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Abstract

Background: Expression quantitative trait locus (eQTL) analysis has been widely used to understand how genetic
variations affect gene expressions in the biological systems. Traditional eQTL is investigated in a pair-wise manner in
which one SNP affects the expression of one gene. In this way, some associated markers found in GWAS have been
related to disease mechanism by eQTL study. However, in real life, biological process is usually performed by a group
of genes. Although some methods have been proposed to identify a group of SNPs that affect the mean of gene
expressions in the network, the change of co-expression pattern has not been considered. So we propose a process
and algorithm to identify the marker which affects the co-expression pattern of a pathway. Considering two genes
may have different correlations under different isoforms which is hard to detect by the linear test, we also consider the
nonlinear test.
Results: When we applied our method to yeast eQTL dataset profiled under both the glucose and ethanol
conditions, we identified a total of 166 modules, with each module consisting of a group of genes and one eQTL
where the eQTL regulate the co-expression patterns of the group of genes. We found that many of these modules
have biological significance.
Conclusions: We propose a network based covariance test to identify the SNP which affects the structure of a
pathway. We also consider the nonlinear test as considering two genes may have different correlations under
different isoforms which is hard to detect by linear test.
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Background
GWAS aims to detect the association between genetic
variation and complex diseases. Recent years, GWAS
has found 2000 loci associated to complex diseases by
statistical methods [1]. As the development of the next-
generation sequencing and other high-throughput tech-
nology, various types of genome-scale datasets have been
collected, providing opportunity to find the mechanism of
genetic variation leading to complex diseases by connect
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the high-throughout data to GWAS. The eQTL study is
one of them, which aims to uncover the genetic effects to
gene expression and have been conducted in many organ-
isms [2–5]. A common approach in eQTL data analysis is
to consider association between each expression trait and
each genetic marker through regression analysis. Despite
great success with this approach, some regulatory signals
may not be detected due to complex interaction between
SNPs like epistasis.
Although most eQTL studies considered the expres-

sion levels of individual genes as response (single
outcome variable), the change of correlation between
genes under different genetic status still contains some
biological information. For example, post-transcriptional
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regulations such as phosphorylations and dephosphoryla-
tions often affect the activities of transcriptional factors
(TFs), which further affect the correlation among TF
genes and TF target genes, also the co-expression pat-
terns of the targets of TFs. However, such regulations are
hard to be detected if only individual gene considered
because there may be little change at the expression levels
of individual TF genes. The approach considering “liquid
association” (LA) between a pair of genes proposed by [6]
is a method to identify such loci, which is later introduced
into eQTL study [7]. Subsequently, conditional bi-variate
normal model has been developed to capture the change
of correlation between a pair of genes [8–10].
However, a biological process is usually performed by

a group of genes (more than two genes as in the bi-
variate model). Network approaches should be used to
study these interactions [11–13]. If we want to see the
effects of a cellular change to the organism, it is better
for us to consider the change in a functional gene-set
such as a pathway. Therefore, some papers has consid-
ered the multivariate circumstances by applying CCA to
gene expressions and SNP (or CNV) data [14–16]. How-
ever, these methods do not consider the network struc-
ture when finding the association between gene sets and
genetic variant, which will miss the information contained
in the network. Li et al. [17], Kim and Xing [18], Zhang
and Kim [19], Casale et al. [20] have considered pathway
structure when studied the association between genetic
variation and gene expression. However, they assume the
network structure is the same (static) under different
genetic variant. In fact, network structuremay be dynamic
and biologists have realized that differential network anal-
ysis will become a standard mode in network analysis
and insightful discoveries could be made with differen-
tial network analysis [21]. For example, [22] identified a

cancer point mutation in the kinase domain of RET, which
causes multiple endocrine neoplasia type 2B by leading
to a switch in peptide specificity and then altering the
network structure.
So we propose a method to test whether the co-

expression pattern in a pathway is affected by a SNP. Our
goal is to test for a global change in covariance structure
in each pathway, which is different from other network-
based methods, which tries to detect non-zero edges from
all pairs of genes. When we applied our method to a yeast
eQTL dataset, we were able to find some pathway-SNP
modules that have biological significance.

