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Current scientific debates center on the impact of lipids and mitochondrial function on
diverse aspects of human health, nutrition and disease, among them the association
of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart
dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in
prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these
molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation.
Knowledge about the functional composition of these contradictory effects and their
impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty
acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New
emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for
energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response
to fulfilling energy supply without hindering mitochondrial or cellular redox status and
keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms
of action and utilization of lipids by mitochondria reported in liver, heart and skeletal
muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a
family of proteins that associate with LDs in response to loading of cells with lipids.
Evidence showing that in addition to physical contact, mitochondria and LDs exhibit
metabolic interactions is presented and discussed. A hypothetical model of channeled lipid
utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids
in mitochondria could represent a reliable and efficient way to maintain reactive oxygen
species (ROS) within levels compatible with signaling while ensuring robust and reliable
energy supply.
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Discovery consists of seeing what everybody has seen and thinking
what nobody has thought.

Albert Szent-Gyorgyi

INTRODUCTION
The role of lipids in human health, nutrition, and disease is taking
center stage. Several circumstances including hotly debated issues
concur to explain this unusual interest. Among them, pressing
societal and biomedical issues concerning the epidemic propor-
tions of obesity and related diseases in the United States and
its increasing prevalence worldwide. Higher food consumption,
decline in physical activity and a progressively aging population
are among the social and behavioral roots of this phenomenon.
Biologically, it adopts the form of a so-called “metabolic syn-
drome,” a set of comorbidities including upper body obesity,
insulin resistance, dyslipidemia, and hypertension that increase
the risk for developing type 2 diabetes, coronary artery disease,
and stroke (Kok and Brindley, 2012; Schilling and Mann, 2012).

Functional impairments associated with increased circulat-
ing levels of lipids and their induced metabolic alterations in
fatty acids (FAs) utilization and intracellular signaling, have been

broadly termed lipotoxicity (Wende et al., 2012). Current scien-
tific debates concern the association of lipotoxicity with the onset
of insulin resistance in skeletal muscle, and with heart dysfunction
in obese and diabetic patients.

Mitochondrial function is closely associated with the mount-
ing attention on lipids. One obvious reason is that mitochondria
are the main site of lipid degradation. However, the major driving
force underlying this association is the fundamental role played by
mitochondrial dysfunction in aging and acute or chronic disease
conditions such as metabolic disorders (obesity, diabetes), cancer,
inflammatory disorders, neurodegeneration, and cardiovascular
disease (Akar et al., 2005; Aon et al., 2009; Bugger and Abel, 2010;
Camara et al., 2011; Martinez-Outschoorn et al., 2012; Wallace,
2012; Helguera et al., 2013; Cortassa et al., 2014; Rossignol and
Frye, 2014).

Cells protect themselves from lipotoxicity or death (Bernardi
et al., 2002; Penzo et al., 2002) by either oxidizing FAs or seques-
tering them as triacylglycerol (TAG) within lipid droplets (LDs)
(Greenberg et al., 2011; Walther and Farese, 2012) (Figure 1).
The ability to store TAG in LDs is evolutionarily conserved
and observed in yeast, plants, invertebrates, and vertebrates
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FIGURE 1 | Triglyceride synthesis, storage in lipid droplets, and FA

oxidation in cardiomyocyte mitochondria. A detailed explanation of the
processes depicted in this figure will be found in sections Lipid Droplets and
TAG Metabolism and Fatty Acids and Mitochondrial Function of the main text.
LDs can be intercalated with mitochondria or surrounded by them as shown
schematically at the right bottom. When mitochondria and LD interact in

close contact the scheme suggests that FA degradation and activation occur
at the contact sites between both organelles. FA precursors of β-oxidation
will be subsequently metabolically channeled to the matrix, and likely
β-oxidation, through known pathways (see Section Metabolic Channeling of
Lipid Utilization From Close Contacts Between Mitochondria and Lipid
Droplets: A Hypothetical-Qualitative Model in the text for more details).

(Walther and Farese, 2012). LDs constitute a highly dynamic FA
storage pool that can be used for energy reserve. Recent evidence
shows that acute exercise can trigger changes in the dynamics of
LD assembly, morphology, localization and mobilization in skele-
tal muscle, a process regulated by a broad genetic program affect-
ing the spatial and metabolic interaction between mitochondria
and LDs. In this process, the exercise-responsive transcriptional
coactivator PGC-1α appears to play a key role in coordinating
intramuscular LD programming with mitochondrial remodeling
(Koves et al., 2013).

There is abundant anecdotal evidence describing close interac-
tion between mitochondria and LD. Early observations indicated
that mitochondria are often located near a supply of substrate,
or at sites in the cell known to require the ATP generated by the
mitochondrion (Lehninger, 1965). Occasional close associations
between mitochondria and LDs were found in a variety of tis-
sues such as myocardium, liver, pancreas, and brown adipose. As
described by Ghadially (1997):

“. . . A single mitochondrion may appear close to, spread out over,
or fused to the surface of a small LD, or several mitochondria may

be seen surrounding a larger LD. In other instances, the LD may
lie in a deep invagination of the mitochondrial envelope, and it
is clear that in another plane of sectioning such a droplet could
easily be mistaken for a lipid inclusion in the mitochondrion. . . ,
particularly if the invaginating membranes are not visualized.”

As early as 1958, Palade and Schidlowski suggested that these close
associations were meaningful because they “bring the mitochon-
drial enzymes into close contact with the lipidic substrate” (Palade
and Schidlowski, 1958, quoted by Ghadially, 1997). Although
potential artifacts from sample preparation cannot be ruled
out, and that pathologically altered mitochondria can have an
influence, when describing lipidic inclusions in mitochondria,
Ghadially (1997) wrote:

“. . . lipidic inclusions were noted in normal-looking mitochon-
dria with well-formed cristae, where presumably the lipid has a
physiological role.”

More recent experimental data puts on a more solid ground
the idea that there are both physical and metabolic interactions
between LD and mitochondria. These interactions appear to be
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modulated by relevant physiological situations such as fasting
and exercise training. Available evidence also shows that proteins
located in the LD surface closely interact with enzymes of the
lypolytic cascade modulating FA acid efflux from the droplet.

