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Abstract
Copyright ©The authors 2022 Commercially available since 2007, e-cigarettes are a popular electronic delivery device of ever-growing
complexity. Given their increasing use by ex-smokers, smokers and never-smokers, it is important to
S i evaluate evidence of their potential pulmonary effects and predict effects of long-term use, since there has
Commons Attribution Non- been insufficient time to study a chronic user cohort. It is crucial to evaluate indicators of harm seen in
Commercial Licence 4.0. For cigarette use, and those potentially unique to e-cigarette exposure. Evaluation must also account for the
commercial reproduction rights vast variation in e-cigarette devices (now including at least five generations of devices) and exposure
and permissions contact methods used in vivo and in vitro.
permissions@ersnet.org Thus far, short-term use cohort studies, combined with in vivo and in vitro models, have been used to
Received: 21 May 2021 probe for the effects of e-cigarette exposure. The effects and mechanisms identified, including dysregulated
Accepted: 16 Sept 2021 inflammation and decreased pathogen resistance, show concerning overlaps with the established effects of
cigarette smoke exposure. Additionally, research has identified a signature of dysregulated lipid processing,
which is unique to e-cigarette exposure.
This review will evaluate the evidence of pulmonary effects of, and driving mechanisms behind,
e-cigarette exposure, which have been highlighted in emerging literature, and highlight the gaps in current
knowledge. Such a summary allows understanding of the ongoing debate into e-cigarette regulation, as
well as prediction and potential mitigation of future problems surrounding e-cigarette use.
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Introduction

Electronic cigarettes (e-cigarettes) are the most popular electronic nicotine delivery system, delivering
vapourised e-cigarette liquid (ECL) containing nicotine in a process known as vaping. This alternative to
conventional tobacco cigarettes is marketed as a smoking cessation tool. A wick draws ECL to a heated
coil and the resultant vapour can then be inhaled. Humectants vegetable glycerin (VG) and propylene
glycol (PG) are combined to form the basis of ECL, with additional chemicals frequently added to create
flavoured ECL [1].

The value of e-cigarettes for smoking cessation is a complex issue, reviewed elsewhere [2]. Early studies

in the general smoking population suggested e-cigarettes did not benefit quit attempts [3]. As yet, no

clinical trial has compared e-cigarettes against the current gold standard for smoking cessation, varenicline.

However, a recent landmark randomised control trial using e-cigarettes alongside tailored support doubled

the quit rate over other nicotine replacement therapies. While representing a significant benefit to smoking

a cessation, 80% of those who quit with e-cigarette aid were still using e-cigarette devices after 1 year [4].
5r_nC The implications of this long-term usage remains unknown. Studies have also highlighted a proportion of
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e-cigarette users (vapers) who continue to use cigarettes. These people are termed dual-users, and represent
another group whose use patterns must be taken into account by research [5]. Additionally, in some
regions there is a trend for the uptake of e-cigarettes in people who have never smoked, particularly in
young people in the USA [6, 7]. Therefore, it is important to evaluate the benefits of e-cigarettes for
populations undertaking smoking cessation, against the potential negative consequences of extended
exposure in those using e-cigarettes beyond their intended remit.

This review will focus on the pulmonary consequences of exposure, with a particular focus on
mechanisms driving changes in inflammation and immunity; the more limited evidence of carcinogenic
effects [8] and systemic effects on other organ systems have been summarised elsewhere [9]. Parallels will
be drawn with the better described effects of cigarette smoke (CS) exposure.

E-cigarette evolution

E-cigarette device configuration and ECL constituents vary extensively. E-cigarettes developed from
single-use “cig-a-likes” to vape pens, then box-mods, with increasing power output and customisable
features (figure 1). These devices traditionally delivered freebase nicotine in low VG ECL (~50% VG) [1].

Box-mod e-cigarette
Typically high power
with a range of
VG:PG ratios

Wicking
modifications

Customisable

power
settings VG:PG
ratio
Flavours
Vaping
techniques
Nicotine
formulations and
Refilled or concentrations .
rewicked Vape pen e-cigarette

Typically medium
power with a range
of VG:PG ratios

pods

Closed pod e-cigarette
Typically low power
with high VG ECL

FIGURE 1 Summary of conventional electronic cigarette groups, outlining potential variables between devices.
Venn diagram summarising potential variables which contribute to the vapour composition and user exposure
during electronic cigarette use. All devices have unique humectant ratios, nicotine content, and formulation
and flavouring components, which contribute to composition and exposure, and user technique can alter
exposure from all devices. Vape pen and box-mod devices may permit changes in power output, while wicking
modifications are limited to large box-mod devices. Closed-pod devices alone can be modified by re-wicking
and refilling of pods intended for single use. ECL: e-cigarette liquid; PG: propylene glycol; VG: vegetable
glycerin.
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By contrast, the newest generation of closed-pod e-cigarettes deliver nicotine salts in high VG ECL (~70%
VG) [10]. Closed-pod systems, such as the popular Juul device, require disposable pods containing ECL,
and operate at lower power with no customisable features [10]. The popularity of closed-pod devices likely
stems from the nicotine formulation. The patent submitted by Juul describes how nicotine salts increase
nicotine uptake speed across the alveolar epithelium, producing a rapid spike in blood concentration similar
to nicotine uptake from cigarettes [11]. Additionally, protonated nicotine is more palatable, reducing
throat-burn associated with freebase nicotine [12], explaining how the higher nicotine concentrations used
in Juul devices are tolerated (up to 60 mg-mL™" in the USA [10]; limited to 20 mg-mL™' by the EU
Tobacco Products Directive [13]).

