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Background: Gastric cancer (GC) is a highly heterogeneous tumor with different
responses to immunotherapy. Identifying immune subtypes and landscape of GC could
improve immunotherapeutic strategies.

Methods: Based on the abundance of tumor-infiltrating immune cells in GC patients from
The Cancer Genome Atlas, we used unsupervised consensus clustering algorithm to
identify robust clusters of patients, and assessed their reproducibility in an independent
cohort from Gene Expression Omnibus. We further confirmed the feasibility of our immune
subtypes in five independent pan-cancer cohorts. Finally, functional enrichment analyses
were provided, and a deep learning model studying the pathological images was
constructed to identify the immune subtypes.

Results:We identified and validated three reproducible immune subtypes presented with
diverse components of tumor-infiltrating immune cells, molecular features, and clinical
characteristics. An immune-inflamed subtype 3, with better prognosis and the highest
immune score, had the highest abundance of CD8+ T cells, CD4+ T–activated cells,
follicular helper T cells, M1 macrophages, and NK cells among three subtypes. By
contrast, an immune-excluded subtype 1, with the worst prognosis and the highest
stromal score, demonstrated the highest infiltration of CD4+ T resting cells, regulatory T
cells, B cells, and dendritic cells, while an immune-desert subtype 2, with an intermediate
prognosis and the lowest immune score, demonstrated the highest infiltration of M2
macrophages and mast cells, and the lowest infiltration of M1 macrophages. Besides,
higher proportion of EVB and MSI of TCGA molecular subtyping, over expression of
CTLA4, PD1, PDL1, and TP53, and low expression of JAK1 were observed in immune
subtype 3, which consisted with the results from Gene Set Enrichment Analysis.
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These subtypes may suggest different immunotherapy strategies. Finally, deep learning
can predict the immune subtypes well.

Conclusion: This study offers a conceptual frame to better understand the tumor immune
microenvironment of GC. Future work is required to estimate its reference value for the
design of immune-related studies and immunotherapy selection.
Keywords: tumor-infiltrating immune cells, immune subtypes, immunotherapy, deep learning, gastric cancer
INTRODUCTION

Gastric cancer (GC) is the fifth most common malignant tumor
and third leading cause of cancer-related death worldwide (1).
Despite major advancements in therapies, the 5-year overall
survival (OS) rate for patients in advanced stage remains 20%
(2). Even patients with locally advanced disease underwent
radical resection and perioperative chemotherapy, the 5-year
OS rate is still less than 40% (3–7). Thus, more effective systemic
treatments are obviously urgent.

Immunotherapy is catching attention in multiple solid
tumors recently, including gastric cancer. Specifically, immune
checkpoint inhibitors, such as cytotoxic T-lymphocyte associated
protein 4 (CTLA4) antibodies and programmed cell death
protein 1 (PD1) antibodies, presented unprecedented clinical
benefit in a variety of tumors (8–18). However, for patients with
advanced gastric cancer, only a small subset (10–20%) responded
to anti-CTLA4 (ipilimumab) and anti-PD1 (nivolumab,
pembrolizumab) (8–12). A randomized controlled phase 3 trial
ONO-4538-12/ATTRACTION-2 indicates an improvement of
objective response rate (ORR) of 11% for patients with advanced
gastric cancer receiving nivolumab versus placebo (10). Also,
the ORR remains similar for other clinical trials, including the
phase 1b KEYNOTE-012 (ORR 22%) and phase II KEYNOTE-
059 (ORR 12%) trials (9, 11). Therefore, researches to identify
mechanisms of response and resistance to immune checkpoint
inhibition and to screen underlying patients who may benefit are
required. However, our understanding of the role of tumor
microenvironment (TME) in immune response remains
incomplete because of its complexity.

The tumor microenvironment is a complex system composed
of extracellular matrix, cytokines, chemokines, and non-tumor
cells (19). As an important component of non-tumor cells in
TME, tumor infiltrating immune cells (TIICs) is associated
with the promotion or inhibition of tumor growth (20–22). In
particular, the presence of tumor-associated CD8+ T cells, CD4+
T cells, T follicular helper cells (Tfhs), and natural killer (NK)
cells in TME, suggesting activated immune response, is
associated with good prognosis, while regulatory T cells
(Tregs), B cells, macrophages, mast cells and plasma cells
inhibiting immune response indicate poor prognosis (22–31).
Conventional detection techniques for TIICs, such as flow
cytometry and immunohistochemistry, are generally confined
to evaluate limited types of immune cells, due to inability to
measure numbers of markers simultaneously (29, 32). However,
the interactions among tumor-infiltrating immune cells are
org 2
extremely complicated. Thus, a systematic assessment of all
immune cells in the TME offers better clinical value.

