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Transmembrane protein (TMP) is an important type of membrane protein that is
involved in various biological membranes related biological processes. As major drug
targets, TMPs’ surfaces are highly concerned to form the structural biases of their
material-bindings for drugs or other biological molecules. However, the quantity of
determinate TMP structures is still far less than the requirements, while artificial
intelligence technologies provide a promising approach to accurately identify the TMP
surfaces, merely depending on their sequences without any feature-engineering. For this
purpose, we present an updated TMP surface residue predictor TMP-SSurface2 which
achieved an even higher prediction accuracy compared to our previous version. The
method uses an attention-enhanced Bidirectional Long Short Term Memory (BiLSTM)
network, benefiting from its efficient learning capability, some useful latent information is
abstracted from protein sequences, thus improving the Pearson correlation coefficients
(CC) value performance of the old version from 0.58 to 0.66 on an independent
test dataset. The results demonstrate that TMP-SSurface2 is efficient in predicting
the surface of transmembrane proteins, representing new progress in transmembrane
protein structure modeling based on primary sequences. TMP-SSurface2 is freely
accessible at https://github.com/NENUBioCompute/TMP-SSurface-2.0.

Keywords: transmembrane protein, deep learning, relative accessible surface area, attention mechanism, long
short term memory

INTRODUCTION

Transmembrane Proteins (TMPs) are the gatekeepers to the cells and control the flow of
molecules and information across the membrane (Goddard et al., 2015). The function of MPs
is crucial for a wide range of physiological processes like signal transduction, electron transfer,
and neurotransmitter transport (Roy, 2015). They span the entire biological membrane with
segments exposed on both the outside and inside of aqueous spaces and have a profound
effect on the pharmacokinetics of various drugs (Padmanabhan, 2014), cell mechanics regulation
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(Stillwell, 2016), molecule transport (Oguro and Imaoka, 2019;
Puder et al., 2019) and so on. Also, the evidence is pointing
toward TMPs associating with a wide range of diseases, including
dyslipidemia, autism, epilepsy (Rafi et al., 2019; Tanabe et al.,
2019; Weihong et al., 2019), and multiple cancers (Moon
et al., 2019; Yan et al., 2019). Moreover, based on the current
therapeutics market, it is evaluated that more than one-third of
future drug targets would be TMPs (Studer et al., 2014) and the
surface of TMPs is always identified as an interaction interface
according to statistical reports (Lu et al., 2019b).

The quantitative approach for measuring the exposure of
residues is to calculate the relatively accessible surface area
(rASA) of the residues (Tarafder et al., 2018). rASA reflects
the exposure of a single residue to the solvent, making it a
directive reference of protein structures. Predicting rASA of
TMPs is a rewarding task to biological problems like function
annotation, structural modeling, and drug discovery (Zhang
et al., 2019). In this case, accurate sequence-based computational
rASA predictors need to be developed urgently to provide more
support for structure prediction.

Many rASA predictors had been reported performing well on
soluble proteins but the structural differences between the two
protein types are significant, especially when interacting with
the phospholipid bilayer. There are a few methods released to
predict rASA of TMP residues based on their primary sequences.
Beuming and Weinstein (2004) firstly proposed a knowledge-
based method to predict the binary state (buried or exposed) of
residues in terms of a preassigned cutoff in the transmembrane
region of α-TMPs, it is the first rASA predictor of TMPs. After
that, a series of methods using machine learning including SVC,
SVR, and SVM emerged, which can be automatically divided into
two categories according to their functionality: binary classifier
and rASA real value predictor. All of these machine learning-
based methods were designed for α-TMPs, some methods were
just effective with the transmembrane region of the proteins
restrictedly, such as TMX (Liwicki et al., 2007; Wang et al., 2011),
TMexpoSVC (Lai et al., 2013), and TMexpoSVR (Lai et al., 2013),
only MPRAP (Illergård et al., 2010) and MemBrane-Rasa (Xiao
and Shen, 2015; Yin et al., 2018) were able to predict rASA of the
entire sequence. Our previous work (Lu et al., 2019a) combined
Inception blocks with CapsNet, proving that deep learning takes
many advantages for the prediction but there is still room for
accuracy improvement.