As the e-cigarette market diversifies, the distinctions between e-cigarette generations have become
increasingly blurred (figure 1). For example, nicotine salt ECLs, previously exclusive to closed-pod
systems, are now also available for refillable e-cigarettes. Evolving modifications (“mods”) further
differentiate newer devices. Devices can be adapted to increase ECL absorption (“wicking”), by dropping
ECL directly onto an exposed wick [14-16]. Additionally, some users re-wick and refill disposable pods to
customise closed-pod devices [17].

Variation in exposure

As this field expands, it is important to identify the key variables between devices and liquids that may
change vapour composition or the extent of exposure, and thereby contribute to potential harmful effects.
Vapour temperature is the most significant variable in determining vapour composition. Several studies
have demonstrated that thermal decomposition of humectants and flavourings causes marked changes in
the constitution of ECL following vapourisation. Resultant reactive carbonyl species (RCS) [18, 19] are
produced at levels which correlate directly with final vapour temperature [20-22]. RCS are implicated in
some of the effects of e-cigarette exposure outlined in this review, due to their known biological effects
[23], including oxidation of biomolecules causing cytotoxicity, mutagenicity and loss of function, and their
significant overlap with RCS known to mediate toxic effects in CS exposure [24-26].

Power input, determined by battery capacity and resistance, directly relates to final temperature and is
easily manipulated to user preference. Wick modifications, particularly those that reduce wick saturation,
can increase final vapour temperature [27]. ECL composition also determines final temperatures; CHEN
et al. demonstrated that the same device produced hotter vapour from PG/VG liquid, than from PG alone
[27]. PG:VG ratio must also be mentioned when considering vapour composition, as different ratios could
alter the levels of thermal decomposition products in vapour [28, 29].

Chemical additions to ECL also contribute to vapour composition. A comparison of protonated and
freebase nicotine in vitro showed differential inflammatory cytokine responses from epithelial cells [30]. Tt
has been suggested that, since protonated nicotine is the ligand for nicotinic receptors, protonated nicotine
e-cigarettes may have more inflammatory effects on epithelial cells upon first contact [31]. There is much
more work to be done to understand how formulation changes the overall effects of exposure. Fruit, dessert
and menthol flavour ECLs add important variation to vapour composition, particularly as some of those in
use, such as the butter flavouring diacetyl, have raised concerns due to known risks of inhalation [32].

In addition to altering vapour composition, variables also alter the extent of pulmonary exposure, by
changing particulate size and vapour cloud density, thereby changing the permeation and deposition
patterns [33]. These variables include temperature, wicking processes and PG:VG ratios. User-specific
differences to puff topography will also alter exposure, depending on the number, depth and length of
puffs, as well as the method of inhalation [34].

Inevitably, new variables continue to emerge over time. A major challenge in understanding the safety of
e-cigarette devices is delineating the universal and unique factors contributing to the toxicity of each
device.

Effects of exposure

Inhaled toxicants can have substantial local and systemic effects, particularly over chronic exposure, as
demonstrated by the many effects of cigarette smoking. Epithelial cells are directly exposed to vapour,
while adjacent endothelial cells and fibroblasts are indirectly exposed. Additionally, resident alveolar
macrophages (AMs) and circulating innate cells, such as neutrophils, are poised to respond to threatening
substances or stress. Finally, circulation indirectly exposes multiple organs to inhaled substances and
resultant mediators.

https://doi.org/10.1183/16000617.0121-2021 3
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Cigarette smoke and chronic lung disease

Given the partial overlap between the constituents of e-cigarette vapour and CS, the established the effects
of chronic CS exposure may inform investigations into effects of chronic e-cigarette use. Comparison of
the two serves to further understand the consequences of e-cigarettes for smoking cessation, and the
potential negative impacts of dual use.

CS is a complex but well characterised mixture containing nicotine as one of over 5000 compounds [35].
Cigarette smoking is associated with the aetiology of almost every lung disease — lung cancer, asthma,
COPD and fibrosis. Chronic CS exposure dysregulates many homeostatic functions, resulting in changes
that contribute to lung disease. For example, many lung pathologies are induced by chronic, dysregulated
inflammation and exacerbated by subsequent pulmonary infection, which cause gradual loss of lung
function.

Progress of current research

In the current absence of a large cohort of long-term users, it is necessary to extrapolate the effects of
chronic vapour exposure from short/medium-term exposure cohorts and acute exposure in Vvitro
experiments. Murine exposure studies also afford the opportunity to examine the impact of medium-term
exposure. However, these studies come with their own limitations, including the substantial differences
between innate immune responses in mice and humans [36-38].