LIPID DROPLETS AND TAG METABOLISM
TAG is the major form of energy storage that with sterol esters
serve as reservoirs of membrane lipid components (Walther
and Farese, 2009). In cardiomyocytes TAGs are synthesized by
acyltransferases and phosphatases at the sarcoplasmic reticu-
lum and mitochondrial membrane and then packaged into LDs
(Walther and Farese, 2009; Singh and Cuervo, 2012; Kienesberger
et al., 2013). TAG synthesis is initiated by glycerol-3-phosphate
acyltransferases (GPAT) at the mitochondrial and sarcoplas-
mic reticulum membrane and then completed at the sarcoplas-
mic reticulum by sn-1-acyl-glycerol-3-phosphate acyltransferase
(AGPAT), phosphatidic acid phosphatase (PAP), and sn-1,2-
diacylglycerol acyltransferase (DGAT) reactions (Kienesberger
et al., 2013) (Figure 1). Newly formed TAGs are packaged into
cytoplasmic LDs. Thus, lipids are not stored as FAs but as TAGs
(triglycerides) produced by a series of esterification reactions
that combine three FA molecules with glycerol 3-phosphate; for
example, the TAG for palmitate is tripalmitin.

LDs are considered dynamic cellular organelles rather than
simple lipid storage depots that, relatively recently, have been
implicated in many biological processes (Walther and Farese,
2009, 2012; Greenberg and Coleman, 2011; Singh and Cuervo,
2012). LDs size varies from a diameter of 0.1 μm in yeast to over
100 μm in a white adipocyte. LDs consist of a single protein-
decorated phospholipid monolayer that delimits their hydropho-
bic core from the rest of the cell (Fujimoto and Parton, 2011).
The hydrophobic core contains neutral lipids, most notably TAG
and sterol esters. The adipose tissue LD has a core predominantly
formed by TAG whereas in most cells cholesterol and TAG share
the nuclear core of the LD (Singh and Cuervo, 2012). LDs are
prominent in many types of mammalian cells, with adipocytes
being the most highly specialized for lipid and energy storage. LDs
interact with the endoplasmic reticulum and the mitochondria—
the two organelles that have been proposed as sites of formation
of the autophagosome limiting membrane (Fujimoto et al., 2008;
Murphy et al., 2009; Singh and Cuervo, 2012). Such contact
zones are also sites of active lipid synthesis enriched in Acyl
CoA:diacylglycerol acyltransferase 2 (DGAT2), the major enzyme
catalyzing TAG synthesis (Cases et al., 2001; Walther and Farese,
2009).

TAG stored in LDs is catabolized by the sequential hydroly-
sis of ester bonds between FAs and the glycerol backbone. TAG
hydrolysis is a tightly regulated process that involves a complex
interaction between lipases and regulatory proteins (Lass et al.,
2011). TAG catabolism is performed by a cascade of lipolytic
reactions that is initiated by adipose triglyceride lipase (ATGL)
producing diacylglycerol (DAG). Hormone-sensitive lipase (HSL)
and monoacylglycerol lipase (MGL) complete the lipolytic cas-
cade by sequentially hydrolyzing DAG and monoacylglycerol
(MAG), respectively, (Figure 1). MAG lipase (MGL) performs the
final step in TAG catabolism by hydrolyzing MAGs to glycerol
and FAs (Kienesberger et al., 2013). The rate of lipolysis can be

dramatically stimulated by adrenergic hormones via activation of
protein kinase A (PKA). PKA phosphorylates perilipin and HSL
and causes a complex set of events leading to TAG hydrolysis.

The FAs released during TAG catabolism are mainly used for
β-oxidation and subsequent ATP synthesis via OxPhos in mito-
chondria (Figure 1; see below: Fatty Acids and Mitochondrial
Function). In oxidative tissues such as the heart, TAG-derived FAs
are utilized as an energy source, but they also serve as signaling
molecules as well as building blocks for membranes and complex
lipids.

Hepatocytes, heart and skeletal myocytes, adrenocortical cells,
enterocytes, and macrophages may all contain large amounts
of LDs. Excessive LD accumulation is a hallmark of T2DM,
obesity, atherosclerosis, hepatic steatosis, and other metabolic
diseases. However, in certain organs like skeletal muscle, intramy-
ocellular triacylglycerol (IMTG) accumulation is not strictly a
pathologic phenomenon (see below: Mitochondria, Lipids and
Insulin Resistance). Lipid content is elevated in red compared
with white skeletal muscles and increases in response to habit-
ual exercise in both oxidative and glycolytic fibers. The “athlete
paradox” consists of IMTG accumulation observed in endurance-
trained athletes that retain insulin sensitivity irrespective of the
fact that in some cases IMTGs exceed those measured in seden-
tary obese or T2DM obese patients (Goodpaster et al., 2001; van
Loon et al., 2003; Shaw et al., 2010; Egan and Zierath, 2013; Koves
et al., 2013). As with aerobic exercise, both muscle glycogen and
IMTG contribute to energy provision during resistance exercise
(Koopman et al., 2006).

MITOCHONDRIA AND PERILIPINS
The protein family of perilipins (Plin) is associated with
LDs. As scaffolding proteins perilipins affect the spatial and
metabolic interactions between LD and mitochondria (Figure 1).
Development of tissue lipotoxicity and dysfunction is linked to
alterations in LD biogenesis and regulation of TAG hydrolysis
(Wang and Sztalryd, 2011). Since in response to lipid loading
of cells perilipins associate with LDs the role of these proteins is
under intense scrutiny.

The Plin protein family, or PAT for perilipin/ADRP/TIP47, is
constituted by Plin1 to Plin5, and droplets may contain various
combinations of them (Greenberg et al., 2011). Plin1 is the most
abundant PAT protein in adipocytes and Plin2 in the liver, where
it has been linked to hepatic steatosis. Whereas Plin1 and 4 are
limited to adipose tissue, Plin2 and 3 are ubiquitous. Plin1 and 2
are always found in an LD-bound state whereas Plin3 to 5 can be
either LD-bound or free in the cytoplasm.