Methods
Let (X1,X2, . . . ,Xp) be the expression levels of a group
of genes and (Z1,Z2, . . . ,Zm) be the set of SNPs. Sup-
pose that there are n independent samples and let
(x1i, x2i, . . . , xpi)i=1,...,n denote the expression level of
(X1,X2, . . . ,Xp) in the ith sample and (Z1i,Z2i, . . . ,Zmi)
denote the SNP types of the SNP set in the ith sample.
Since the mean expression levels of (X1,X2, . . . ,Xp) are
also possibly affected by some SNPs in (Z1,Z2, . . . ,Zm),
we can imitate the procedure in [9] that we first per-
form regression analysis or penalized regression analysis
such as Lasso [23] or SCAD [24] to adjust the effects of
(Z1,Z2, . . . ,Zm) on the means and then model the resid-
uals. We assume that the covariate-adjusted expression
levels are appropriately centered to have mean values of
zero and our interest is to test whether the covariate-
adjusted covariance of expression levels is changed under
each SNP. In our analysis, the group of genes are a pathway
in KEGG [25]. Figure 1 describes our strategy to detect
pathway-SNP associations. In this manuscript, we define a
module as the collection of a SNP and a pathway, and our
objective is to find pathway-SNP modules where the SNP

Fig. 1 Flowchart of our strategy. Flowchart of our strategy for detecting pathway-associated SNP. We first perform Lasso to adjust the effects of SNPs
on the means of gene expression. Then we use covariance test and kernel covariance test to select candidate pathway-SNP modules
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Fig. 2 Comparison between linear method and kernel method. Simulations under different setups. Setup of the first column is under model 1, the
second column is under model 2 and the third column is under model 3. First row: (p, n1, n2, θ ) = (40, 60, 60, 0.2); Second row: (p, n1, n2, θ ) = (40, 60,
60, 0.3); Third row: (p, n1, n2, θ ) = (80, 120, 120, 0.2); Fourth row: (p, n1, n2, θ ) = (80,120,120, 0.3)
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affect the co-expression patterns among the genes in the
pathway.

Model
We use covariance test to find the pathway-SNP modules.
There are three key elements of covariance test for a given
gene set S. We consider the strategy similar to [26].

• Calculation of T statistics.We calculate a T
statistics that reflects the difference of the covariance
matrix of the two classes of samples. The statistics is
calculated by estimating the Frobenius norm of the
difference of the covariance matrix. We first perform
the method by [27] to do the test:

H0 : �1 = �2, H1 : �1 �= �2 (1)

where �1 is the covariance matrix of gene expression
under one genotype and �2 is that of gene expression

under the other genotype. Then we consider the
nonlinear relationship between gene expressions by
applying kernel method.

• Estimation of significance level of T statistics.We
estimate the statistical significance (nominal P value)
of the T statistics by using an empirical SNP-based
permutation test procedure that preserves the
complex correlation structure of the gene expression
data. Specifically, we permute the SNP labels and
recompute the T statistics of the gene set for the
permuted data, which generates a null distribution
for the T statistics. The empirical, nominal P value of
the observed T statistics is then calculated relative to
this null distribution. Importantly, the permutation of
class labels preserves gene-gene correlations and,
thus, provides a more biologically reasonable
assessment of significance than would be obtained by
permuting genes.
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Fig. 3 Comparison between Chen’s linear method and other method. Topleft: The two covariance matrices have eight different elements, each with
a magnitude generated from Unif (0, 4) ∗ max1≤j≤p σjj ; Topright: The two covariance matrices have eight different elements, each with a magnitude
generated from Unif (0, 400) ∗ max1≤j≤p σjj ; Bottomleft: The two covariance matrices have 500t different elements, each with a magnitude
generated from Unif (0, 4) ∗ max1≤j≤p σjj ; Bottomright: The two covariance matrices have 500 different elements, each with a magnitude generated
from Unif (0, 400) ∗ max1≤j≤p σjj
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• Adjustment for multiple hypothesis testing.
When an entire database of gene sets is evaluated, we
adjust the estimated significance level to account for
multiple hypothesis testing. We first normalize the T
statistics for each gene set to account for the size of
the set, yielding a normalized T statistics. We then
control the proportion of false positives by
calculating the false discovery rate (FDR)
corresponding to each NT statistics. The FDR is the
estimated probability that a set with a given NT
statistics represents a false positive finding; it is
computed by comparing the tails of the observed and
null distributions for the NT statistics. To capture the
change of the structure of the gene network, we
consider the covariance of the gene expression.