The predictors mentioned above including our previous
version all applied common methods like SVM and feed-forward
neural networks. However, these non-sequential models do not
naturally handle sequential data and have trouble capturing
long-term dependencies of a certain sequence (Sønderby and
Winther, 2014), thus being a bottleneck in rASA prediction tasks,
calling for more suitable models. In recent years, various Long
Short Term Memory (LSTM) models have already employed
to learn temporal information of protein secondary structure,
confirming the amazing ability of LSTM in handling protein
sequences through experimental verification (Sønderby and
Winther, 2014; Sønderby et al., 2015; Heffernan et al., 2017).
When it comes to sequence level issues, LSTM is definitely a
better choice. Furthermore, previous tools did not have measures

for reinforcing effective features, resulting in lower inefficiency of
model learning. Additionally, various input restrictions and long
waiting times also made the predictors less friendly to users.

In this study, we proposed an attention-enhanced
bidirectional LSTM network named TMP-SSurface2 to predict
rASA of TMPs at the residue level, which was implemented
on top of the CNN-based Z-coordinate predictor TM-ZC
(Lu et al., 2020). TMP-SSurface2 was trained and tested
against the non-redundant benchmark dataset we created
with primary sequences as input, improving the Pearson
correlation coefficients (CC) value performance of the old
version from 0.584 to 0.659, and reduced the mean absolute
error (MAE) from 0.144 to 0.140. Apart from state-of-the-art
prediction accuracy, TMP-SSurface2 also achieved the highest
output efficiency compared to existing methods with no length
restriction of input. The source codes of TMP-SSurface2
and the corresponding materials can be freely accessed at
https://github.com/NENUBioCompute/TMP-SSurface-2.0.

MATERIALS AND METHODS

Benchmark Dataset
A total of 4,007 TMPs were downloaded from PDBTM
(version: 2019-01-04). We removed the proteins which contained
unknown residues such as “X” or whose length was less than 30
residues since too short a sequence may not form a representative
structure. To avoid the redundancy of data and reduce the
influence of homology bias, CD-HIT (Li and Godzik, 2006)
was utilized to eliminate the duplicate structures with a 30%
sequence identity cut-off resulting in 704 protein chains (618 α

protein chains and 86 β protein chains) left. These proteins were
randomly divided into a training set of 604 proteins, a validation
set of 50 proteins, and a test set of 50 proteins, respectively. In this
work, five-fold cross-validation experiments were performed and
the results were compared against other predictors.

The residue solvent accessibility surface area (ASA) is defined
as the surface accessibility of a certain residue when exposed to
water or lipid. Several tools are capable of calculating ASA, such
as Naccess (Lee and Richards, 1971), PSAIA (Mihel et al., 2008),
MSMS (Sanner et al., 1996), and Dictionary of Protein Secondary
Structure (DSSP) (Kabsch and Sander, 1983).

The ASA of residues was calculating by DSSP, using a
probe with a radius of 1.4 Å. A residue’s ASA is divided by
the corresponding standard maximum accessible surface area
(MaxASA), which is the ASA of extended tri-peptides (Gly-X-
Gly) (Tien et al., 2013), to generate rASA values. rASA can be
calculated by the following formula:

rASA =
ASA

MaxASA
(1)

Features and Encoding
To make the prediction more accurate, it is vital to provide useful
features to deep learning-based methods. In our experiments, we
carefully select two encoding features to represent the protein
fragment: one-hot code and PSSM.
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Prediction of transmembrane protein residues’ rASA is a
classical regression problem, which can be formulated as follows:
for a given primary sequence of a TMP, a sliding window of k
residues was used to predict the real value of central residue’s
rASA. For instance, if k is 19, then each protein is subsequently
sliced into fragments of 19 amino acids.

For each residue in protein sequences, one-hot code is a
20-dimension vector (see Figure 1), using a 19 dimensional
“0” vector with a “1” corresponding to the amino acid at the
index of a certain protein sequence. In this way, each protein
fragment can be mapped into an exclusive and undisturbed
coding within its relative position information (He et al., 2018). It
is proved that a one-hot code is extremely easy to generate while
effective for protein function prediction associated problems
(Ding and Li, 2015).