Genetic manipulations aiming at ablating perilipins to infer
about their physiological roles and impact on fat deposition
have been performed. Plin1-null mice are lean and develop sys-
temic insulin resistance as they grow older. Plin1-null adipocytes
exhibited enhanced rates of constitutive (unstimulated) lipol-
ysis and reduced catecholamine-stimulated lipolysis (Tansey
et al., 2001). Together, these data suggested that Plin1 protein
enhances catecholamine-stimulated lipolysis and, importantly,
that a reduction in Plin1 protein expression is associated with
increased constitutive lipolysis, which can promote systemic
insulin resistance (Greenberg et al., 2011).
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Plin5 is found primarily in oxidative tissues, e.g. skeletal and
heart muscles, liver (Bickel et al., 2009). Plin5 knockout mice
lacked detectable LDs in the heart and had significantly reduced
myocardial TAG content, an effect that was rescued by lipase inhi-
bition (Kuramoto et al., 2012). The excessive TAG catabolism
exhibited by Plin5-deficient hearts was paralleled by increased
FA oxidation (FAO) and enhanced ROS levels that led to an age-
dependent decline in heart function. Thus, it was suggested that
uncontrolled lipolysis and defective TAG storage impair cardiac
function through chronic mitochondrial FA overload. Plin5 may
regulate LD degradation and the flux of lipolysis-derived FAs
to mitochondria for energy production (Figure 1) (Kienesberger
et al., 2013). Plin5 overexpression in cardiac muscle produced
a robust increase in LDs resulting in cardiac steatosis but with-
out major consequences for heart function. This data indicated
that Plin5 plays a critical role in droplet formation and stabiliza-
tion via its regulatory role of lipolysis in vivo (Wang et al., 2013).
Interestingly, mitochondria in heart tissue from the Plin5 overex-
pressor appeared to always be distributed in tight clusters around
LDs exhibiting a significant increase in size without changes in
number as revealed by morphometric analysis (Wang et al., 2013).
In skeletal muscle, Plin5 overexpression increased IMCL content
without hindering insulin mediated glucose uptake while pro-
moting the expression of genes involved in mitochondrial FAO
and fat catabolism (Bosma et al., 2013).

In liver, down-modulation of Plin2 promotes a reduction in
hepatic steatosis and increases insulin sensitivity, but a reduction
in both Plin2 and Plin3 causes insulin resistance (Greenberg et al.,
2011). In the heart, Plin2 does not promote the interaction of
mitochondria with LDs, but increased TAG accumulation associ-
ated with reduced presence of ATGL in LD and decreased lipolysis
(Wang et al., 2011). As the first enzyme from the lipolytic cascade
(Zimmermann et al., 2004), the constitutive activity of ATGL is
predominantly responsible for basal levels of lipolysis (Greenberg
et al., 2011). ATGL overexpression in a cardiomyocyte-specific
manner decreased myocardial TAG and lipotoxic intermediates
accumulation in type 1 diabetic mice (Pulinilkunnil et al., 2013).
This resulted in decreased reliance on FAO, and preserved content
of respiratory complexes as well as cardiac function during early
stages of diabetes.

Overall, the reported data indicate that reduced expression of
perilipins may promote both lipolysis and fat oxidation, result-
ing in reduced intracellular TAG and adipose mass. On the other
hand, excessive lypolysis and defective lipid storage may pro-
mote insulin resistance and impaired cardiac function through
chronic mitochondrial FA overload. Consequently, lipid storage
and utilization appears to be a tightly regulated cellular process.

FATTY ACIDS AND MITOCHONDRIAL FUNCTION
Preservation of the intracellular redox environment (RE) is cru-
cial for vital functions such as division, differentiation, contractile
work and survival amongst others (Schafer and Buettner, 2001;
Aon et al., 2007, 2009; Brown et al., 2010; Fisher-Wellman and
Neufer, 2012; Jeong et al., 2012; Lloyd et al., 2012; Muoio and
Neufer, 2012; Aggarwal and Makielski, 2013). Mitochondria are
main drivers of the intracellular RE (Aon et al., 2010, 2012;
Stanley et al., 2011; Tocchetti et al., 2012; Fisher-Wellman et al.,

2013; Kembro et al., 2013) and together with peroxisomes consti-
tute the main subcellular compartments where lipid degradation
occurs. Yet, the impact of lipids on mitochondrial redox status
and ROS emission, and their links to energetics are not fully
elucidated.

FAs are main metabolic fuels in heart and skeletal muscle,
and β-oxidation represents their main degradation pathway. The
rate of β-oxidation is led by demand since an increase in work
rate and ATP utilization leads to faster oxidative phosphorylation
(OxPhos) and tricarboxylic acid (TCA) cycle activity. In turn, the
decrease in NADH and acetyl-CoA (AcCoA) levels leads to an
increase of the β-oxidation flux (Neely et al., 1969; Oram et al.,
1973; Eaton et al., 1996a; Eaton, 2002; Lopaschuk et al., 2010).

Lipids are supplied in the form of albumin-bound FAs
secreted from adipose tissue or by catabolism of very low density
lipoprotein (VLDL) complex by coronary vascular endothelial
lipoprotein lipases (Figure 1). Long chain FA (LCFA) trans-
port requires carrier proteins in the sarcolemma (FATP1, fatty
acid transporter protein 1; FABP, plasma membrane-associated
fatty acid-binding protein; LCFAT, long-chain fatty acid trans-
porter; OCTN2, plasma membrane sodium-dependent carnitine
transporter; FAT/CD36, fatty acid translocase CD36) and the
mitochondria (CPT1, carnitine palmitoyltransferase 1; CACT,
carnitine:acylcarnitine translocase).

Upon entry into the cell, LCFA first gets activated by form-
ing thioesters with coenzyme A (CoA), LCFA-CoA, and is either
oxidized in the mitochondria via β-oxidation or forms TAG by
esterification (Figure 1). Subsequently TAGs can be stored in the
form of LD. Long-chain FAs are activated on the mitochondrial
outer membrane by the long-chain acyl-CoA synthetase but the
mitochondrial inner membrane is not permeable to these acyl-
CoAs. CPT1 catalyzes the conversion of long-chain acyl CoA to
long-chain acylcarnitine, which is subsequently shuttled into the
mitochondria (Lopaschuk et al., 2010). Control at the level of
CPT1 activity appears to be important in heart and skeletal mus-
cle β-oxidation flux (Awan and Saggerson, 1993; Lopaschuk et al.,
1994; Zammit, 1999; Eaton, 2002).

After its formation by CPT1, the long-chain acylcarnitine is
translocated across the inner mitochondrial membrane by CACT
that involves the exchange of carnitine for acylcarnitine. CACT
has extremely high activity in most cell types with active β-
oxidation (Ramsay and Tubbs, 1976; Noel et al., 1985; Eaton,
2002). CACT is a critical step in the translocation of FA moieties
into the mitochondria, as evidenced by the development of car-
diomyopathies and irregular heartbeats in individuals with CACT
deficiencies (Lopaschuk et al., 1994, 2010).