Test for high-dimensional covariance matrices
To simplify the problem, we just consider there are two
possible values of each SNP. Covariance matrices under
two genotypes of the SNP are denoted as �1 and �2,
respectively. The primary interest is to test

H0 : �1 = �2, H1 : �1 �= �2

which is a nontrivial statistical problem because the
number of genes is greater than the number of samples

sometimes. The test statistic for the hypothesis is formu-
lated by targeting on tr(�1 − �2)2, the squared Frobenius
norm of �1 − �2 [27]. Specifically, the test statistic is

Tn1,n2 = An1 + An2 − 2Cn1n2

Anh = 1
nh(nh − 1)

∑

i�=j
(X′

hiXhj)
2

− 2
nh(nh − 1)(nh − 2)

∗∑

i,j,k
X′
hiXhjX′

hjXhk

+ 1
nh(nh − 1)(nh − 2)(nh − 3)

∗∑

i,j,k,l
X′
hiXhjX′

hkXhl

Cn1n2 = 1
n1(n2)

∑

i

∑

j

(
X′
1iX2j

)2

− 1
n1n2(n1 − 1)
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i,k

∑

j
X′
1iX2jX′

2jX1k

− 1
n1n2(n2 − 1)

∗∑

i,k

∑

j
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+ 1
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∗∑
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∗∑
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X′
1iX2jX′
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where h refers to a subpopulation with a particular SNP.

Fig. 4 Different modules detected under different conditions by different method. a Detected modules under ethanol condition. We found 36
modules by covariance test, 9 modules by kernel covariance test with parameter 1 and 51 modules by kernel covariance test with parameter 10;
b Detected modules under glucose condition. We found 86 modules by covariance test, 3 modules by kernel covariance test with parameter 10 and
12 modules by kernel covariance test with parameter 1
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Table 1 New associated pathways and SNPs under ethanol
condition

Pathways Associated markers

Glycolysis/Gluconeogenesis gOL02(10)

Synthesis and degradation of ketone
bodies

YLR257W(10) , YLR261C(10)

Steroid biosynthesis YEL021WL , YFR035CL ,

YJL001WL , YJR006WL,(10) ,

YJL007CL,(10) ,

Valine, leucine and isoleucine
degradation

YOR006CL , NOR005WL,(10) ,

YOR051CL,(10) , YOR076CL,(10)

Valine, leucine and isoleucine NLR116WL,(10) , YOR076CL ,
biosynthesis YCL023C(10) , YLR257W(10)

Histidine metabolism gOL02L,(10) , YOR025W(10)

Tyrosine metabolism YFL019CL , gOL02L,(10)

Phenylalanine metabolism gOL02L,(10)

beta-Alanine metabolism gOL02L,(10)

Taurine and hypotaurine metabolism gOL02(10)

Selenocompound metabolism YOR006CL,(10) , YOR019WL,(10) ,

YOR025WL,(10) , NOR005WL,(10)

Purine metabolism NNL035W(1)

Cyanoamino acid metabolism YLR027C(1)

Arachidonic acid metabolism gPL09(1)

Linoleic acid metabolism YFL029CL,(1),(10) , YFL019C(1)

Glyoxylate and dicarboxylate
metabolism

NNL035W(1) , YNL074C(1)

Porphyrin and chlorophyll metabolism NBR008W(1)

Sphingolipid metabolism YHL047CL

Pantothenate and CoA biosynthesis YGL053WL , NLR116WL,(10)

Terpenoid backbone biosynthesis YJL007CL,(10) , YJL001WL,(10) ,

YJR006WL,(10) , NJR006CL,(10)

Sesquiterpenoid and triterpenoid YOR334WL , YOR343CL ,

biosynthesis
YLR261C(10) , NLR116W(10) ,

YLR257W(10)

Metabolic pathways YIL078W(10) , YLR257W(10) ,

YLR308W(10) , NNL035W(10) ,

gOL02(10) , YOR006C(10) ,

YOR051C(10) , YOR019W(10) ,

YNL066W(10) , YLR261C(10)