A position-specific scoring matrix (PSSM) reflects the
evolutionary profile of the protein sequence based on a
search against a certain database. Highly conserved regions
during evolution are always functional regions according to the
researches (Jeong et al., 2010; Zeng et al., 2019), so PSSM has
been widely used in many bioinformatics problems and achieves
commendable results. In our study, PSI-BLAST (Altschul et al.,
1997) was utilized to generate PSSM searching against the
uniref50 (version: 2019-01-16) database with 3 iterations and
a 0.01 E-value cutoff. For a given protein sequence, the PSSM
feature is a 20-dimension matrix with each column representing
a profile and each row representing a residue.

As shown in Figure 2, each amino acid in the protein sequence
is represented as a vector of 41 numbers, including 20 from one-
hot code (represented as binary numbers), 20 from PSSM, and
1 Noseq label (representing a gap) (Fang et al., 2018) in the last
column to improve the prediction performance of the residues
located on both ends of protein while using a sliding window.
In order to facilitate the window sliding operation, the first and
last parts of the sequence are, respectively, padded with 1 and 0 s,
which length is half of the sliding windows size. For each protein
with L residues, we can get L matrices.

Model Design
In this section, a novel compound deep learning network is
presented. Figure 3A shows the proposed pipeline. The input
features for TMP-SSurface2 are the one-hot code and the PSSM
matrix. The CNN whose structure and parameters are all same
as TM-ZC is used to generate the Z-coordinate of TMP residues.
Z-coordinate, which is an important constituent in the field of
MP structure prediction, is often implemented to stand for a
residue’s relative position concerning the membrane (Yin et al.,
2018). After that, the final feature map containing a one-hot code,
PSSM, and Z-coordinate will be put into a bidirectional LSTM
(BiLSTM) network for training and testing.

To further optimize the model, we also attached an attention
mechanism (Baron-Cohen, 1995) layer to the top of BiLSTM,
which is motivated by how we pay visual attention to different
regions of an image or correlate words in one sentence, to help
LSTM focus on a certain region that relatively deserves more
attention. The detailed structure of the mentioned LSTM network
is shown in Figure 3B.

Formula (2) to formula (9) describe the forward recursions
for a single LSTM layer, where

⊙
equals to the elementwise

multiplication, xt means input from the previous layer, it , ft ,
ot represent “input gate,” “forget gate” and “output gate,”
respectively. ht−rec stands for the output forwarded to the next
time slice, and ht is passed upwards in a multilayer LSTM
(Sønderby and Winther, 2014). Attention neural networks have
recently demonstrated popularity in a wide range of tasks ranging
from natural language processing to computer vision (Chorowski
et al., 2014; Rocktäschel et al., 2015; Sharma et al., 2015). Inspired
by these projects, we attached an attention mechanism to LSTM
for feature capturing. As shown in formula (10), the combination
of attention mechanism enables the model to re-assign the weight
(Watt) of the feature vector (V), indicating that the next output
vector (V ′) should focus more on which part of the input
sequence, and then generate the next output according to the
focus region.

it = σ
(
xtWxi + ht−1Whi + bi

)
(2)

ft = σ
(
xtWxf + ht−1Whf + bf

)
(3)

ot = σ
(
xtWxo + ht−1Wh0 + bo

)
(4)

gt = tanh
(
xtWxg + ht−1Whg + bg

)
(5)

ct = ft
⊙

ct−1 + it
⊙

gt (6)

ht = ot
⊙

tanh (ct) (7)

ht−rec = ht + feedforwardnet
(
ht
)

(8)

σ (z) =
1

1+ exp (−z)
(9)

V ′ =Watt
⊙

V (10)

Our model was implemented, trained, and tested using Keras
and Tensorflow. Main hyperparameters (sliding window size,
training dropout rate, number of LSTM units, and layers of
LSTM) were explored. The early stopping and save-best strategy
were applied when the validation loss did not reduce in 10 epochs
during training time, the process would stop and save the best
model parameters. We used Adam optimizer to dynamically
transform the learning rate while the model was training. All the
experiments were performed using an Nvidia 1080Ti GPU.