In the matrix, acylcarnitine is converted back to acyl CoA
and catabolized via β-oxidation. The β-oxidation of activated FAs
occurs within the mitochondrial matrix and is catalyzed by the
sequential action of four enzyme families (acyl-CoA dehydroge-
nase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase,
and 3-ketoacyl- CoA thiolase), with acyl-CoA dehydrogenase
exhibiting different substrate specificity for short-, medium-,
long- and very long-chain acyl-CoAs (Kunau et al., 1995; Eaton
et al., 1996a; Kerner and Hoppel, 2000). The end product of each
cycle of β-oxidation is AcCoA, shortening the LCFA by 2 car-
bons. Ac CoA then enters the TCA cycle for complete oxidation
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rendering reducing equivalents in the form of the electron donors
NADH and FADH2 leading to ATP synthesis via OxPhos in the
respiratory chain (Figure 1). Ultimately, ATP is utilized by the
contractile machinery to transduce chemical energy into mechan-
ical work. ROS may also affect contractile performance via signal-
ing or redox modification of sensitive cysteines from, e.g., myosin
heavy chain (Canton et al., 2011; Steinberg, 2013).

Besides their metabolic role in the provision of energy, long-
chain free FAs exert diverse effects on cellular membranes and
on the catalytic activities of many enzymes (Loskovich et al.,
2005). FAs play the dual role of uncouplers and inhibitors of mito-
chondrial respiration (Wojtczak and Schonfeld, 1993) through a
protonophoric effect on the inner membrane, and an inhibitory
action on the electron transfer chain (Schonfeld and Reiser, 2006;
Schonfeld and Wojtczak, 2007, 2008). Additionally, FAs have
the potential to drastically alter mitochondrial membranes per-
meability through opening of the permeability transition pore
(Scorrano et al., 2001; Bernardi et al., 2002; Penzo et al., 2002,
2004). Excluded from these effects are the acyl-CoAs that do
not exert protonophoric activity and do not uncouple OxPhos
because they are unable to cross the inner mitochondrial mem-
brane (Wojtczak, 1976).

Free FAs can act as specific complex I-directed inhibitors
(Loskovich et al., 2005; Schonfeld and Wojtczak, 2008), and
long-chain acyl-CoAs are known inhibitors of ANT (Pande and
Blanchaer, 1971; Lerner et al., 1972; Wojtczak, 1976). The inhibi-
tion is of a competitive character (Duszynski and Wojtczak, 1975)
and strongly depends on the carbon chain length of the fatty acyl
moiety (Morel et al., 1974). Further evidence that FAs, in their
anionic form, can be substrates for transport by ANT was given
by their inhibitory effect on ATP and ADP exchanges (Wojtczak
and Zaluska, 1967; Schonfeld et al., 1996; Klingenberg, 2008).
According to the FA cycling model (Skulachev, 1991) undissoci-
ated FA molecules can undergo a spontaneous flip-flop from the
outer to the inner leaflet of the inner mitochondrial membrane
where they release protons because of the alkaline milieu of the
matrix. Then, in the form of anions, they are transported back
to the external leaflet by ANT; one proton is transferred from the
external space to the matrix compartment per molecule of the
FA per cycle. In this manner, FAs can lead to energy dissipation
through a selective protonophoric action mediated by coupling
of transmembrane movement of the fatty acyl anion (via the
ANT, uncoupling proteins, UCPs, and/or other inner membrane
carriers). These events result in dissipative proton cycling that
decreases the proton motive force thereby affecting respiration,
ATP synthesis, and ion homeostasis.

Palmitoyl CoA inhibits the ANT independently from β-
oxidation, according to more recent evidence obtained in isolated
mitochondria from rat liver (Ciapaite et al., 2005) and guinea
pig heart (Aon and Cortassa, unpublished) respiring on G/M. In
the case of liver mitochondria it was shown that the ANT inhi-
bition induced changes in intra- and extra-mitochondrial ATP
concentrations and ��m. This interference with the ANT carrier
increased ��m and the reduction level of coenzyme Q (Bakker
et al., 2000) both expected to promote the formation of ROS.
Studies further showed that the PCoA-elicited concentration-
dependent H2O2 formation can be explained by its effect on ��m

that in the presence of 5 μM PCoA showed a 13 mV increase
(Ciapaite et al., 2006). The specific action of PCoA on the ANT
in the liver (Ciapaite et al., 2006), is in contrast with an apparent
multi target effect in the heart (Aon and Cortassa, unpublished).
These differences may be given by intrinsic functional differences
due to species (rat, guinea pig) or organ specificity, e.g., liver
and heart mitochondria. Differences may also be linked to the
presence of distinct FA transporters (FATPs or SLC27As) or FA
binding proteins (FABPs).

MITOCHONDRIA, LIPIDS, AND INSULIN RESISTANCE
The shift from intermediate values of RE, corresponding to ROS
levels compatible with signaling functions (Aon et al., 2010;
Cortassa et al., 2014), toward either more reducing or oxidizing
conditions is a topic of great potential importance and interest
with implications for insulin signaling. Indeed, the association
between lipotoxicity and the onset of insulin resistance in skele-
tal muscle is a hotly debated subject (Muoio and Neufer, 2012).
One side posits that it is due to dysfunctional mitochondria with
intrinsic deficiencies in OxPhos and deficits in fat oxidation.
These impairments impinge on insulin signaling by diverting FAs
away from oxidation and toward production of DAGs, ceramide
and other toxic lipid species (Lowell and Shulman, 2005; Roden,
2005). The other side of the debate notes that this idea is incom-
patible with the principles of bioenergetics because mitochondrial
respiration is governed by energy demand; intracellular lipids will
accumulate whenever FAs supply exceeds the energy needs of the
cell. Consequently, they suggest that the etiology of muscle insulin
resistance is grounded on the fundamental principles that gov-
ern cellular and mitochondrial bioenergetics and the redox stress
that is placed on the respiratory system when energy supply per-
sistently outpaces energy demand (Muoio and Neufer, 2012). In
agreement with this idea other authors have emphasized that the
matching between increased FA availability and oxidative capacity
distinguishes the increase in IMTG following endurance training
from obesity/diabetic conditions. Chronic exercise training can
elicit high oxidative capacity conferred by higher mitochondrial
content but not mitochondrial function. Under these conditions,
lipid infusion in endurance-trained athletes is able to reduce
insulin sensitivity only by 29% as compared to 63% in untrained
subjects (Phielix et al., 2012).