Biosynthesis of secondary metabolites YOR025W(10) , YOR063W(10)

Carbon metabolism YOR019W(10)

2-Oxocarboxylic acid metabolism YLR261CL,(10) , YLR308WL,(10) ,

YCL022C(10) , YLR265C(10) ,

NLR116W(10) , YLR322WL

Table 1 New associated pathways and SNPs under ethanol
condition (Continued)

mRNA surveillance pathway YOR072WL

Mismatch repair gKR08L

Non-homologous end YGR006WL

Biosynthesis of amino acids gOL02(10)

MAPK signaling pathway YDR164C(10) , gDR10(10)

L means detected by covariance test, (1) means detected by kernel covariance test
with parameter 1 and (10) means detected by kernel covariance test with parameter
10. The FDR of the covariance test, kernel covariance test with parameter 1 and
kernel covariance test with parameter 10 are 0.25, 0.33 and 0.25 respectively. The
FWER of the test by Tony Cai is 0.2

For test
H0 : �1 = �2 = �3,H1 : �1 �= �2 or �2 �= �3
We consider tr(�1 − �2)2 + tr(�2 − �3)2. Specifically,

the test statistic is

Tn1,n2 + Tn2,n3

where Tn2,n3 is defined similar to Tn1,n2 .

Kernel method
We generalize the method of [27] to the kernel space
inspired by the method of [28]. We give the similar def-
inition of Frobenius norm and covariance matrix. Let
px and py be Borel probability measures defined on a
domain �. Given observations X := {x1, . . . , xm} and
Y := {y1, . . . , yn}, drawn independently and identically
distributed(i.i.d.) from px and py, respectively.

Definition (HSDCC) Given separable reproducing ker-
nel Hilbert space (RKHS) F , and measures px, py over
(X ,�), we define the Hilbert-Schmidt Different Covari-
ance Criterion(HSDCC) as the squared HS-norm of the
difference of covariance �xx and �yy:

HSDCC(px, py,F) :=‖ �xx − �yy ‖2HS

The detailed computation of above norm can
be found in text of the Additional file 1. We
give the unbiased statistics to HSDCC(Px,Py,F)

like [27]

Anh = 1
nh(nh − 1)

∑

i�=j
k(Xhi,Xhj)

2

− 2
nh(nh − 1)(nh − 2)

∗∑

i,j,k
k(Xhi,Xhj)k(Xhj,Xhk)

+ 1
nh(nh − 1)(nh − 2)(nh − 3)

∗∑

i,j,k,l
k(Xhi,Xhj)k(Xhk ,Xhl)
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Table 2 New associated pathways and SNPs under glucose
condition

Pathways Associated markers

Synthesis and degradation of ketone bodies gJL07(10)

Inositol phosphate metabolism YBR259W(10)

Riboflavin metabolism YML056C(10)

Fatty acid degradation YBR045C(1)

Cysteine and methionine metabolism YGL195W(1)

Valine, leucine and isoleucine biosynthesis YCL025CL ,NGR093CL

YOR253WL , YOR274WL

YOR326WL , YOR334WL

YOR343CL , YCL022C(1)

Phenylalanine metabolism YJR040WL , YOL123WL

YOL118CL , YOL106WL

YOL093WL , YOL088CL

gOL02L,(1)

beta-Alanine metabolism YBR271WL , gOL02L,(1)

NJR007CL , YOL106WL

Arachidonic acid metabolism YIR022WL,(1)

Vitamin B6 metabolism YKL118W(1)

Porphyrin and chlorophyll metabolism YML071C(1) , gFL02L

Degradation of aromatic compounds YMR316CL,(1) , YMR316CL

ABC transporters YBR131WL,(1) , YBR137WL

Glycolysis/Gluconeogenesis YJR071WL

Pentose phosphate pathway NOL043WL , YOL151WL

YOL123WL , YOL094CL

YOL093WL , YOL088CL

gOL02L

Pentose and glucuronate interconversions YGL263WL

Purine metabolism YLR140WL

Pyrimidine metabolism YBL010CL , YGL217CL

Glycine, serine and threonine metabolism YCL065WL , YJR038CL

Lysine biosynthesis YBR087WL

Histidine metabolism YBR271WL , NJR007CL

YJR040WL , YJR057WL

YOL106WL , YOL093WL ,

gOL02L,(1)