The variables in e-cigarettes discussed above must be considered when analysing e-cigarette effects in
human cohorts versus in vivo and in vitro studies. Furthermore, in vivo and in vitro studies use a wide
variety of unstandardised exposure methods. Methods range from direct ECL exposure, e-cigarette vapour
extract exposure (EVE), vapour condensate exposure and direct vapour exposure (figure 2 a—d).

Inflammation

Inflammation precedes the clinical manifestation of chronic lung diseases (CLDs). For example, most cases
of COPD, a disease frequently associated with chronic smoking, are thought to be driven by dysregulated
macrophage activation, followed by recruitment of circulating monocytes, neutrophils and adaptive
T-lymphocytes to the airways, with neutrophils in particular implicated with subsequent tissue damage
[39]. These changes are accompanied by increased release of the inflammatory cytokines tumour necrosis
factor o (TNFo), interleukin (IL)-6 and IL-8 [40, 41]. With chronic exposure this becomes a
self-perpetuating cycle of damaging inflammatory processes within the pulmonary space.

In vivo models

Murine models employed to study the inflammatory response to long-term e-cigarette exposure have
reported varying results. Studies identified no differences in neutrophil, eosinophil and leukocyte count in
bronchoalveolar lavage fluid (BAL) from mice exposed over the short (3 days) [42], medium (2—6 weeks)
[43-45] and long (4 months) [46] term (table 1). The majority of studies reported no increase in
macrophage numbers, although some reported significant increases in BAL [42-47, 50-52] (table 1).
Investigation into the adaptive immune cell response is more limited, although increases in CD4+ and
CD8+ T-cell counts were reported in one study [45]. Murine models of e-cigarette exposure also show
dysregulated cytokine release into airways. The majority of studies reported significantly increased
cytokine release, although some reported significant decreases in specific cytokines (table 1). These studies
used a range of exposure times, devices and ECLs. Only the study by Wang et al. included a nicotine-free
exposure, reporting that cellular recruitment and cytokine release were nicotine dependent. More studies
are required to confirm this, particularly as the study delivered 100% PG ECL. This is not representative of
typical ECL, and therefore may omit the effects of mixed humectants and limit the translational value of
the nicotine-free results reported.

Exposure regimens, devices and ECL varied between studies. Sussan et al. in particular reported results
that contradicted other studies [44], in terms of cellular recruitment and cytokine release. While the
regimen was shorter and the device lower powered than the majority of other studies, LErRNER et al.
reported results in line with other studies using a similar device/liquid and longer exposure time [42] (table 1).
This indicates that exposure time and device used are not sufficient to explain these differences.

A range of murine models of CS exposure have demonstrated cellular inflammation (infiltration of
macrophages, neutrophils and lymphocytes) and an increase in inflammatory cytokine expression (IL-1p,
TNFa) following as little as 4 days CS exposure [47], with studies extending up to 6 months [48] (table 1).
Furthermore, murine models of established CS-driven COPD require between 8 weeks and 6 months of
exposure [49]. Given that murine models of e-cigarette treatment that fall within these exposure periods

https://doi.org/10.1183/16000617.0121-2021 4
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FIGURE 2 Summary of most common e-cigarette exposure systems. a) Direct e-cigarette liquid exposure:
e-cigarette liquid is added to culture system without heating. This is a simple screening method; however, it is
not representative of the complex chemical changes that occur during thermal decomposition. b) E-cigarette
vapour extract exposure: vapour is drawn through culture media for a set period. This culture media is added
at a known dilution to the culture system. This method represents thermal decomposition products, but only
includes chemicals that dissolve in the media at a given temperature. Chemicals may also cross-react or
diminish over time. Finding a physiologically relevant dose of the extract may also be difficult, as this may vary
for different constituents of the extract. c) E-cigarette condensate exposure: e-cigarette vapour is cooled by
drawing it through tubes at cold temperatures. Condensate can then be added to the culture system. The
condensate method also represents thermal decomposition products and does not rely on the products
dissolving in media. However, some chemical products may not condense at the apparatus temperature, and
chemicals may cross-react or diminish over time. Dosing may also be difficult here with this model. d) Direct
e-cigarette exposure: e-cigarette vapour is drawn into a chamber, where it is directly in contact with the
culture system. This is the most physiologically relevant model. Puffs are of relevant volume, and contact cells
in a similar way as they would in the lungs. Puff regimens can be designed to relate to puff topography studies
to give acute or chronic doses. This model is relevant only to cellular exposure in the alveolar space, such as
alveolar epithelial cells or alveolar macrophages. Vapour exposure is not an appropriate model for cell types
such as endothelial cells or peripheral neutrophils.

detect limited or no immune cell infiltration, it is highly likely that e-cigarette exposure causes reduced
immune cell infiltration within the first months of exposure, when compared with CS. Although studies
comparing exposures with equivalent nicotine intake have not confirmed that regimens can be directly
compared.

Murine studies thus far indicate that e-cigarette exposure causes markedly reduced recruitment of
inflammatory cells, when compared with CS exposure. However, they outline a dysregulated inflammatory
cytokine response in the airways after relatively short exposure periods (table 1). Although inflammation in
CS-exposed mice progresses more quickly, without extensive longitudinal studies, we cannot predict the
course inflammation would take with more long-term e-cigarette exposure.