Immune subtypes have presented with meaningful clinical
value in multiple tumors, including melanoma, esophageal
cancer, lung cancer, and breast cancer (33, 34). Although the
relationship between tumor infiltrating immune cells and gastric
cancer has been described, the overall function of TME is ignored
(35). Therefore, our understanding of the immune subtypes
based on TIICs in gastric cancer is far from complete. From
this perspective, our study is of great significance.

Deep learning performs excellently as a powerful technique
for reading pathological images (36, 37). The emergence
of pathological scanning copy for the whole slide images
(WSIs) provides a platform for deep learning (34, 37). It is
generally acknowledged that the histopathology images contain
valuable information of TME (38). Therefore, deep learning
could extract high dimensional data from standard medical
images for clinical applications, such as distinguishing immune
subtypes. Besides, convincing performance for deep learning has
been observed in prediction of microsatellite instability status,
immune cell types and prognosis in a variety of tumors (39–42),
which provides reference for our study.

In the present study, we identified three robust immune
subtypes of gastric cancer based on unsupervised consensus
clustering of TIICs, and their reproducibility was further
validated in an independent cohort. We observed that each of
the three immune subtypes presented distinct immune cells
proportion, molecular features, and clinical characteristics,
which could provide reference for the design of immune-related
studies and the choice of immunotherapy. Moreover, we verified
the feasibility and prognostic value of this classification system in
five pan-cancer data sets, including breast cancer, esophageal
cancer, colorectal cancer, liver cancer, and pancreatic cancer.
Finally, we developed and validated a deep learning model based
on pathological images to predict the immune subtypes for easy-
use in clinical practice.
MATERIALS AND METHODS

Patients and Data Sets
The discovery cohort to identify the immune subtypes consisted
of 375 patients with gastric cancer obtained from The Cancer
Genome Atlas (TCGA) database (https://cancergenome.nih.
gov). Another cohort including 433 patients with gastric cancer
in GSE84437 downloaded from the Gene Expression Omnibus
June 2021 | Volume 12 | Article 685992
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(GEO) database was used to validate the immune subtypes
(https://www.ncbi.nlm.nih.gov/geo/). Besides, five independent
cohorts (total n = 2230), including breast cancer (n=1108),
esophageal cancer (n=185), colorectal cancer (n=383),
liver cancer (n=375), and pancreatic cancer (n=179), acquired
from UCSC Xena (https://xenabrowser.net/) were applied to
further elucidate feasibility of the immune subtypes. For details
about study design and data preprocessing, please refer to
supplementary methods and Figure S1.

Data Processing and Quantification of
Immune Cells
Based on the gene expression profiles, the CIBERSORT
algorithm was employed to quantify the proportions of 22
Tumor-infiltrating immune cells using the LM22 signature and
1,000 permutations (43). Cases with P<0.05 in CIBERSORT,
which indicated that the deconvolution results were accurate,
would be retained for further analysis. In this study, a total of 194
GC samples from discovery cohort and 299 GC samples from
validation cohort were screened out (Figure S2). Finally, we
obtained 22 types of immune cells, including B cells (naive B cells
and memory B cells), CD8+ T cells, naive CD4+ T cells, resting
memory CD4+ T cells, activated memory CD4+ T cells, T
follicular helper cells (Tfh), regulatory T cells (Tregs), natural
killer cell (resting NK cells, activated NK cells), macrophages
(M0, M1 and M2), dendritic cells (resting DC and activated DC),
mast cells (resting mast cells and activated mast cells), plasma
cells, gamma delta T cells, monocytes, neutrophils,
and eosinophils (Figure S3).

Discovery and Validation of the
Immune Subtypes
To dissect inter-tumor heterogeneity defined by TIICs, we applied
unsupervised consensus clustering to define the robust subgroup of
patients, i.e., immune subtypes. Specifically, the K-Means clustering
algorithm with the Euclidean distance metric and performed
10,000 bootstraps, with 80% resampling of the immune cells.
The consensus clustering algorithm was implemented with
the ConsensusClusterPlus package (44). The number of clusters
was determined by the optimal consensus matrix and explicit
cluster allocation across permuted runs. Besides, in order to
evaluate the reproducibility of the clusters, the same clustering
procedure was performed independently in the validation cohort.
We then calculated the in-group proportion (IGP) index with
“clusterRepro” R package to quantitatively measure the similarity
of clusters produced from the two data sets (45).

Assessing the Clinical, Molecular, Cellular
Characteristics Associated With the
Immune Subtypes
We first evaluated the association of immune-related cellular features
with immune subtypes using Kruskal-Wallis statistic. TIICs (naive
CD4+ T cells, gamma delta T cells, monocytes, neutrophils, and
eosinophils) with zero value in more than 40% of all samples were
excluded from the analysis. Next, we described the distribution of
demographic, clinicopathological characteristics, and molecular
Frontiers in Immunology | www.frontiersin.org 3
feature of the immune subtypes, including age, sex, Lauren’s
classification, pathological differentiation status, tumor location,
stage, TCGA molecular subtyping, and stromal-immune score
based on ESTIMATE algorithm (46, 47). Finally, log-rank test and
multivariable Cox regression were used to measure the prognostic
value of the immune subtypes with OS as the endpoint. For details
about identification of TCGA molecular subtyping, please refer to
Supplementary Methods.