Tyrosine metabolism YOL123WL , YOL106WL

YOL094CL , gOL02L,(1)

Cyanoamino acid metabolism YDR351WL

Starch and sucrose metabolism YER095WL , YER116CL

Linoleic acid metabolism NDR174CL

Butanoate metabolism YBR271WL

Pantothenate and CoA biosynthesis YOR274WL

Lipoic acid metabolism gLL01L , YNL158WL

Table 2 New associated pathways and SNPs under glucose
condition (Continued)

Folate biosynthesis NML013WL , YNL066WL , YNL050CL

Sesquiterpenoid and
triterpenoid biosynthesis

YMR084WL

Aminoacyl-tRNA biosynthesis YCL065WL , YCL047CL

YCL039WL ,NJR007CL , YNL010WL

Biosynthesis of unsaturated
fatty acids

YFL029CL

Metabolic pathways YCL065WL , YJR071WL

Biosynthesis of secondary
metabolites

YJR038C6L

Biosynthesis of amino acids YJR071WL , YOL123WL

YOL118CL , YOL106WL

YOL094CL , YOL093WL

YOL088CL , gOL02L

Ribosome YAR035WL , YJL026WL

RNA transport YBL010CL

RNA polymerase YLR140WL

Proteasome YBL010CL

Phosphatidylinositol signaling
system

YBR045CL

Meiosis - yeast YOL106WL

L means detected by covariance test, (1) means detected by kernel covariance test
with parameter 1 and (10) means detected by kernel covariance test with parameter
10. The FDR of the covariance test, kernel covariance test with parameter 1 and
kernel covariance test with parameter 10 are 0.20, 0.24 and 0.33 respectively. The
FWER of the test by Tony Cai is 0.2

Cn1n2 = 1
n1(n2)

∑

i

∑

j
k(X1i,X2j)

2

− 1
n1n2(n1 − 1)

∗∑

i,k

∑

j
k(X1i,X2j)k(X2j,X1k)

− 1
n1n2(n2 − 1)

∗∑

i,k

∑

j
k(X2i,X1j)k(X1j,X2k)

+ 1
n1n2(n1 − 1)(n2 − 1)

∗∑

i,k

∗∑

j,l
k(X1i,X2j)k(X1k ,X2l)

Tn1,n2 = An1 + An2 − 2Cn1n2

For test
H0 : �xx = �yy = �zz,H1 : �xx �= �yy or �yy �= �zz
We consider ‖ �xx − �yy ‖2HS + ‖ �yy − �zz ‖2HS.
Specifically, the test statistic is

Tn1,n2 + Tn2,n3

where Tn2,n3 is defined similar to Tn1,n2 .
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Results
Simulation
Comparison between linearmethod and kernel method
We performed a simulation study to evaluate the power of
the proposed kernel methods, and compared the results
with the primary method by [27]. Three models have been
considered, as below.
Model 1: Xijk = Zijk + θZijk+1, where Zijk were i.i.d.

standard normally distributed, and θ = 0.5 in the null
hypothesis while 0.2 or 0.3 in the alternative hypothesis.
Model 2: Xijk = Z3

ijk + θZ3
ijk+1, where Zijk and θ were

defined the same as that in Model 1.
Model 3: Xijk = eZijk + θeZijk+1 , where Zijk and θ were

defined the same as that in Model 1.
The correlation between variables are linear in model 1,

while the correlation between variables are nonlinear in
model 2 and 3.
We chose (p, n1, n2)=(40, 60, 60) and (80, 120, 120)

respectively. The power of the tests are shown by ROC
curves (Fig. 2). All the simulation results reported were
based on 1000 simulations. We can see from the simu-
lation that kernel methods with some parameters have
higher power than the linear test when the true rela-
tionships between variables are nonlinear (Model 2 and
Model 3). A similar simulation results with different setup
of parameters can be found in Additional file 1: Figure S3.

Comparison between Chen et al.’s linearmethod and other
method
We conducted a simulation to compare the power of Chen
et al.’s method [27] and Tony Cai et al.’s method [29].
We consider four simulation setups represented different

signal quantities and strength, the first of which is the
same as the model 2 in [29].
Model 1: Let

�∗ = (σ ∗
ij ), where ω∗

ij = 0.5|i−j| for 1 ≤ i, j ≤ p.