Whereas in exercise training IMTG reflects an increased
reliance on fats as substrate, in obesity/diabetes will imply
accumulation of lipid metabolites [long chain fatty acyl-CoA
(LCFA-CoA), DAG, and ceramide] that are responsible for the
impairment in insulin action rather than the IMTG pool con-
tained in LDs (Schrauwen et al., 2010; Fisher-Wellman and
Neufer, 2012). Apparently, increased concentrations of intramus-
cular LCFA-CoA and DAG activate PKC, which appears to induce
impairments in insulin signaling via serine phosphorylation of
the insulin receptor substrate-1. In a model of diet-induced obe-
sity, accumulation of acylcarnitines, as products of incomplete
β-oxidation, was shown in skeletal muscle (Koves et al., 2008).
These findings led to the idea of a mitochondria-derived sig-
nal that couples incomplete β-oxidation with insulin resistance.
Chronic elevations of incomplete oxidation intermediates of FAs
and branched-chain amino acids (Newgard, 2012) might foster
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a mitochondrial microenvironment that is conducive to higher
H2O2 release from mitochondria with potential to modulate
insulin signaling (Fisher-Wellman and Neufer, 2012; Muoio and
Neufer, 2012).

The debate about the role of mitochondrial and lipid
metabolism at the origin of insulin resistance is highly relevant
for the diabetic heart because of its heavy dependence on fats for
function (Holloway et al., 2009, 2011). The debate centered on the
mitochondrial load-oxidative potential in skeletal muscle, is also
relevant for the heart where function is led by energy demand.
In fact, lipid accumulation in the heart is largely seen as a mis-
match between supply and demand, i.e., lipids amass when supply
outpaces demand.

A fundamentally important question still heavily debated is
whether or not a shift in substrate preference toward fat oxi-
dation lowers disease risk (Muoio and Neufer, 2012). FAs and
glucose are the two major fuels driving heart contraction. In
type 2 diabetes and obesity FAO is increased (Lopaschuk, 2002;
Carley and Severson, 2005) but our knowledge about the com-
bined effects of hyperglycemia, a hallmark of diabetes, and high
FA availability, on metabolism, redox/ROS balance and their
impact on heart function is incomplete. Although the healthy
heart is flexible regarding fuel selection, in the metabolically
challenged diabetic heart by high levels of glucose and fat, the
factors contributing to dysfunction and which are beneficial as
energy source or redox donors are still unclear. Existing com-
pelling evidence indicates that substrate-driven redox status plays
a critical role in cardiac contractile performance in type 2 diabetes
where cellular/mitochondrial redox and energetics are altered
(see below: Mitochondrial, Cellular and Organ Mechanisms for
Managing Lipid Affluence) (Anderson et al., 2009a; Tocchetti et al.,
2012). Overall, there is no disputing that lipid oxidation con-
fers a metabolic advantage during starvation and exercise, but the
role of fuel selection per se in defending against metabolic disease
needs further investigation.

MITOCHONDRIAL, CELLULAR, AND ORGAN MECHANISMS
FOR MANAGING LIPID AFFLUENCE
As important fuels of cellular function it is very well known how
FAs are degraded by mitochondria. Yet, the mechanisms by which
mitochondria manage lipid excess are largely unknown. The role
of β-oxidation per se as an underlying cause of obesity-associated
glucose intolerance remains a topic of active research and debate
(Fisher-Wellman and Neufer, 2012; Muoio and Neufer, 2012).
Furthermore, mitochondria play a central role in the develop-
ment of diabetes and obesity complications (Bugger and Abel,
2010; Sivitz and Yorek, 2010) and their energetic/redox dysfunc-
tion is directly involved in the redox imbalance exhibited by the
heart (Tocchetti et al., 2012; Frasier et al., 2013) and skeletal
muscle (Anderson et al., 2009a).

Mitochondria and lipid oxidation play a predominant role as
drivers of the intracellular RE. FAs are a major source of cellu-
lar ATP which, in the heart, is synthesized up to two thirds via
reducing equivalents (e.g., 24 NADH, 8 FADH2 for palmitate)
derived from β-oxidation in mitochondria. The higher energetic
budget provided by the saturated FA palmitate (three times higher
than from glucose when ATP/mol substrate is considered) in the

form of reducing power provides electrons to antioxidant sys-
tems and the mitochondria respiratory/energetic machinery. In
agreement with the prominent role of lipids on the intracellu-
lar redox status, it was shown that Palm determined a transition
from oxidized-to-reduced cellular redox status in cardiomyocytes
from type-2 diabetic (db/db) hearts abating ROS levels drasti-
cally (Tocchetti et al., 2012). This effect was coupled to a marked
GSH rise both in wild type and db/db myocytes. As a conse-
quence of its favorable effect on cellular redox balance, Palm
significantly improved isoproterenol-induced contractile reserve
in db/db cardiomyocytes (Tocchetti et al., 2012).

Keeping a proper cellular/mitochondrial RE is vital for optimal
excitation-contraction (EC) coupling as well as energy supply in
the heart (Burgoyne et al., 2012; Christians and Benjamin, 2012;
Nickel et al., 2013, 2014). Intracellular redox balance affects Ca2+
handling by interfering with a wide range of proteins implicated
in EC coupling (Fauconnier et al., 2007) including the SR Ca2+
release channels [the ryanodine receptors], the SR Ca2+ pumps,
and the sarcolemmal Na+/Ca2+ exchanger (Zima and Blatter,
2006; Dedkova and Blatter, 2008). Also unknown is whether the
mechanisms utilized by mitochondria to deal with lipid excess
differ between organs. Important examples are the skeletal and
cardiac muscles where β-oxidation predominates due to their lack
of de novo lipogenesis (Eaton, 2002). Certainly, the organ’s func-
tional specificity plays a role. As a matter of fact, skeletal muscle
is the largest glycogen storage organ (∼4-fold the capacity of
the liver) thus critical for glycemic control as the predominant
(∼80%) site of glucose disposal under insulin-stimulated con-
ditions (DeFronzo et al., 1981; Egan and Zierath, 2013). On the
other hand, the heart carries out its pump function transducing
the chemical energy stored in FAs and glucose into mechani-
cal and electrical energy. At rest, the heart cycles about 6 kg of
ATP every day while beating about 100,000 times (Neubauer,
2007). Mitochondria provide the bulk of the ATP needed for
cardiac muscle contraction (about two thirds) and sarcolemmal
and sarcoplasmic ion transport (one third), responsible for the
Ca2+ transients and electrical activity in cardiac cells (Solaini and
Harris, 2005; Cortassa et al., 2009; Nickel et al., 2013).

The far higher amounts of O2 processed by the heart on
a specific basis with respect to, e.g., brain and skeletal muscle
(Rolfe and Brown, 1997), and its continuous activity, make this
organ susceptible to oxidative damage (Burgoyne et al., 2012;
Christians and Benjamin, 2012). As a matter of fact, myocardial
function and the ability of the heart to tolerate stress decline with
age (Lakatta and Sollott, 2002). Although the mechanisms con-
tributing to age-related alterations in myocardial function are not
fully understood, mitochondrial dysfunction, oxidative stress and
the accumulation of oxidant-induced damage are major factors
(Fannin et al., 1999; Suh et al., 2003; Judge et al., 2005).