Validation Using Pan-Cancer Data Set
Tumor-infiltrating immune cells data were extracted based on the
CIBERSORT method described above from the pan-cancer data
sets (breast cancer, esophageal cancer, colorectal cancer,
liver cancer, and pancreatic cancer). However, for those cohorts
with too few samples, we chose P<0.1 as the cutoff point. Then, the
consensus clustering algorithm and Kaplan-Meier analysis were
performed to illustrate the feasibility of our immune subtypes.

Functional Enrichment Analyses for
Immune Subtypes
Differentially expressed genes (DEGs) were identified between
any two immune subtypes (IS1 vs IS2, IS1 vs IS3, IS2 vs IS3) using
an R package “limma”. An absolute value of log2 (fold
change) >1 combined with the false discovery rate (FDR)
adjusted p-value <0.05 was selected as the threshold for DEG
identification. The intersection of the DEGs in TCGA-GC cohort
and GSE84437 cohort was applied to Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Set
Enrichment Analysis (GSEA). For the enrichment analysis, we
focused on the immune related gene sets and cancer hallmark
gene sets. Besides, several classic immune checkpoints (PD1,
PDL1, and CTLA4) and cancer related genes (TP53, JAK1)
were evaluated among the immune subtypes.

Deep Learning to Identify
Immune Subtypes
Deep learning can identify the macroscopic contents of pathological
images, including tumor cells and TIICs nuclear size, nuclear
location, nuclear morphology, etc. It can even identify high-
dimensional data, such as color matrix, histogram matrix, and
high-order matrix, which cannot be distinguished by naked eye.
Thus, we trained a convolutional neural network with deep residual
learning (based on ResNet-18) model to detect the immune subtype
by transfer learning using patches segmented from the whole slide
images (WSIs). First, high-quality WSIs without obvious interfering
factors, including bleeding, creases, necrosis, and blurred areas, were
screened and divided into training, validation and test sets at a 5:3:2
ratio for further processing. Next, tumor regions of interest (ROIs)
on WSIs were manually delineated by expert pathologists. All WSIs
were digitalized at 20× objective lens. Then, ROIs were subsequently
separated into 512 pixels × 512 pixels patches. Finally, after
preprocessed with random cutting, random horizontal flipping,
and random affine transformation, center cropping (224 pixels ×
224 pixels), and normalization, patches were put into the deep
learning model based on ResNet-18. For details about data
preprocessing, please refer to Supplementary Methods.
June 2021 | Volume 12 | Article 685992
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Statistical Analysis
All the statistical significance values were set as two-tail and
P < 0.05 was considered statistically significant. Statistical
analyses were performed using SPSS statistical software (version
22.0), GraphPad Prism software (version 7.00), Perl 5 software
(version 5.28.1) and R software (version 3.5.3). Deep learning was
implemented with torch library in Python software (version 3.6.7).
RESULTS

Immune Subtypes Discovery
and Validation
By performing the unsupervised consensus clustering on the 194
GC cases fromTCGA based on the 22 TIICs, the optimal number of
Frontiers in Immunology | www.frontiersin.org 4
clusters was found to be three with maximal consensus within
clusters and minimal ambiguity among clusters (Figures 1A–C).
Based on this, we identified three robust immune subtypes—
immune subtype 1 (IS1), immune subtype 2 (IS2) and immune
subtype 3 (IS3). To evaluate the reproducibility of the immune
subtypes, we performed the same algorithm in the 299 GC cases
fromGSE84437. Interestingly, we found that the optimal number of
clusters was three, too (Figures 1D–F). The tSNE analysis well
represented the discrete distribution of three clusters and
the consistency of the discovery and validation cohorts
(Figures 1G, H). Furthermore, we calculated the in-group
proportion (IGP) statistic to quantify the similarity of the
immune subtypes between the discovery and validation cohort.
And immune subtypes showed good consistency between the two
cohorts, with corresponding IGP value at 79%, 81%, and 86% in IS1,
IS2, and IS3, respectively.
A B