� =D1/2�∗D1/2,where D=(dij), dii=Unif (0.5, 2.5), 1≤ i≤p

�1 = � + δI, �2 = � + U + δI, where δ

= |min{λmin(� + U), λmin(�)}| + 0.05,

U = (ukl) be a matrix with eight random nonzero
entries, each with amagnitude generated fromUnif (0, 4)∗
max1≤j≤p σjj. The number of each class samples is 50 and
the number of variables is 50.
Model 2: U = (ukl) be a matrix with eight random

nonzero entries, each with a magnitude generated from
Unif (0, 400) ∗ max1≤j≤p σjj.
Model 3: U = (ukl) be a matrix with 500 random

nonzero entries, each with a magnitude generated from
Unif (0, 4) ∗ max1≤j≤p σjj.
Model 4: U = (ukl) be a matrix with 500 random

nonzero entries, each with a magnitude generated from
Unif (0, 400) ∗ max1≤j≤p σjj.
As shown in Fig. 3, under the sparse setups (Model

1 and 2), the results of Tony Cai et al.’s method is
much better than those of Chen et al.’s method. Chen
et al.’s method is better than Tony Cai et al.’s method
when the setups are not sparse (Model 3 and 4).
Since Tony Cai et al.’s method corresponds to testing
each element in the covariance matrix by Hoteling’s
test and then give the judgement according to the maxi-
mum statistic of all of the Hoteling’s tests, so Chen et al.’s
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Fig. 5 Isoform-specific structure change. Left: Scatter plot of gene YER086W and YCL064C under two different genotypes of YCL023C; Right: Scatter
plot of gene YLR355C and YCL064C under two different genotypes of YCL023C. We found the associated pathway-SNP modules only by kernel
covariance test. The scatter figures show that YER086W-YCL064C and YLR355C-YCL064C were nonlinear correlated under genotypes of marker
YCL023C
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Fig. 6 Failure to detect correlation between single gene expression level and genotype of YFL029C. Left: Boxplot of expression level of YFL029C;
middle, Boxplot of expression level of YKR089C; right: Boxplot of expression level of YJR155W. We can see that the means of YKR089C and YJR155W
expressions do not change significantly

linear method has higher power than bi-variate model
when the setups are not sparse. A similar simulation
results with different number of samples can be found in
Additional file 1: Figure S2.

Real data results
Associated SNP and pathways
We analyzed the yeast dataset collected by Kruglyak and
colleagues [30]. The expression data were downloaded
from http://journals.plos.org/plosbiology/article?id=10.

1371/journal.pbio.0060083, with 4482 genes measured
in 109 segregants derived from a cross between BY and
RM. The experiments were performed under two con-
ditions, glucose and ethanol. We did the pre-processing
like [10], after which 4419 genes and 820 merged mark-
ers remained. We mapped 4419 genes to 103 pathways
and analyzed the effect of each SNP to each pathway.
Therefore, we tested 103*820 times. The algorithm was
implemented in R, which can be found at http://www.
math.pku.edu.cn/teachers/dengmh/NetworkBiomarker.
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Fig. 7 Three examples of differential coexpression patterns of 2 genes due to genotype of YFL029C. Left: the co-expression patterns between the
two genes YKR089C and YJR155W depend on the genotype of YFL029C. For samples with genotype 1, the co-expression correlation is different
from the other samples.Middle: the co-expression patterns between the two genes YKR089C and YPR086W depend on the genotype of YFL029C.
Right: the co-expression patterns between the two genes YJR155W and YIL131C depend on the genotype of YFL029C

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060083
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060083
http://www.math.pku.edu.cn/teachers/dengmh/NetworkBiomarker
http://www.math.pku.edu.cn/teachers/dengmh/NetworkBiomarker
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We performed covariance test and kernel covariance
with parameter 1 and 10 respectively to the pathway-SNP
adjusted modules. We consider 103 pathways in KEGG

[25] (the number of genes in each pathway can be found
in the Additional file 1: Figure S1) and 820 merged mark-
ers under ethanol and glucose condition respectively. We