Defects in mitochondrial FA β-oxidation lead to several well-
known metabolic disorders, such as Reye syndrome, cardiomy-
opathy and sudden infant death syndrome (Roe and Ding, 2001;
Yang et al., 2001). The maintenance of high levels of mitochon-
drial β-oxidation could reduce the excessive fat accumulation and
storage leading to human obesity. Lipid overload involving TAG
accumulation in non-adipose tissues characterizes disorders such
as hyperlipidemia and lipodystrophies, heart dysfunction, liver
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disease, in both humans and in animal models of obesity and
diabetes.

It is becoming increasingly clear that adequate regulation of
TAG metabolism in different organs is critical for both energy
metabolism and function. Liver and heart respond to the mas-
sive influx of lipids from blood by up regulating LD biogenesis, as
a mechanism of defense against the toxicity of FAs, which upon
esterification get converted into TAG and stored into LD (Lass
et al., 2011). Failure to do so in the liver originates pathogenic
conditions such as steatosis and steatohepatitis (Greenberg et al.,
2011). The lipid excess situation is also relevant for heart function
in T2DM where FAs are preferred fuels (Lopaschuk et al., 2010).
However, under acute, non-chronic, conditions FAs can exhibit
advantageous actions, especially in the heart under diabetic con-
ditions (Tocchetti et al., 2012). Cellular TAG accumulation in LDs
may be beneficial rather than detrimental because it diverts FAs
from pathways leading to cytotoxicity thus serving as a buffer
against lipotoxicity (Listenberger et al., 2003).

From the examples and arguments above, it is clear that lipids
have a considerable impact on many cellular processes, includ-
ing mitochondria. This impact influences the functional outcome
of several organs such as the liver, skeletal and cardiac muscles.
Deregulation of lipid metabolism produces overload that is at
the origin or as an aggravating consequence of many diseases.
Consequently, the fundamental as well as practical importance of
unraveling the mechanisms by which mitochondria handle lipids
excess cannot be overstated. First, at the most basic level, we do
not know enough about lipids action on mitochondrial ener-
getic and redox functions. Lipids can act both as uncouplers and
inhibitors of OxPhos (Wojtczak and Schonfeld, 1993; Bernardi
et al., 2002), and the consequences of these contradictory effects
on mitochondrial energetic, redox and signaling functions are just
starting to be unraveled (Schonfeld and Wojtczak, 2008). Second,
besides being the main site of lipid degradation, mitochondria
may be actively modulating the balance between lipid storage and
utilization.

In the following sections we explore some of the new emerging
mechanisms of lipid storage and utilization by mitochondria at
the organelle, cellular and organ level in different physiological
settings.

CLOSE CONTACT MITOCHONDRIA-LIPID DROPLET
Regular exercise and physical activity are considered cornerstones
in the prevention, management, and treatment of numerous
chronic conditions, including hypertension, coronary heart dis-
ease, obesity, T2DM, and age-related muscle wasting (sarcopenia)
(Haskell et al., 2007; Colberg et al., 2010; Egan and Zierath,
2013).

Exercise training enhances mitochondrial biogenesis and per-
formance in skeletal muscle (Irrcher et al., 2003), but not in the
heart (Li et al., 2011). Whether the same is true in T2DM hearts
is unclear. In electron micrographs LDs can be easily detected in
type 2 diabetic (db/db) (Boudina et al., 2007) or ob/ob (Ge et al.,
2012) but not in WT mice hearts. In cells LDs can be readily visu-
alized using the fluorescent FA analog (dodecanoic acid) BODIPY
that labels neutral lipids in cytoplasmic droplets (Walther and
Farese, 2012).

The occurrence of close contact between mitochondria and LD
in the heart is remarkable because of its dependence on mito-
chondrial energetics preferentially fueled by FAs. More notewor-
thy though is the fact that these close contacts occur in the T2DM
heart, where the dependence on fat fueling is even more promi-
nent (Lopaschuk, 2002; Bugger and Abel, 2010). Interestingly,
Plin5 overexpression in heart tissue rendered tight mitochondrial
clusters around LDs with mitochondria significantly larger but
not higher in number (Wang et al., 2013). The same authors pro-
posed that Plin5 could play a regulatory role in the FA flux from
LDs to mitochondria under conditions of increased cellular FA
influx (Wang and Sztalryd, 2011). These data also suggest that
Plin5 with its role of favoring LD accumulation may act to keep
the intracellular levels of FA metabolites (e.g., DAG, ceramide)
below lipotoxic amounts (see below: Metabolic Channeling of
Lipid Utilization From Close Contacts Between Mitochondria and
Lipid Droplets: A Hypothetical-Qualitative Model).

In skeletal muscle IMTG accumulates and is actively utilized
during exercise (Shaw et al., 2010; Egan and Zierath, 2013; Koves
et al., 2013). Endurance exercise training increases mitochon-
drial content (by size not numbers) for men and women but
healthy active women have higher IMTG accumulation com-
pared with men due to greater number rather than size of LDs
(Tarnopolsky et al., 2007). Interestingly, this study also reported
an increase in the physical contact between mitochondria and
IMTGs following endurance exercise training. Rates of whole
body fat oxidation and IMTG utilization are determined by fac-
tors such as diet, intensity and duration of exercise, and fitness.
During acute exercise, the contribution of various metabolic
pathways to energy provision is determined by the relative inten-
sity and absolute power output of the exercise bout (Egan and
Zierath, 2013). The rate of ATP demand and energy expendi-
ture is determined by the absolute power output whereas the
relative exercise intensity influences the relative contributions of
carbohydrate oxidation and lipid sources, and circulating (extra-
muscular) and intramuscular fuel stores, to energy provision. As
exercise intensity increases, muscle utilization of circulating free
FAs slightly declines, whereas utilization of circulating glucose
increases progressively up to near-maximal intensities (van Loon
et al., 2001).