Performance Evaluation
To quantitatively evaluate the predictions of TMP-SSurface2,
Pearson correlation coefficients (CC) and mean absolute error
(MAE) were used in this study. CC undertook the task
of measuring the linear correlation between real values and
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FIGURE 1 | One-hot code of protein residues.

FIGURE 2 | Encoding features as the model input.

FIGURE 3 | (A) Pipeline of the deep learning model. (B) The attention-enhanced bidirectional LSTM network.
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predicting values. CC ranges from −1 to 1, where −1 indicates
an abstract negative correlation, 1 positive correlation, and 0
absolutely no correlation. Formula (11) shows the definition of
CC, where L represents the number of residues, xi and yi define
the observed and predicted rASA value severally, x and y equal to
the corresponding mean value, respectively.

CC =
∑L

i=1 (xi − x)
(
yi − y

)√[∑L
i=1 (xi − x)2

] [∑L
i=1
(
yi − y

)2
] (11)

Mean absolute error measures the closeness of prediction values
to real values. As shown in formula (12), MAE is defined as the
average difference between predicted and observed rASA values
of all residues.

MAE =
1
L

L∑
i=1

∣∣yi − xi
∣∣ (12)

RESULTS

Feature Analysis
As we all know, it is the features, instead of model structures,
determine the upper-performance limit of deep learning. To
investigate the different features’ contribution to the predictor
TMP-SSurface2, we tested both independent features used in the
predictor and their various combinations on our valid dataset.

Table 1 illustrates that all of the three independent features (Z-
coordinate, one-hot, and PSSM) contain useful information for
predicting rASA by themselves, among which PSSM achieves the
best overall results (CC = 0.631 and MAE = 0.144). It is suggested
that PSSM is an important feature in rASA prediction mainly
because of the inclusion of evolutionary knowledge. When
combining these different features, as was indicated by a former
study, the CC values are almost linearly related to the MAE values
(Yuan et al., 2006), the maximum CC values always accompany
the minimum MAE. Experimental investigation shows that
every single feature made a contribution to the prediction and
achieved the most considerable performance (CC = 0.659 and
MAE = 0.140) when they were combined.

Hyperparameter Tuning and Model
Performance
Tables 2–5 summarizes the exploration of the attention-
enhanced bidirectional LSTM network with various

TABLE 1 | Prediction performance based on individual input features and their
various combinations.

Feature CC MAE

Z-coordinate 0.310 0.191

one-hot 0.417 0.180

PSSM 0.631 0.144

one-hot+PSSM 0.641 0.142

one-hot+PSSM+ Z-coordinate 0.659 0.140

*Bold fonts represent the best experimental results.

hyperparameters on the validation dataset. The object of
doing these experiments was to find out a better configuration of
our method. The tested hyperparameters were carefully selected
and only the major factors which would greatly influence the
model were explored on the validation dataset.

A sliding window approach is utilized to append useful
neighborhood information to improve prediction accuracy.
Table 2 shows how the length of the sliding window affects the
performance of our network. Since the contexts fed into the
proposed deep learning model relies on the length of the sliding
window, the prediction accuracy would be directly influenced by
its value. In general, when the window size becoming larger, it
will cost more time for training, but the prediction performance
may not be better as the window length increases. Historically, if a

TABLE 2 | Effect of sliding window length on CC performance.

Window Length CC MAE

13 0.642 0.141

15 0.641 0.143

17 0.645 0.143

19 0.648 0.140

21 0.646 0.141

23 0.640 0.142

*Bold fonts represent the best experimental results.

TABLE 3 | Effect of dropout rate on CC performance.

Dropout rate Train CC Test CC Test MAE

No 0.851 0.632 0.143

0.2 0.806 0.640 0.143

0.3 0.782 0.648 0.140

0.4 0.762 0.641 0.141

0.5 0.725 0.638 0.143

*Bold fonts represent the best experimental results.

TABLE 4 | Effect of LSTM units’ number on CC performance.

Num of units CC MAE Num of Parameters

500 0.639 0.142 2,191,381

600 0.641 0.142 3,109,591

700 0.648 0.140 4,187,781

800 0.643 0.143 5,425,981

900 0.646 0.140 6,824,181

*Bold fonts represent the best experimental results.