Cohort studies

There is limited evidence of the inflammatory cell profile in human e-cigarette user cohorts. REDEL et al.
[53] and GhosH et al. [54] reported no increase in neutrophil, and neutrophil and macrophage counts
respectively, in induced sputum of vapers. The vaper cohorts described in both studies contained mostly
ex-smokers, all of whom had been exclusively vaping for at least 6 months. This contrasts with the
smoke-naive mice exposed to e-cigarette vapour for between 3 days and 4 months. Additionally, while
murine studies used littermate control groups, exposed to air instead of vapour, human studies have relied

https://doi.org/10.1183/16000617.0121-2021 5
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inflammatory cytokine and protease levels in BAL fluid following e-cigarette exposures of varying lengths, in comparison to air exposed control
mice. Representative examples of acute, subacute and chronic murine cigarette smoke exposure models are included for comparison.

Author Year E-cigarette ECL details Exposure Cells in BAL Cytokines in BAL
[ref.] specification regime
Increased Unchanged Decreased
Sussan [44] 2015 NJOY vape pen 18 mg«mL’1 1.5 h twice No increase in MCP-1 IL-6
per day, neutrophil, eosinophil
14 days or lymphocyte count
Increased macrophage
count
Lerner [42] 2015  Blu vape pen 16 mgmL™! 5 h-day™, No increase in IL-6, IL-10,, IL-10,% IL-1B,"
3 days macrophage count IL-13, MCP-1 KC, IL-17,
GMCSF,
CXCL10, MIP2
Wane [45] 2020 Joytech 25 mg-mL™? 2 h-day™, Increase in MCP-1," IL-1a,"
box-mod (0 mgmL™* 30 days macrophage, CD4 TNFao,*
control arm) T-cell and CD8 T-cell GMCSF,"
count MIP-1B," IL-2,"
No increase in IL-5," 1L-9,"
neutrophil count IFNy," RANTES"
Hwane [43] 2016 Vape pen 24 mg-mL_1 1 h~day_1, No increase in KC, IL1ro GMCSF,
28 days macrophage, IL-3
neutrophil, eosinophil
or lymphocyte counts
Maoison [46] 2019 Vape pen/ 33mgmL™? 6 min-day %, No increase in Not Not Not
box-mod 4 months macrophage, investigated investigated  investigated
neutrophil or
lymphocyte count
No increase in
dendritic cell or Th17
cell count
Viavos [47] 2006  Commercially 3,60r9 Dose-dependent TNFo," MIP2," IL-10"
available cigarettes neutrophil increase IL-6," GMCSF*
filter-tipped per day, 4 days Increased
cigarettes macrophages with 9
cigarettes per day
No increase in
lymphocyte count
Beckett [50] 2013 3R4F reference Twice per day, Increased macrophage  TNFo," IL-1B,"
cigarettes 5 times per and neutrophil count CXCL1”
week, at 4 days and 8 weeks
1-12 weeks Increased lymphocyte
count at 8 weeks
PHiLups [51] 2015  3R4F reference 1 h 4 times Increased GMCSF, IFNy, IL-10, IL-1B
cigarettes per day, 5 days macrophage, IL-1a, IL-6,
per week, neutrophil, IP10, MCP1
7 months lymphocyte and TNFa, MIP1,
dendritic cell count MIP2
Motz [52] 2010  3RA4F reference 4 h-day™, Increased Not presented Not
cigarettes 5 days per macrophage/ presented
week, monocyte, neutrophil
24 weeks and lymphocyte count

ECL: e-cigarette liquid; BAL: bronchoalveolar lavage; MCP: monocyte chemoattractant protein; IL: interleukin; KC: keratinocyte-derived chemokine;
GMCSF: granulocyte-macrophage colony-stimulating factor; CXCL: chemokine (C-X-C motif) ligand; MIP: macrophage inflammatory protein;
TNF: tumour necrosis factor; IFN: interferon; RANTES: regulated on activation, normal T-cell expressed and secreted. *: Trends suggest increased
levels bordering on significance; *: changes dependent on nicotine in ECL; *: gene expression levels in whole lung tissue.

https://doi.org/10.1183/16000617.0121-2021



EUROPEAN RESPIRATORY REVIEW

E-CIGARETTES | L.C. DAVIS ET AL.

on healthy, never-vaper controls, which although relatively well matched, do not account for the previous
smoking history of the e-cigarette user cohort.

In vitro evidence

Epithelial cells and AMs are major contributors of the inflammatory cytokines increased in murine studies.
In vitro models of exposure corroborate these increases. Several studies have shown an inflammatory signal
in epithelial cells after e-cigarette exposure, reporting increased release of 1L-6 [42, 55-58], IL-8 [42, 55,
58, 59] and MCP-1 [55]. Furthermore, HicHAM et al. demonstrated an increased IL-6 and IL-8 response in
e-cigarette-exposed COPD epithelial cells, compared with healthy control cells. This higher propensity to
inflammatory output is of particular importance, given that a high proportion of those attempting to quit
smoking have COPD [58]. Immune cells also show increased inflammatory mediator output following
exposure. AMs exposed to e-cigarette vapour condensate in vitro release increased IL-6, IL-8, TNFo. and
MCP1 [60]. Recruited cells may further potentiate inflammatory cytokine release following early
inflammation, since neutrophils exposed to e-cigarette vapour released significantly more IL-8, in a
nicotine-independent manner [61].