IMTG breakdown occurs primarily via HSL and ATGL (Watt
and Spriet, 2010). Although IMTGs constitute only a small
fraction (∼1–2%) of whole-body lipid stores they represent an
important fuel source during prolonged (>90 min) but moder-
ate intensity exercise. IMTGs can provide ∼25% of total energy
however their contribution decreases at either higher or lower
intensities of exercise (Romijn et al., 1993; van Loon et al.,
2001). Maximal rates of fat oxidation occur at moderate exer-
cise intensities (∼60% VO2 max) (Shaw et al., 2010; Egan and
Zierath, 2013). At low-to-moderate exercise intensity, the pri-
mary substrates fueling skeletal muscle are glucose, derived from
hepatic glycogenolysis (or gluconeogenesis) or oral ingestion,
and free FAs released by adipose tissue lipolysis. Prolonged
exercise (>60 min) at a fixed intensity increases the energy
contribution from lipid oxidation (Egan and Zierath, 2013).
IMTG stores can be reduced by ∼60% following exercise, pre-
dominantly in type I muscle fibers (van Loon et al., 2003;

www.frontiersin.org July 2014 | Volume 5 | Article 282 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Mitochondrial_Research/archive


Aon et al. Mitochondrial function and lipid excess

Stellingwerff et al., 2007; Shaw et al., 2010; Egan and Zierath,
2013).

Lipophagy, i.e., the turnover of LDs by autophagy, may occur
due to random sequestration of cytosolic material by “in bulk”
autophagy. However, when lipophagy is activated in response to a
lipid challenge or prolonged starvation, a switch toward the pref-
erential sequestration of LD seems to happen, supporting some
level of selectivity in this process (Singh et al., 2009). We suggest
that this may also be the case for close contacts mitochondria-LD,
and that energy demand may be a main elicitor of the interac-
tion between these two organelles. Consonant with this idea, it
has been proposed that LDs assembly in skeletal muscle under
exercise training would improve the management of high FA
influx enabling a more precisely regulated trafficking of substrate
to and from IMTG thus contributing to optimal mitochondrial
performance and metabolic flexibility (Koves et al., 2013).

LIPOTOXICITY AND LD ACCUMULATION DYNAMICS
In pathologic states lipotoxicity may occur over time, despite TAG
accumulation, when either the cellular capacity for TAG storage
is exceeded or when triglyceride pools are hydrolyzed, resulting
in increased cellular free FA levels. Thus, the duration and extent
of lipid overload may determine if a cell is protected or damaged.
Whether mitochondrial energy/redox status can alter the balance
LD formation and utilization in the short-term is a question that
has not been hitherto addressed.

Studies performed with non-invasive spectroscopic techniques
have shown elevated IMCL triglyceride content in the left ventri-
cle (i.e., LV steatosis) of obese and T2DM patients (McGavock
et al., 2007; Rijzewijk et al., 2008) but its association with early
diastolic dysfunction leading to subsequent systolic dysfunction
remains controversial (Anderson et al., 2009b; Lopaschuk et al.,
2010). Again, lipids through accumulation of triglycerides are at
the center of the controversy. In skeletal (Liu et al., 2007) and car-
diac (Ussher et al., 2009) muscle, IMCL accumulation as a result
of diet-induced obesity is not at all pathogenic, but may even be
protective against obesity-associated maladies.

Previous reports have linked ROS-mediated mitochondrial
dysfunction to DAG and ceramide, two main products of lipid
degradation (Coen and Goodpaster, 2012). Lipid channeling to
mitochondria may represent a mechanism by which concentra-
tion build-up of these intermediaries is avoided, especially under
high energy demand. Based on these premises, we suggest that
temporary lipid storage in LDs does not necessarily represent
pathophysiological behavior. On the contrary, it may embody an
adaptive response, at least in the short-term thus representing
an adaptive strategy of lipids utilization ensuring energy sup-
ply without affecting neither mitochondrial nor cellular redox
status.

REDOX OPTIMIZED ROS BALANCE AND MITOCHONDRIAL
REDOX AND ENERGETICS
Lipid metabolites can damage the respiratory chain leading to
impaired energetic transition in mitochondria through their dual
effect as uncouplers and inhibitors (Wojtczak and Schonfeld,
1993). Impairment of the key state 4→3 energetic transition can
occur via inhibition of ANT or ATPsynthase thereby producing

a continuous release of ROS irrespective of ADP addition
(Tocchetti et al., 2012).

Mitochondria are a main source of ROS but can also be their
target. The RE is a major driving force of the crucial energy-
redox link of mitochondrial function (Cortassa et al., 2014).
The mitochondrial RE depends on the intrinsic redox potential
and instantaneous reducing capacity of this organelle as well as
its response to the cytoplasmic redox status (Aon et al., 2010;
Kembro et al., 2013). In this context, Redox-Optimized ROS
Balance (R-ORB) provides a useful conceptual framework to
rationalize many results described in the present review. One of
the main R-ORB postulates is that ROS efflux from mitochon-
dria will attain a minimum at intermediate values of RE, when
VO2 reaches a maximum following ADP stimulation (Figure 2)
(Cortassa et al., 2014). Under state 3 respiration, glutathione
and thioredoxin systems are essential for minimizing ROS release
from mitochondria (Aon et al., 2010, 2012; Stanley et al., 2011;
Kudin et al., 2012; Cortassa et al., 2014). In excess, lipid precur-
sors of β-oxidation can promote mitochondrial uncoupling and
oxidized redox status (Aon and Cortassa, unpublished). In more
oxidized RE, away from the optimum (intermediate) RE compati-
ble with minimal ROS, antioxidant systems become overwhelmed
leading to pathological ROS overflow (Aon et al., 2010; Cortassa
et al., 2014).

Mitochondria function in more oxidative environments in
chronic diseases (Tocchetti et al., 2012). Thus, it becomes funda-
mental to understand how oxidative stress influences the depen-
dence of ROS emission on respiration (Cortassa et al., 2014).
When oxidant challenged, mitochondria displayed H2O2 emis-
sion levels 2-fold higher than controls, and exhibited lower res-
piration (Figure 2). Oxidative stress shifted redox balance toward
the more oxidized range where the sensitivity of the ROS efflux
to the RE decreases more drastically in state 4 than in state 3
respiration. A 50% decrease in reduced glutathione (GSH) was
mainly responsible for the shift of the RE to a more oxidized state
(Cortassa et al., 2014).