D E F

G H

C

FIGURE 1 | Discovery and validation of the immune subtypes in TCGA (A) and GEO (D). Patient samples are both in rows and columns, and consensus values
range from 0 (never clustered together) to 1 (always clustered together). The optimal cluster number (K = 3) is determined by the area under the cumulative
distribution function (CDF) curve in the discovery (B, C) and validation cohort (E, F), which corresponds to the largest number of clusters that induced the smallest
incremental change in the area under the CDF curves. The tSNE well represents the discrete distribution of three clusters (G, H).
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Profound Differences in Immune
Infiltration Among Immune Subtypes
Each of the three immune subtypes represented distinct immune
cells expression patterns in the discovery cohort, which was found to
be highly consistent with the validation cohort, surprisingly. Highest
CD8+ T cells and M1 macrophages abundance was confirmed in
IS3 (Figures 2A and S5B). IS3 was also characterized by the highest
abundance of activated CD4+ T memory cells (Figure 2C).
However, the least abundance of resting CD4+ T memory cells
and M2 macrophages presented in IS3 (Figures 2B and S5C).
Moreover, IS3 was also associated with highest abundance of Tfh
and NK cells (Figures 2H, J) and lowest abundance of B cells and
mast cells (Figures 2D, G). Besides, the expression of DC and Tregs
of IS3 was in themiddle among three immune subtypes (Figures 2E,
I), whereas the expression of plasma cells in IS3 was high in the
discovery cohort and low in the validation cohort (Figure S4I, K). In
comparison, IS1 exhibited the highest density of CD4+ T memory
resting cells, B cells, DC cells, and Tregs (Figures 2B, D, E, I), and
the lowest density of macrophages and Tfh (Figures 2F, H). The
Frontiers in Immunology | www.frontiersin.org 5
expression of CD8+ T cells of IS1 was in the middle among three
immune subtypes (Figure 2A). Furthermore, compared with IS1
and IS3, the highest abundance of macrophages in IS2 was
confirmed (Figure 2F), accompanied with the lowest abundance
of CD8+ T cells, DC and Tregs (Figures 2A, E, I). Besides, the
highest abundance of M0 andM2macrophages was observed in IS2
(Figures S5A, C, D, F), while the lowest abundance
of M1 macrophages was observed in IS2 compared with IS1 and
IS3 (Figure S5). And the expression of CD4+ T memory resting
cells, B cells, Tfh of IS2 was in the middle among three immune
subtypes (Figures 2B, D, H). The expression of activated CD4+ T
memory cells, mast cells, NK cells was inconsistent in IS1 or IS2
between the discovery cohort and validation cohort (Figures 2C,
S4C, 2G, S4G, 2J and S4J). Additionally, comparison of TIICs
between any two immune subtypes (IS1 vs IS2, IS1 vs IS3, IS2 vs IS3)
was provided in supplementary results. Lastly, we identified
that IS3 exhibited the lowest stromal score and highest immune
score (Figures 2K, L), while IS1 exhibited the highest stromal score
(Figures 2K) and IS2 exhibited the lowest immune score
A B

D E F

G IH

J K L

C

FIGURE 2 | The discovery cohort shows heterogeneity of immune infiltration among immune subtypes. Highest abundance of CD8+ T cells, CD4+ T memory
activated cells, follicular helper T cells, and NK cells was observed in IS3 (A, C, H, J), while highest abundance of CD4+ T memory resting cells, B cells,
macrophages cells, and mast cells was observed in IS3 (B, D, F, G). DC cells and regulatory T cells abundance showed one highest and one lowest in IS1 and IS2
(E, I). Besides, IS3 exhibited the lowest stromal score and highest immune score (K, L). The plot of patient immune cells abundance shows the median, 25th and
75th percentile values (horizontal bar, bottom, and top bounds of the box), and the highest and lowest values (top and bottom whiskers, respectively).
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(Figures 2L). The results of these findings were consistent with the
validation cohort (Figures S4 and S5). Specific values of TIICs
abundance and their P values are presented inTable 1. These results
suggested that IS3 had the strongest immune activity accompanied
with a weaker immune-suppression (immune-inflamed phenotype),
while IS1 had a moderate immune response accompanied by a
stronger immune-suppression (immune excluded phenotype), while
IS3 was characterized by immune deficiency (immune-
desert phenotype).

Clinical Characteristics, Molecular
Features, and Prognoses of the
Immune Subtypes
The TCGA cohort containing GC patients with available
clinicopathologic information and molecular features, stratified by
immune subtypes, was analyzed and listed in Table 2. Compared to
IS1 and IS3, the median age of IS2 is slightly higher (Figure 3B). In
addition, IS2 was associated with highest proportion of men and
intestinal type tumor (Figures 3A, F). Furthermore, IS3 was
associated with a lower incidence of cardia/fundus cancer, while
presented with worse pathological differentiation (Figures 3D, E).
Besides, there was no significant difference in the proportion of TNM
stages among the three immune subtypes (Figure 3C). In terms of
TCGA molecular subtyping, IS3 revealed more EVB and MSI, and
less CIN and GS than that in 1 and 2 (Figure 3G). The
clinicopathological information available in the validation cohort is
listed in Table S1 and Figure S6. Lastly, we observed that the
immune subtypes revealed significantly prognostic impact in
TCGA-GC and GEO cohort (Figures 3H, I). Overall, the immune-
hot subtype IS3 was associated with the best prognosis for OS among
all subtypes. By contrast, the immune-cold subtype IS1 and IS2 was
associated with poor outcomes. This survival difference was
confirmed after excluding confounding factors of age, gender,
tumor location, Lauren’s classification, pathological differentiation
and stage and was showed in Tables 3 and S2.