TABLE 5 | Effect of the number of LSTM layers on CC performance.

LSTM Layers CC MAE Num of parameters

1 0.648 0.140 4,187,781

2 0.659 0.140 15,953,381

3 0.642 0.141 27,718,981

4 0.646 0.141 39,484,581

*Bold fonts represent the best experimental results.
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sliding window was utilized by sequence-based protein structure
predicting tasks, the peak of performance often occurred when its
length was between about 13 and 23 residues (Fang et al., 2018; Lu
et al., 2019a). We searched the window length from 13 to 23 by a
step of two residues, finding the best result when the number is
19 and it was chosen as the final window length in this section.

Table 3 shows how the dropout rate affects the model
performance when the window size is 19. Deep learning
neural networks are much easier to overfit a training dataset
with few examples, dropout regularization will help reducing
overfitting and improve the generalization of deep neural

TABLE 6 | Comparison of TMP-SSurface2 with the previous predictors on the
independent dataset.

Predictor CC MAE Failure Time Cost (min)

MPRAP 0.397 0.176 9 6.5

MemBrane-Rasa 0.545 0.153 7 23.7

TMP-SSurface 0.584 0.144 0 4.7

TMP-SSurface2 0.659 0.140 0 4.3

*Bold fonts represent the best experimental results.

TABLE 7 | Performance of TMP-SSurface2 on different types of TMPs.

TMP Types Protein number CC MAE

α-helical TMPs 45 0.674 0.138

β-barrel TMPs 5 0.562 0.151

all-TMPs 50 0.659 0.140

networks (Dahl et al., 2013). The dropout rates in the range of
0.2–0.4 are all acceptable according to the training and testing
prediction performance. Finally, we chose 0.3 as our dropout
rate, and the concatenation network in our study is regularized
using a 30% dropout.

In the LSTM network, the number of LSTM units is also an
important parameter, which determines the output dimension
of different layers just like ordinary neural networks. When
the number of LSTM units in one layer changes, the scale
of parameters and prediction accuracy of the model will
immediately be affected. To find the best choice of LSTM units,
we tried different values at the same time. The results are
shown in Table 4, we chose 700 as the number of LSTM units
in a simple layer.

As it can be seen in Table 5, when the LSTM network has
two bidirectional layers (i.e., four simple layers, two forward
and two backward), the model performs best on the validation
set. However, the prediction accuracy of the model may not
grow as the number of LSTM layers increases. It is suspected
that a large number of model parameters will lead to the

TABLE 8 | Contribution of attention mechanism.

Model CC MAE

No attention 0.637 0.150

Attention with LSTM 0.659 0.140

Attention with Dropout 0.645 0.141

*Bold fonts represent the best experimental results.

FIGURE 4 | Validation loss curve of the training process with and without attention mechanism.
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FIGURE 5 | Visualization of the features learned by LSTM using PCA.

FIGURE 6 | The 3D visualization of the predicted result (surface version).
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overfitting of LSTM on the training set, thus reducing the
generalization ability of it.

Comparison With Previous Predictors
In this section, we list the existing methods that can be
used to predict the rASA of TMP in the full chain and
compare TMP-SSurface2 with them. Table 6 shows the
performance improvement of the proposed TMP-SSurface2 after
implementing the new model relative to the old version and
the other tools. During testing MPRAP and MemBrane-Rasa
on the independent dataset, we figured out that not every
sequence fed into these predictors can get a corresponding output
since some third-party tools might cause the failure. Just like
TMP-SSurface, the new version is reliable in getting prediction
results because of the simple coding scheme. Furthermore, TMP-
SSurface2 significantly outperformed the previous predictors and
has the quickest predicting speed. The details of the comparison
are shown in Table 6.

TMP Type Test
Statistical results show that most of the existing methods only
focused on α-helical TMPs while ignored β-barrel TMPs, which
made it inconvenient for the users who cannot distinguish the
protein type. As described previously, the data set we used
contains both α-helical and β-barrel TMPs, making our predictor
more suitable for all types of TMP. Table 7 illustrates that when
TMP-SSurface2 meets either of these two different TMPs, the
prediction performance on the independent testing dataset was
both considerable and reliable.