METABOLIC CHANNELING OF LIPID UTILIZATION FROM
CLOSE CONTACTS BETWEEN MITOCHONDRIA AND LIPID
DROPLETS: A HYPOTHETICAL-QUALITATIVE MODEL
Recent evidence supports physical and metabolic interactions
between LDs and mitochondria mediated by the scaffolding
protein Plin 5 (Wang and Sztalryd, 2011; Wang et al., 2011;
Koves et al., 2013). Wang and collaborators observed that Plin5-
overexpressing cells show decreased LD hydrolysis and palmitate
β-oxidation when compared with controls. Instead, palmitate
increasingly incorporated into TAGs under basal conditions
whereas in protein kinase A-stimulated state LD hydrolysis inhibi-
tion was removed and FAs released for β-oxidation. These results
suggested that Plin5 regulates LD hydrolysis and controls local
FA flux to protect mitochondria against excessive exposure to FA
(Wang and Sztalryd, 2011). All these observations are in agree-
ment with the relatively recent realization that the LD proteome is
highly dynamic and more complex than previously thought. The
LD proteome contains key components of the fat mobilization
system and proteins that suggest LD interactions with a variety of
cell organelles, including the mitochondria (Beller et al., 2010).
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FIGURE 2 | Redox-Optimized ROS Balance and the effect of oxidative

stress on mitochondrial respiration, H2O2 emission, and the RE. R-ORB
postulates that ROS levels (as the net result of production and scavenging)
depend on the intra-cellular and -mitochondrial redox environment (RE). It
also proposes that there is a minimum level of ROS emission when
mitochondria maximize their energetic output. Under high energy demand,
and despite large respiratory rates, ROS emission levels will be kept to a
minimum by ROS scavenging systems (Stanley et al., 2011; Aon et al.,
2012). Oxidative stress can happen at either extreme of RE, either highly
reduced or highly oxidized, but governed by different mechanisms (Aon
et al., 2010; Kembro et al., 2014). The plot displays schematically the
summary of the response of respiration (black traces) and ROS emission in
stressed mitochondria (gray traces) plus further addition of the uncoupler
FCCP (dashed-dotted line). Continuous lines correspond to the absence of
stress whereas dashed lines belong to mitochondria under stressed
conditions (Cortassa et al., 2014). Black arrows indicate the direction of
change in VO2 and ROS elicited by stress. Notice the shift toward more
oxidized RE in the curves corresponding to stressful conditions. The thick
gray arrow pointing to the left denotes pathological conditions arising, e.g.,
from chronic diseases, where severe stress will affect both energetic (e.g.,
��m, ADP consumption) and redox [e.g., NAD(P)H, GSH, Trx] functions
thus increased mitochondrial ROS emission and higher cytoplasmic ROS
levels. Reprinted from Cortassa et al. (2014).

Based on the premise of metabolic links extending beyond
physical contact between mitochondria and LDs, we propose a
model of metabolic channeling for lipid utilization by mitochon-
dria. According to our model, metabolic channeling represents a
way mitochondria can manage lipid affluence in an energetically
and redox-controlled fashion. Qualitatively, the lipid utilization
channeling model postulates that after TAG degradation, lipids
are directly delivered for activation, transport and β-oxidation
from the LD to the mitochondrion at the contact site (Figure 1).
The model also proposes that β-oxidation may also happen
metabolically channeled through the enzymatic components of
the lipid degradation pathway organized as a multienzyme com-
plex (Eaton, 2002).

From a structural standpoint, the model is based on direct
and close contact between LDs and mitochondria involving
their recruitment and surrounding of the LD. The model
also postulates membrane fusion-mediated reorganization of

intra-mitochondrial membrane and molecular components
(Walther and Farese, 2009) as well as lipids segregation within the
droplet (Fujimoto and Parton, 2011).

Biochemically, the pathway of long-chain FAO to AcCoA is
one of the longest unbranched pathways in metabolism, contain-
ing 27 intermediates between palmitoyl-CoA and AcCoA (Eaton,
2002). That the enzymes of β-oxidation may be organized into a
multienzyme complex was suggested long ago. In these biomolec-
ular assemblies, sequential catalytic reactions proceed via transfer
of the intermediates between individual component enzymes,
precluding their diffusion into the bulk aqueous medium, thus
“metabolically channeled” (Welch, 1977; Sumegi et al., 1991).

An earlier proposal of metabolic channeling in β-oxidation
was based on the detection of low concentrations of intermedi-
ates (Garland et al., 1965) and the observation that β-oxidation
intermediates that accumulate behaved more like products than
intermediates (Stewart et al., 1973; Stanley and Tubbs, 1974,
1975; Eaton et al., 1994, 1996a,b, 1999). This led to the “leaky
hosepipe” model for the control of β-oxidation flux (Stewart et al.,
1973; Stanley and Tubbs, 1974, 1975) in which channeling of a
small, quickly turning-over pool of intermediates was implied
(see Eaton, 2002 for a review).

Some aspects of the structural basis for a channeling mecha-
nism in β-oxidation have been described (Ishikawa et al., 2004).
Evidence in support of a multifunctional FAO complex within
mitochondria, physically associated with respiratory chain super-
complexes that favor metabolic channeling, has been recently
reported (Wang et al., 2010). Functionally, the direct delivery of
lipids at contact sites, and their channeled processing will avoid
elevation of their concentration, thus ruling out the potential
inhibitory as well as uncoupling action of FAs (Wojtczak and
Schonfeld, 1993). The latter will ensure a reliable and efficient
energy supply.

CONCLUDING REMARKS
Mitochondria, cells and organs have developed mechanisms that
allow managing heavy influx of FAs within functionally reliable
limits. The LD as a dynamic storage of FAs can also be seen
as a protective mechanism employed by cells to avoid excessive
intracellular concentration of FAs thus hindering their poten-
tial deleterious effects on mitochondrial function. The tight
and reciprocal regulation of lipid storage and utilization is evi-
denced by genetic manipulation of perilipins indicating that their
reduced expression leads to increased lipid oxidation and reduced
accumulation of intracellular fat and adipose mass. On the other
hand, however, excessive lipolysis and defective lipid storage pro-
motes insulin resistance through mitochondrial FA overload and
ROS overflow.

Preservation of the intracellular RE is crucial for vital func-
tions. Mitochondria play a decisive role as the organelle that
specifically handles the highest amounts of oxygen processed by
the organism thus prone not only to be the source but also the
target of oxidative stress. Mitochondrial function needs to sus-
tain energy supply reliably while releasing ROS levels compatible
with signaling. However, lipids can derail both of these critical
functions. Consequently, the hypothetical lipid utilization chan-
neling model we are proposing herein satisfies the fundamentals
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of cellular and mitochondrial energetics and redox. In principle,
diversion of excess lipids to LDs can be an effective cytoplasmic
mechanism for “sequestering” FAs thereby helping to keep low
concentration of lipotoxic intermediates resulting from lipid oxi-
dation. Functionally, direct delivery and channeled processing of
lipids in mitochondria could represent a reliable and efficient way
to ensure energy supply and redox control. Such a mechanism
would avoid exceeding the lipid storage capacity thus becoming
crucial for skeletal muscle or heart subjected to high workload,
and therefore, heavy influx of FAs.
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