Validation Using Pan-Cancer Data Set
The consensus clustering algorithm was conducted using the 22
TIICs based on patients in the pan-cancer data set (breast cancer,
esophageal cancer, colorectal cancer, liver cancer, and
pancreatic cancer). We observed that the optimal number of
clusters was four in liver cancer, two in colorectal cancer, four in
breast cancer, two in esophageal cancer, and two in pancreatic
cancer. And survival difference was found in liver cancer, breast
cancer, and pancreatic cancer. However, significant statistical
differences were found only in liver cancer and pancreatic cancer.
The total results were visualized in Figure S8.

Functional Enrichment Analyses
To investigate the underlying functional differences among immune
subtypes, we conducted GO and GSEA analyses on the differentially
expressed genes. Through the abovementioned analysis, GC cases in
TCGA and GEO database were divided into three immune subtypes
—IS1, IS2, and IS3. Thus, the functional enrichment analyses were
performed between any two immune subtypes (IS1 vs IS2, IS1 vs
IS3, IS2 vs IS3). First, 1639 DEGs, including 737 up-
regulated expression (UE) and 902 down-regulated expression
Frontiers in Immunology | www.frontiersin.org 6
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(DE), were filtered out from TCGA cohort and 208 DEGs (106 UE
and 167 DE) were filtered out from GEO cohort in IS1 vs IS2
(Figures 4A, D, and S7). Next, a total of 115 DEGs (35 UE and 80
DE) were observed in the intersection between them (Table S4 and
Figure 4G). In IS1 vs IS3, 1312 DEGs (363 UE and 949 DE) were
filtered out from TCGA and 272 DEGs (55 UE and 217 DE) were
filtered out from GEO (Figures 4B, E, and S7). Next, a total of 124
DEGs (31 UE and 93 DE) were observed in the intersection between
them (Table S5 and Figure 4H). In IS2 vs IS3, 1685 DEGs (637 UE
and 1048 DE) were filtered out from TCGA and 293 DEGs (111 UE
and 182 DE) were filtered out from GEO (Figures 4C, F, and S7).
Next, a total of 136 DEGs (65 UE and 71 DE) were observed in the
intersection between them (Table S6 and Figure 4I). Furthermore,
GO, KEGG, and GSEA analyses were performed based on the
DEGs separately (Figures 4D, E).

From the above, we found significant difference of chemokine
pathway between IS1 and IS2. IS presented with more active
chemokine respondence and interactions (Figures 5A–C).
Additionally, compared to IS3, TGF-b signaling was significantly
enriched in IS1 and IS2, which suggested immunosuppression
(Figures 5F, I). Also, IS3 was associated with significantly
upregulated T cell receptor signaling, antigen processing, and
presentation signaling, suggesting that active inflammation and
immune infiltration (Figures 5D, E, G, H). In addition, the classic
Frontiers in Immunology | www.frontiersin.org 7
tumor suppressor signaling P53 was observed to enrich in IS3 and the
typical carcinogenic signaling JAK-STAT enriched in IS1-2
(Figures 5F, I). The results consisted with the profound differences
in immune infiltration among immune subtypes. And these may
explain why IS3 has a better prognosis than IS1-2. Base on the above,
we studied the relationship among several immune checkpoints
(PD1, PDL1, and CTLA4), cancer related genes (TP53, JAK1) and
the immune subtypes (Table S3). Interestingly, we found that
compared with that in IS1-2, expression of PD1, PDL1, CTLA4,
and TP53 was higher in IS3 and expression of JAK1 was lower, which
was consistent with the functional enrichment analyses (Figure S9).

Deep Learning Can Identify
Immune Subtypes
After removing low quality pathological images, 169 samples with
WSIs were divided into training (84 cases), validation (51 cases),
and test cohorts (34 cases), and then tumor ROI was separated into
512 × 512 patches. Finally, the training cohort contained
12,986 normalized tiles marked as IS1, 3,399 normalized tiles
marked as IS2 and 6,323 normalized tiles marked as IS3. The
validation cohort contained 11,070 normalized tiles marked as IS1,
3,003 normalized tiles marked as IS2, 5114 normalized tiles marked
as IS3. And the test cohort contained 5344 normalized tiles marked
as IS1, 1,790 normalized tiles marked as IS2, and 2,508 normalized
TABLE 2 | Clinicopathological characteristics of patients with gastric cancer in TCGA.