Fig. 8 The possible regulatory mechanism of the marker YFL029C to Linoleic acid metabolism pathway. a KEGG pathway of Linoleic acid
metabolism pathway; b The potential regulatory relationship between marker YFL029C and Linoleic acid metabolism pathway



Yuan et al. BMC Systems Biology 2016, 10(Suppl 1):8 Page 47 of 119

found 72 pathway-SNP modules under ethanol condition
and 94 modules under glucose condition. Specifically, we
found 36 modules by covariance test, 9 modules by ker-
nel covariance test with parameter 1 and 51 modules by
kernel covariance test with parameter 10 under ethanol
condition, while 86 modules by covariance test, 3 mod-
ules by kernel covariance test with parameter 10 and 12
modules by kernel covariance test with parameter 1 under
glucose condition (Fig. 4). Table 1 showed the associated
pathways and SNPs under ethanol condition while Table 2
showed the associated pathways and SNPs under glucose
condition.

Kernel Method found isoform-specific structure change
In our result, we found Valine, leucine and isoleucine
biosynthesis pathway was associated with YCL023C
marker only by kernel method under ethanol condi-
tion. Figure 5 shows the non-linear correlation between
two pairs of genes, YER086W-YCL064C and YLR355C-
YCL064C were nonlinear correlated with genotypes of
YCL023C. And more than 10 isoforms of YER086W and
6 isoforms of YLR355C have been found (Saccharomyces
Genome Database, http://www.yeastgenome.org/). The
nonlinear correlation between two pairs of genes might be
caused by samples in different isoforms. Specifically, two
genes may be positive correlated under one isoform while
negetive correlated under another isoform. However, the
correlation of two genes might be missed if when we only
considered linear correlation.

Linoleic acidmetabolism is associated to cell cycle
Our method found YFL029C is associated with linoleic
acid metabolism pathway under ethanol condition. With
single gene correlation analysis, both of the mean of
expression levels of YKR089C (TGL4) and YJR155W
(AAD10) were not associated with YFL029C (Fig. 6
middle and right). Specifically, with p-value 0.5174 and
0.002804 (not significant for multiple test). However, the
scatterplot after correction shows the correlation of two
genes change apparently under YFL029C (Fig. 7 left).
Under one status of SNP, the two genes are positive cor-
related while under the other status of SNP, the two are
nearly independent. To understand this from the biologi-
cal meaning which was showned in Fig. 8b, we found that
marker locates in gene CAK1 (The expression of CAK1 is
slightly different under two SNP status which was shown
in Fig. 6 left.), the product of which can increase the
activity of CDC28 [31]. CDC28 plays an important role
in cell cycle. It can control the progress of cell cycle by
phosphorylate different transcription factor. In our case,
CDC28 phosphorylate ACE2 [32] which can increase the
activity of transcription factor, SUA7 [33]. SUA7 is the
transcription factor of TGL4, which is a lipase in linoleic
acid metabolism pathway. Meanwhile, CDC28 and FKH1

can form complex [34] and FKH1 is the transcription fac-
tor of AAD10, which is another enzyme in linoleic acid
metabolism pathway. The correlation between YKR089C
and its TF was shown in Fig. 7 middle and the correlation
between YJR155W and its TF was shown in Fig. 7 right.
From the structure of the pathway in KEGG [25] as shown
in Fig. 8a, the different status of the SNP YFL029C might
lead to different amounts of intermediate product in the
pathway.

Discussion and conclusion
We propose a network based covariance test to identify
the marker which affects the structure of a pathway. It
has an advantage that a static network structure is not
assumed. The biomarker we defined is the SNP associated
to the structure of genes in the pathway. Considering two
genes may have different correlations under different iso-
forms which is hard to detect by linear test, so we also
consider the nonlinear test. We identified a total of 166
modules, with each module consisting of a group of genes
and one eQTL where the eQTL regulate the co-expression
patterns of the group of genes. We found that many of
these modules have biological interpretations. Till now,
we consider the difference of two networks by covari-
ance matrix and covariance operators. We will focus on
difference of precision matrix in the future research.

Additional file

Additional file 1: Supplementary materials for the computation of
HSDCC and additional figures Figures S1–S3. (PDF 1474 kb)
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