Some in vitro studies investigated the mechanism behind inflammatory cytokine output using nicotine-free/
vehicle controls. Wu et al. asserted that increased IL-6 output by epithelial cells was nicotine independent
[57], Hicaam et al. found similar results for IL-8 release by neutrophils [58]. However, other studies
highlight that while nicotine-independent mechanisms cause some increased cytokine output by AMs, this
effect was greatly exaggerated by nicotine [60]. Additionally, a study on epithelial cell cultures
demonstrated that aerosolised nicotine exposure was sufficient to stimulate IL-6, IL-8 and MCP-1 release
[55]. This indicates that multiple different inflammatory pathways may be activated by the various
constituents of e-cigarette vapour, dependent on cell type, environment and dose (figure 3a).

Proteinase balance

Proteinases are closely linked to inflammation in lung pathology. In normal homeostasis, antiproteinases
hold proteinases in balance until they are deployed for tissue remodelling [62], transmigration and direct
antimicrobial action [63, 64]. Tissue damage and loss of function can result from disturbed proteinase—
antiproteinase balance [65]. The best characterised proteinases are the serine proteinases, including
neutrophil elastase (NE) and proteinase 3 [66], predominantly derived from neutrophils, and matrix
metalloproteinases (MMPs), derived from neutrophils, macrophages and the airway epithelium.

Dysregulated proteinase—antiproteinase balance has an established role in the progression of COPD and
emphysema. NE release by neutrophils undergoing dysregulated migration through the lung interstitium is
directly tied to emphysema progression in COPD [65, 67]. Additionally, MMP-8, -9 and -12 proteinase
levels correlate with airflow obstruction and disease progression [68, 69].

A growing body of evidence investigates the effects of e-cigarette exposure on proteinase—antiproteinase
balance in the lungs. A human cohort study demonstrated that NE, MMP-2, -8 and -9 levels in BAL were
comparable in cigarette smokers and vapers, even in those who never smoked cigarettes [54]. MMP-9 and
NE are also increased in induced sputum from vapers, when compared with never-vaper controls [53].

Murine models also show proteinase dysregulation. After 4 month murine exposure to e-cigarette vapour,
MMP-9 and -12 were increased in BAL [55]. Meanwhile, WaNnG et al. reported a nicotine-independent
reduction in MMP-9, and a nicotine-independent increase in MMP-2 and decrease in MMP-8, following
exposure to 100% PG with and without nicotine for 6 weeks [45]. Proteinases are most frequently released
by macrophages and neutrophils. Accordingly, previous work by our group [60] has shown an elevated
MMP-9 response in AMs after e-cigarette exposure, while others have shown elevated NE and MMP-9
from e-cigarette-challenged neutrophils [61].

Overall, evidence suggests the components of e-cigarette vapour stimulate increased proteinase release into
the airways, largely from resident and patrolling immune cells (figure 3a). This signature is reminiscent of
various chronic respiratory diseases, highlighting the potential contribution of e-cigarettes to their
development and progression. More long-term cohort studies are required to determine the impact of
e-cigarette-challenged proteinase released in the lungs.

Inflammatory mechanisms

Although e-cigarette vapour is vastly simpler than CS, it contains a mixture of nicotine, RCS and additional
chemicals such as flavourings. These components contribute to overlapping inflammatory pathways, which
potentiate the inflammatory profile widely described in different models of e-cigarette exposure.

https://doi.org/10.1183/16000617.0121-2021 7
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a) during homeostasis and b) bacterial infection. TI: type 1 epithelial cells; TlI: type 2 epithelial cells.
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Much like CS, a major mediator of the effects of e-cigarette vapour is likely to be oxidative stress.
Oxidative stress has been observed in e-cigarette vapour-exposed mice, alongside antioxidant dysregulation
with reduced levels of glutathione and oxidised glutathione [42]. In a separate study, mice exposed for
12 weeks showed increased DNA modifications associated with reactive aldehydes [70].

The thermal decomposition of humectants has been demonstrated as a large source of RCS, proportional to
the temperature achieved by the vapour [21, 22]. Additionally, it is thought that, in vivo, a small portion of
nicotine is metabolised into nitrosamines, whose metabolites include reactive aldehydes and
methyldiazohydroxide (MDOH) [71]. Despite debate and variability in the amount of RCS delivered to
the lungs, evidence consistently describes RCS at potentially harmful levels. The best characterised of
these RCS remain formaldehyde, acetaldehyde and acrolein, which are associated with a variety of
pathologies [72].