Variables TCGA

IS1 (n=99) IS2 (n=43) IS3 (n=52)

N % N % N %

Age (median, IQR, Y) 65 (57-72) 69 (58-75) 65 (56-75)
Gender
Male 58 58.6 34 79.1 30 57.7
Female 41 41.4 9 20.9 22 42.3

Lauren’s type
Intestinal 29 47.5 22 84.6 17 54.8
Diffuse 32 52.5 4 15.4 14 45.2
Unknown 38 NA 17 NA 21 NA

Differentiation
Well 26 26.3 24 55.8 6 11.5
Poor 73 73.7 19 44.2 46 88.5

Location
Cardia/Fundus 41 43.2 20 47.6 15 29.4
Body 22 23.2 8 19.1 16 31.4
Antrum/Pylorus 32 33.6 14 33.3 20 39.2
Unknown 4 NA 1 NA 1 NA

Stage
I 8 8.1 6 14.0 6 11.5
II 39 39.4 18 41.9 21 40.4
III 41 41.4 18 41.9 23 44.2
IV 11 11.1 1 2.3 2 3.8

Stromal score (median, IQR) 445.4 (13.8-1104.2) 202.7 (-161-853.8) 113.9 (-248-853.2)
Immune score (median, IQR) 1017.9 (659.1-1611.7) 694.7 (45.9-1086.7) 1394.3 (1016.3-1848.1)
Molecular characterization
EVB 3 3.0 0 0 19 37.3
MSI 14 14.1 7 16.7 17 33.3
CIN 53 53.5 31 73.8 11 21.6
GS 29 29.3 4 9.5 4 7.8
Unknown 0 NA 1 NA 1 NA
J
une 2021 | Volume 12 | Articl
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tiles marked as IS3. Next, we developed a ResNet-18 deep learning
model to predict the immune subtypes based on training and
validation, and measured the performance in the test cohort. The
model first predicted the probability of immune subtypes for each
patch. We found that the accuracy of IS prediction for each patch in
the training, validation, and test cohort was 80.23%, 74.45%, and
68.89%, respectively. Then GC cases would be designated as one of
the three subtypes (IS1 or IS2 or IS3) according to the accumulated
number of patches in tumor ROI (Figure 6). We observed that the
accuracy of IS prediction ResNet-18 model for GC cases was about
85.71%, 80.39%, 76.47% in the training, validation, and test cohorts,
Frontiers in Immunology | www.frontiersin.org 8
separately (Figures S10A, C). Additionally, we observed that the
accuracy of IS3 prediction would increase to about 90% when IS1
and the two were combine as IS1-2 (Figures S10D–F). More details
refer to supplementary results.
DISCUSSIONS

Immunotherapy is increasingly being recognized for its potential
therapeutic effect on a variety of tumors. However, only a subset of
patients has response or survival benefit to immunotherapy. Thismay
A B

D E F

G IH

C

FIGURE 3 | Differences in clinical and histological characteristics among immune subtypes, including age, sex, stage, tumor location, pathological differentiation, and
Lauren classification (A–F). The plot of patient age at initial diagnosis shows the median, 25th and 75th percentile values (horizontal bar, bottom, and top bounds of
the box), and the highest and lowest values (top and bottom whiskers, respectively). The distribution of TCGA molecular subtyping among immune subtypes (G).
The prognostic value of the immune subtypes in TCGA (H) and GEO (I), indicating best prognosis of IS3.
TABLE 3 | Univariable and multivariable analyses for overall survival in patients with gastric cancer.

Variables Univariable analysis (N=194) Multivariable analysis (N=194)

OR (95%CI) P OR (95%CI) P

Age (years) 1.018 (0.999-1.038) 0.061 NA NA
Gender (female vs. male) 1.549 (0.984-2.437) 0.059 NA NA
Lauren type (intestinal vs diffuse) 1.100 (0.859-1.409) 0.453 NA NA
Differentiation (well vs. poor) 1.075 (0.671-1.723) 0.764 NA NA
Location (cardia/fundus vs. body vs. antrum/pylorus) 0.865 (0.685-1.093) 0.224 NA NA
Stage 1.399 (1.055-1.854) 0.020 1.371 (1.037-1.810) 0.026
Stromal score 1.020 (1.001-1.006) 0.086 NA NA
Immune score 1.032 (1.000-1.144) 0.800 NA NA
Immune subtype
IS1 1 NA 1 NA
IS2 0.729 (0.425-2.148) 0.249 0.747 (0.435-1.282) 0.289
IS3 0.480 (0.277-0.834) 0.009 0.491 (0.282-0.853) 0.012
June 2021 | Volume 12 | Article
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be caused by our incomplete understanding of the tumor immune
microenvironment. Thus, to better understand the tumor immune
microenvironment and further to filter out patients suitable for
immunotherapy are particularly important. Here, we present the
identification and validation of three reproducible immune subtypes
of GC in a retrospective study with multiple cohorts. We observe that
each of the immune subtypes presented with distinct composition of
tumor infiltrating immune cells, and hence demonstrated widely
different modes in gene expression profiles, functional
orientation, molecular feature and clinical characteristics. Moreover,
validation of a pan-cancer cohort can reinforce the credibility of our
results. Lastly, a deep learning model with good performance to
predict the status of immune subtypes in gastric cancer based on the
whole-slide images is presented. This study provides a concept of
immune subtypes to understand the immune microenvironment of
GC and make it easy-use in clinical implications, which may have
benefit for personalizedimmunotherapy and prognosis evaluation.

