%

Polar SCL
(200,512) — — — 52 309,300.57 100.0%
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