Following inhalation, RCS react quickly with airway surface liquid components. At low levels they are
detoxified [73]. When the detoxification pathways are overwhelmed, unbound RCS cause oxidative stress
[23]. In addition to exogenous sources of oxidative stress, we recently demonstrated that AMs exposed to
e-cigarettes have an increased capacity to release ROS [60], which may compound oxidative stress locally.
RCS permeate into tissue and react with proteins, RNA and DNA, forming adducts [23]. These
modifications and RCS-driven mitochondrial respiration [74] can trigger cell death, causing a build-up of
apoptotic and necrotic cells in the airways. Protein adducts, and cell components released during necrosis
can also act as damage associated molecular patterns (DAMPs), which further potentiate inflammation and
the recruitment of inflammatory cells to the lungs [75].

The type of cell death instigated by these processes directs the inflammatory pathways activated within the
lungs. Serpa et al. recently demonstrated that e-cigarette aerosol exposure causes a mixture of apoptosis
and necrosis in epithelial cells [76]. Necrosis in particular was stimulated in a nicotine-dependent way,
although required the presence of other e-cigarette vapour components. Necrosis releases DAMPs
responsible for instigating inflammation. Furthermore, e-cigarette exposure causes macrophage apoptosis
and necrosis to be increased. Evidence in bone marrow-derived macrophages (BMDMs) demonstrated
some macrophages were dying by pyroptosis, an inflammatory programme of cell death often stimulated
by intracellular infection [76] leading to further DAMPs release within the lung. Our group demonstrated
that viability was partially protected by antioxidant treatment [60], indicating that RCS contribute at least
in part to the death of AMs in response to e-cigarette exposure.

The build-up of dead cells, demonstrated by a significant increase in apoptotic cells in murine alveoli
following 4 months of e-cigarette exposure [55], may also be potentiated by reduced efferocytosis by
sentinel AMs due to a significant reduction in efferocytic capacity in e-cigarette aerosol-exposed BMDMs
[76]. This impaired function may be mediated by oxidative damage to cellular machinery. Although the
mechanism is yet unexplored in efferocytosis, our group demonstrated that the similar process of
phagocytosis, which was also significantly reduced in e-cigarette-exposed AMs, was partially rescued by
antioxidant intervention, supporting the role of oxidative stress in this impairment [60].

Nicotine exposure has different effects on each exposed cell type, dependent on nicotine receptor
expression. For example, nicotine has been demonstrated to inhibit TNFo expression in human
macrophages by binding the o7 subunit of the nAChR receptor [77]. There has been limited investigation
of the effect of nAChR engagement following e-cigarette exposure. WaNG et al. explored the effects of
6 weeks of e-cigarette exposure on nAChRa7 knockout mice. This demonstrated that the PG- and
nicotine-driven increase of IL-1o, MCP-1 and GM-CSF depended on expression of the receptor, while
others including IL-18 and TNFo did not [45]. nAChRa7 knockout prevented NFkB subunit p50 increase
following PG and nicotine exposure in female mice [45]. Not only does this indicate that NFkB signalling
is activated in part by nicotine exposure in the airways, but it also highlights possible sex differences in
murine models which must be taken into account when unpicking potential mechanisms. There is
extensive work still required to delineate the nicotinic receptor-driven effects of exposure, with evidence so
far beginning to illustrate the complexity of the issue.

Overall, potential mechanisms explored so far emulate the oxidative stress response to CS in healthy
smokers and patients with COPD [75] (figure 3a). Further investigation is required to determine the extent
of these changes and the receptors, signalling pathways and transcription factors involved in escalating
inflammation in e-cigarette-exposed systems. More extensive analysis of NFxB activation would be valuable
as, in smoker epithelial cells, NFxB is activated, likely activating inflammatory cytokine secretion [78].
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Lipid homeostasis

Surfactant permits proper lung function and is maintained by close regulation of lipid and protein
components. AMs are largely responsible for homeostatic control of lipids in the lung [79], while type II
alveolar epithelial cells produce surfactant proteins [80]. There are several case reports of lipoid pneumonia
in vapers [81], with some reports describing lipid-laden macrophages in BAL [82]. The Centers for
Disease Control and Prevention and the Food and Drug Administration associated a recent cluster of these
cases with vaping tetrahydrocannabinol (THC) and vitamin E acetate (VEA) [83, 84]. Indeed, murine
models of VEA vapour exposure demonstrated the development of lipid-laden macrophages [85, 86].

A minority of e-cigarette, or vaping product, use-associated lung injury (EVALI) cases appear to be
independent of VEA [81]. Bronchoalveolar lavage fluid (BALF) from a cohort of vapers and smokers
indicated significantly more lipid-laden macrophages in both groups than in BALF from never-smokers.
BALF from smokers and vapers also contained significantly reduced surfactant A protein [87].
Additionally, a murine model of 4 months of conventional e-cigarette exposure resulted in lipid
dysregulation [46]. AMs from exposed mice had endogenous lipid inclusions and disorganised intracellular
organelles [46]. Independent of nicotine, exposure-impaired macrophage lipid catabolism and dysregulated
lipid export protein expression in alveolar epithelial type II (ATII) cells. Additionally, e-cigarettes
decreased surfactant protein production by ATIIs [46] (figure 3a). Given the lipid nature of e-cigarette
humectants, it is plausible that VEA may accelerate lipid dysregulation seen following conventional vaping.