Immune microenvironment has been confirmed to be
associated with prognosis in gastric cancer. However, traditional
methods simply describe the relationship between the cell
composition of the immune microenvironment and prognosis
Frontiers in Immunology | www.frontiersin.org 9
according to the known outcome. Our method is ‘unsupervised’,
which can better represent the complex and obscure information
within the immune microenvironment. Significant survival
differences are observed among the immune subtypes in this
study, which can be a supplement to traditional TNM staging
system. Specifically, an immune-hot subtype 3 presents with better
prognosis, and by contrast, the immune-cold subtype 1 to 2
demonstrated a poor prognosis. Furthermore, the proportion
EVB and MSI of the TCGA molecular subtyping in the IS3 are
significantly higher than that in IS1-2, which is consistent with the
previous report (48). EVB and MSI subtyping always present a
more active immune response.

Appropriate classification for GC is essential to individual
treatment. Several subtyping systems have been proposed in the
past few decades, including the World Health Organization
(WHO) classification, the Lauren’s classification, intrinsic
Subtypes, Lei subtypes, The Cancer Genome Atlas (TCGA)
subtypes, Asian Cancer Research Group (ACRG) subtypes, and
some other additional classifications (49). Some are based on
morphology or pathology, and some are based on the molecular
and genetic features. However, classification based on immune
A B

D E F

G IH

C

FIGURE 4 | The results of differential expression analysis in the TCGA and GEO cohort (A–F). 115 DEGs was found in IS1 vs IS2 (G). 124 DEGs was found in IS1
vs IS3 (H). 136 DEGs was found in IS2 vs IS3 (I).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Immune Microenvironment for Gastric Cancer
data for GC is not well elaborated. Tumor-related immune
information plays an important role in the development of
tumors. The immune subtypes proposed in this study based on
TIICs are independent of existing classifications. Interestingly, we
also find that the proportion of different Lauren’s classification
(intestinal and diffuse) and TCGA classification (EVB, MSI, CIN,
GS) is different among three immune subtypes, which suggests an
interaction between them. This underlying implication is worth
further study. Besides, different from the previous classification,
Frontiers in Immunology | www.frontiersin.org 10
our immune subtypes have the underlying value to guide the
immunotherapy and to predict prognosis.

The relationship between various types of immune cells as
immune-suppressive and immune-promoting elements and
tumor has been widely explored. The high abundance of
tumor-associated lymphocytes, including CD8+ T cell, CD4+ T
cell, and NK cell, plays a positive impact on prognosis of gastric
cancer by dissolving tumor cells directly (22–25). Also, Tfh cells
promote tumor-associated lymphocytes to play an anti-tumor
A B

D E F

G IH

C

FIGURE 5 | Lots of cytokine secretion and immune regulation pathways were found in the GO, KEGG and GSEA analysis for IS1 vs IS2 (A–C). Lots of classical
tumor and immune-related pathways were found in the GO, KEGG and GSEA analysis for IS1 vs IS3 (D–F). Lots of classical tumor and immune-related pathways
were found in the GO, KEGG, and GSEA analyses for IS2 vs IS3 (G–I). These suggest more active immune respond and antitumor reaction in IS3.
June 2021 | Volume 12 | Article 685992

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Immune Microenvironment for Gastric Cancer
role in gastric cancer by producing diverse antibodies and
cytokines (23). By contrast, tumor-associated macrophages
(TAMs), Tregs, B cell, and mast cells play the central role in
the antitumor immune responses, such as negatively regulating T
cell immunity (22–26). Besides, DC, as the key role in antigen
presenting cells, had many subtypes. Some could induce the
generation of CD8+ effector T cells through presenting the MHC
class I molecules to T cells and some may inhibit immune
response. In this study, we find that IS3 with high abundance
of CD8+ T cells, NK cells, and Tfh cells have a better prognosis,
and IS1-2 with high abundance of DC, Tregs, B cell, and mast cell
have a poor prognosis. Interestingly, the two subtyping of CD4+
T cells show an opposite trend of aggregation in immune
subtypes, which may play different immune functions.
Furthermore, different research directions of immunotherapy
could be suggested according to the immune subtypes. For IS3, it
may be sufficient to mobilize the antitumor function of tumor-
associated lymphocytes alone; whereas IS1-2, inhibition of anti-
tumor immune response, and promoting the formation
of tumor-associated lymphocytes are equally important
in immunotherapy.
Frontiers in Immunology | www.frontiersin.org 11
A series of classical tumor and immune-related pathways are
found in the GO and GSEA analyses. For example, in our study,
gastric cancer of IS3 is demonstrated with the highest enrichment
of T cell receptor signaling and P53 signaling. In comparison,
tumors of IS1-2 are confirmed with the highest enrichment of
TGF-BETA signaling and JAK-STAT signaling. This reflects the
difference in the composition of immune microenvironment and
partly explains the difference in prognosis between them.
More interestingly, high expression of PD1, PDL1, CTLA4, and
TP53, and low expression of JAK1 are found in IS3. Currently, the
most well-studied immune checkpoint inhibitors, such as
ipilimumab and pembrolizumab, target at CTLA4 and PD1,
then releases effector T cells from negative feedback pathway.
Therefore, immune-hot IS3 tumor with high expression of CTLA4
and PD1 may respond better to current immunotherapy which
should be fully considered in immunotherapy.