Contribution of Attention Mechanism
The attention mechanism promotes the model to extract features
more effectively, speeding up the prediction accuracy to the
peak, even improving the performance at the same time.
To verify the positive effect of the attention mechanism, we
monitoring the mean absolute error loss curve of the validation
dataset with or without the attention layer, respectively, using
the preselected best hyperparameters while training. As is
shown in Figure 4, when the network is attention-enhanced,

the convergence speed and accuracy of the training set were
significantly improved.

Moreover, we also combined attention mechanisms with
various network layers to verify whether or how much
the attention mechanism would improve the prediction
performance. Firstly, we removed the attention layer and tested
the trained model on the test set. Meanwhile, we attached
the attention mechanism to the bidirectional LSTM layer
and the Dropout layer, respectively, to conduct experiments,
the results are shown in Table 8. It can be seen that the
combination of attention mechanism and bidirectional LSTM
layer reached the best performance, which is related to the fact
that the LSTM layer had learned the most abundant features.
In essence, the attention mechanism is to enhance the feature
extraction process, so it will achieve the best effect when
combined with the network layer that is the most effective for
feature extraction.

Visualization of the Features Learnt by
LSTM
Deep neural networks can learn high-level abstract features
from original inputs, to verify whether the extracted features
are generalizable, we utilized PCA (Wold, 1987) to visualize
the input features and each LSTM unit’s output in one
bidirectional layer with test data. Figure 5 shows the
PCA scatter diagram of the test data before and after fed
into LSTM, respectively. The input data had 42 features
(i.e., 42 dimensions), PCA reduced its dimensionality and
visualized it, but there was no clear cluster. The bidirectional
LSTM layer we used contained 1,400 dimensions (twice
of units in a simple LSTM layer) and the trend toward
clustering had occurred, which demonstrates that LSTM
had effectively captured useful and powerful features
needed in this work.

Generally, buried residues are under stronger evolutionary
constraints than exposed ones irrespectively of the environment
(Kauko et al., 2008). The diagram shows that the residues whose
rASA was lower than 0.2 narrowed down to a small area through
PCA, which means these residues’ rASA values stayed closely

FIGURE 7 | The comparison between the TMP-SSurface2-predicted rASA values and real rASA values.
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aligned with the features derived from their sequence, just proved
the previous statement.

Case Studies
To further demonstrate the effectiveness of TMP-SSurface2, we
take 4n6h_A as an example of case studies. 4n6h_A is an
Escherichia coli α-TMP (subgroup: G protein-coupled receptor)
containing 408 residues as the receptor of multiple ligands like
sodium ion, heme, and so on (Fenalti et al., 2014). Figure 6 shows
the 3D visualization of the predicted result (surface version) and
Figure 7 illustrates the comparison between the TMP-SSurface2-
predicted rASA values and real rASA values. As were shown
in figures, the overall trend of rASA has been appropriately
captured, but TMP-SSurface2 seems conservative in predicting
some fully exposed or buried residues’ rASA. It is suspected
that TMP-SSurface2 may confuse these residues with the ones
located on water-soluble regions, resulting in low prediction
performance of them.

CONCLUSION

In this study, we proposed an updated TMP-SSurface predictor,
which aimed to predict transmembrane protein residues’
rASA from primary sequences. Apart from classical feed-
forward neural networks, we developed an attention-enhanced
bidirectional LSTM network on top of the CNN-based
Z-coordinate predictor to process sequential data and improved
the CC value performance of the old version from 0.58 to 0.66
on the independent test dataset. The improvement of LSTM
directly indicates that the order of residues in a sequence would
exactly influence the protein structure and LSTM has a more
powerful ability to process sequential data than CapsNet. The
Z-coordinate feature was explored and applied in TMP-SSurface2
and proved to be useful, which means the z-coordinate has
a lifting effect on rASA prediction, indicating that structural
features can support each other. We also appended various

important experiments like feature visualization and case study
to visualize the effectiveness of the model. TMP-SSurface2 had
no constraints with input since it could handle all types of TMPs
at any length. The predicted rASA would make contributions to
TMPs’ structure analysis, TMP-ligand binding prediction, TMP
function identification and so on.
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