Dysregulated lipid homeostasis is a potential effect unique to e-cigarettes, not previously reported in
chronic CS studies. Given the emerging evidence from human and murine studies, it is clear that lipid
homeostasis requires extensive further investigation in these models, particularly because of evidence
implicating lipid metabolism and export defects in the pathogenesis of COPD [88], idiopathic pulmonary
fibrosis [89, 90] and several other pulmonary diseases [91].

Infection

It is widely accepted that CS exposure increases risk of respiratory infections [92-94]. Studies have
demonstrated that e-cigarette-exposed mice have increased vulnerability to bacteria and viruses. Two weeks
of e-cigarette exposure increased bacterial load in mice infected with Streptococcus pneumoniae, as well as
delaying recovery and reducing survival in mice infected with influenza (H1N1) [44]. Three months of
exposure also reduced survival against influenza (H2N3) in a nicotine-independent manner [95]. Various
mechanisms may contribute to improved pathogen survival in murine models of e-cigarette exposure, as
discussed below.

Virulence

E-cigarette exposure may improve the virulence of some pathogens, increasing their ability to persist in the
host. Various bacterial strains were more virulent in a larval model of infection following vapour exposure
[95]. Additionally, methicillin-resistant Staphylococcus aureus (MRSA) grown in EVE were more virulent
in mice, and more able to form biofilms, invade epithelial cells, persist intracellularly in epithelial cells and
resist antimicrobial LL-37 [43].

The mechanism behind these changes in bacterial virulence are unclear. Hwanc et al. identified changes in
virulence gene expression, such as Coa, which drives S. aureus abscess formation [43]. Additionally,
e-cigarette-exposed MRSA had altered surface charge [43], similar to changes observed in CS-exposed
MRSA [96], which aids immune evasion and biofilm formation. Oxidative stress is a possible stimulus for
these changes, since it is a driver of bacterial stress response [96, 97].

Mucociliary clearance

Many CLDs increase risk of infection by impairing mucociliary clearing, preventing effective pathogen
expulsion [98]. Evidence indicates that e-cigarettes dysregulate expression of mucins, which determine mucus
consistency. Vapers show increased mucin expression in epithelial cells [99] and induced sputum [53].
Increased mucin expression (MUCS5A) was reflected in two murine models of e-cigarette exposure [55, 99].
Additionally, an ovine model of nebulised ECL demonstrated reduced mucus velocity [100]. In vitro, exposed
epithelial cells released more viscous mucus [100], had reduced ciliary beating frequency [100] and impaired
cystic fibrosis transmembrane conductance regulator (CFTR) conductance, in a nicotine-dependent manner
[55]. A study comparing direct vapour exposure of primary nasal epithelial cells from smokers and
nonsmokers showed that cells from nonsmokers alone upregulated MUCS5A expression, indicating differential
effects of exposure in various vaper populations [30]. Cumulatively, evidence indicates that e-cigarette
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exposure disrupts normal mucociliary protection against invading pathogens, potentially escalating to
mucostasis or mucus plugging, seen frequently in COPD.

Mucin hypersecretion in COPD is associated with chronic inflammatory signalling, via pathways such as
NF«B [101]. Similar pathways may be active following e-cigarette exposure; epithelial cell exposure in
vitro resulted in protein kinase Co (PKCo) and extracellular signal-regulated kinases (ERKSs)
phosphorylation, downstream of the o7 nAChR receptor subunit [55].

Epithelial resistance and barrier function

Epithelial cells are a major barrier against pathogens, therefore resistance against infection and invasion is
crucial. A clinical trial performing nasal inoculation of live-attenuated influenza virus (LAIV) described
broad relative downregulation of immune-related gene expression in the nasal epithelium of smokers and
vapers [102]. Although not associated with increased viral load, levels of secretory IgA binding LAIV
were also reduced in smokers and vapers, suggesting dysregulation of the immune memory developed in
these groups.

Epithelial cells exposed to e-cigarette vapour in vitro are more vulnerable to intracellular and extracellular
infection by mycobacterium [56] and S. aureus [43] respectively. Wu et al. shared similar findings in
human rhinovirus (HRV) viral infection [57]. Furthermore, epithelial barrier function was reduced by acute
exposure (<20 min-day™* for <1 week) [59, 76]. Strea et al. proposed that the drop was due to oxidative
stress dependent cellular shedding [76], while CRoTTY-ALEXANDER et al. showed the effect was exaggerated
by bacterial infection [59]. A separate study showed no effect of a single 15 minute e-cigarette exposure on
barrier function, while CS exposure containing equivalent nicotine amounts did reduce barrier function
[103]. The e-cigarette used in this study was therefore less damaging to epithelial barrier integrity than CS
when matched for nicotine delivery.

Cumulatively, studies so far suggest that after e-cigarette exposure, epithelial cells provide abnormally low
resistance from invading pathogens, thereby failing at the crucial role of protecting against the constant
exposure of the airways.