T cell infiltration and immune checkpoint (PD-1, PD-L1, and
CTLA-4) are known as predictors to immunotherapy (22). Tumor
immune microenvironment involves the interaction of multiple
immune cells, which contains a more complex relationship and is
closely related to immunotherapy. Relationship between T cell
A

B

C

FIGURE 6 | Overview of the deep learning model. The whole slide image (WSI) of each patient was obtained and annotated with regions of carcinoma (ROI) (A).
Then, tumor of ROI was segmented into patches, and the immune subtypes likelihood of each patch was predicted by deep learning model based on ResNet-18
(B). Finally, multiple patch-level IS likelihoods were integrated into a WSI-level IS prediction (C).
June 2021 | Volume 12 | Article 685992
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infiltration and immune response is not clear. The location of T cell
and other immune cells (e.g. Tregs and DC) also play an
important role (25, 50). Meanwhile, not all patients with positive
immune checkpoints respond well to the immunotherapy (15, 16).
In this study, we find that the IS1 was also infiltrated with abundant
T cells, but the expression of immune checkpoint is not high,
and the prognosis is poor. This may be related to its strong
immunosuppression, such as high abundance of Tregs and low
abundance of Tfh cells (31, 51). Meanwhile, the expression level of
almost all immune-infiltrating cells, except for macrophages, is low
in IS2. And M2 macrophages abundance is the highest in IS2, while
M1 macrophages’ abundance is the lowest in IS2. This indicates a
status of immunologic deficiency and immunosuppression (52). IS3
shows an immune-hot status with high T cell infiltration. These
findings suggest that it is more valuable to study the tumor immune
cell microenvironment as a whole and suggest the possibility of
different immunotherapeutic strategies for different immune
subtypes. For IS1, appropriate treatment targeting regulatory cells
(e.g., Tregs and DC) is also important (31, 51). For IS2, in addition
to enhancing immune activity, it can also be considered to promote
M1 polarization of macrophages and inhibit M2 polarization to
promote the immune response (52). For IS3, enhancing the
function of existing T cells may be enough.

The whole transcriptome sequencing data are difficult to
obtain due to its high cost. Besides, flow cytometry to detect all
immune cells in the immune microenvironment is difficult and
requires complex protocol and high quality of GC tissue. Thus,
we hope to get information about the immune subtypes in a
more convenient way. Therefore, considering the extensive and
easy application of HE pathological sections in clinical practice, a
deep learning model based on ResNet-18 is developed and
validated for our immune subtypes based on the whole-slide
image. We put forward such a conceptual framework that the
immune subtype could be predicted based on the whole-slide
pathological image. With limited cases, we find that deep
learning can predict the immune subtypes well. In the future, if
enough cases and a perfect deep learning model are available, the
immune subtypes can be easily used in clinical practice.

There are several limitations to this study. First, our analysis is
only focused on tumor-infiltrating immune cells, while other
components in tumor microenvironment might also play
important role. Second, immune infiltration cells were
generated from gene expression profiles, which means the
location information of immune cells could not be further
analyzed. Third, the possibility of selection bias in this
retrospective study could not be excluded. Fourth, gastric
cancer is a highly heterogenous cancer. Three subtypes to
predict the response to immunotherapy may not be enough. In
the future, we will focus on the discovery of new immune
subtypes for GC. Fifth, the exactly parameters used by deep
learning to distinguish subtypes cannot be acquired. Finally, a
small sample size should not be ignored.

In conclusion, we confirm three reproducible immune
subtypes of gastric cancer. Each of the three immune subtypes
possess distinct compositions of tumor immune-infiltrating
cells, molecular features, and clinical characteristics. We then
Frontiers in Immunology | www.frontiersin.org 12
develop and validate a deep learning model based on
pathological images to predict the immune subtypes. Our study
puts forward a conceptual framework of immune subtypes to
understand the immune microenvironment of gastric cancer
better, which may provide references for the future design of
immune-related studies and immunotherapy selection.
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