Immune cell function

Resident AMs are crucial in the airway response to pathogens, their key functions include cytokine output,
migration and phagocytosis. We showed that e-cigarette condensate-exposed human AMs showed impaired
phagocytosis of S. aureus and Escherichia coli, which was partially nicotine dependent [60]. Similarly,
macrophages from e-cigarette-exposed mice displayed impaired phagocytosis of S. pneumoniae ex vivo,
without any change to scavenger receptor expression [44]. Murine BMDMs also demonstrated impaired
S. aureus phagocytosis following e-cigarette exposure. This effect was dependent on nicotine, although it
could not be replicated with nicotine alone [76]. In vitro macrophage cultures also showed increased
intracellular infection [104] (THP1-derived macrophages) and increased bacterial survival [43] (murine AMs).

There are several mechanisms which may contribute to this impaired function, following the extended
exposure of AMs to an inflammatory environment at baseline. AMs may become exhausted, rendering
them unable to respond to further stimulus; damaged beyond normal function, for example by lipid/DNA
peroxidation; and/or supressed by the combination signals within the inflammatory environment. As yet,
studies investigating macrophage function have stopped short of dissecting mechanisms behind these
changes.

Neutrophils recruitment is crucial for more persistent or numerous respiratory pathogens, with key
functions similar to AMs and a more potent proteinases and anti-bacterial arsenal. Intraperitoneal
P. aeruginosa, an infection which specifically depends on neutrophil recruitment for clearance, was
significantly worsened in mice pre-exposed to e-cigarette vapour for 1 month [105]. This indicates
impaired neutrophil recruitment and/or function in these animals. Indeed, human neutrophils exposed to
EVE displayed reduced chemotaxis towards N-formylmethionyl-leucyl-phenylalanine (fMLP) and
phagocytosis of E. coli and S. aureus. Additionally, EVE impaired PMA-driven NETosis (release of
neutrophil extracellular traps, containing decondensed chromatin and granule contents) in a nicotine
independent way [105].

These effects on innate immune cells are likely to result in increased risk of infection. Impaired
macrophage phagocytosis allows the initial outgrowth of pathogens. Further delays in neutrophil
recruitment and impaired antimicrobial capacities potentiate this risk. E-cigarette effects on lymphocyte
function are as yet unexplored.
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Inflammatory responses

An ordered and proportionate response to pathogenic stimulus is crucial for expulsion of pathogens
without persistent inflammation. Several studies demonstrated increased inflammatory cytokine output by
e-cigarette-exposed epithelial cells [56, 95] and macrophages [104] in response to bacterial stimulus.
Similarly, HRV infection caused IL-6 release from e-cigarette-exposed epithelial cells [57]. It is likely that
the long-term inflammation induced by e-cigarette exposure primes the immune response, resulting in a
disproportionate response to pathogens. Additionally, impaired immune cell function may result in
increased pathogen load or uncontrolled pathogen activity, which would in turn stimulate increased
inflammatory responses.

Overall, pathogens with potentially increased virulence are likely to meet disrupted epithelial barriers,
protected by impaired mucociliary clearing and patrolled by functionally impaired AMs in the lungs. This
is combined with dysregulated cytokine responses, and chemotaxis by secondary responders (figure 3b).
There are limited studies into infection rates in cohorts of vapers to support in vivo and in vitro theories;
this gap should be filled as risk of respiratory infections needs to be characterised in “healthy” vapers.
Beyond this, it is crucial to understand the effects of e-cigarettes on pathogen clearance in patients with
COPD using e-cigarettes for smoking cessation, as pathogen-driven acute exacerbations in this group are
associated with high mortality rates [106]. Any effects of e-cigarette exposure would therefore have serious
repercussions in this context.

Conclusion

The growing body of evidence surrounding e-cigarette exposure indicates that chronic e-cigarette use will
result in changes to the pulmonary environment. In vivo and in vitro models of exposure consistently show
dysregulated inflammatory cytokine output, potentially driven by oxidative stress, and disproportionate and
ineffective pathogen responses. These changes reflect some elements of the immunopathogenesis of
smoking and COPD, although directly comparable studies are limited thus far. Changes to lipid
homeostasis also differentiates e-cigarette exposure from cigarette exposure. Chronically, these changes are
likely to result in irreversible parenchymal lung tissue damage and impaired gas exchange, contributing to
chronic lung conditions in long-term vapers. While effects can largely be attributed to inflammation and/or
oxidative stress, the key signalling pathways behind each pathological effect of exposure remain unclear.

Future directions

Future work should focus on identifying the agent(s) driving pathological mechanisms, and the signalling
pathways activated, in order to assess the relative risk of different devices. Alongside continued in vitro
studies into chronic exposure, it is imperative we begin long-term longitudinal cohort studies to gain
insight into real-world exposure and a clearer picture on the best use of e-cigarettes for cessation. The
results of such studies will not be available for some years, therefore a continued combination of in vitro,
ex vivo and cohort studies will be required to build a more extensive understanding of the effects
e-cigarette exposure and their utility in smoking cessation in the interim. Urgent work is also required to
consolidate and communicate our understanding of the harms of e-cigarette uptake in young people who
do not smoke.
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