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Abstract: Gut microbiota has been suggested to modulate circulating lipids. However, the relationship
between the gut microbiota and atherogenic dyslipidemia (AD), defined as the presence of both low
HDL-C and hypertriglyceridemia, is not fully understood. Moreover, because obesity is among the
main causes of secondary AD, it is important to analyze the effect of gut microbiota composition on
lipid profiles after a weight loss intervention. We compared the microbial diversity and taxonomic
composition in patients with AD (n = 41) and controls (n = 38) and sought correlations of genera
abundance with serum lipid levels in 20 patients after weight loss induced by Roux-en-Y gastric
bypass (RYGB) surgery. Gut microbiota composition was profiled using next-generation sequencing
of 16S rRNA. Gut microbiota diversity was significantly lower in atherogenic dyslipidemia. Moreover,
relative abundance of two genera with LDA score >3.5 (Megasphaera and LPS-producing Escherichia-
Shigella), was significantly higher in AD subjects, while the abundance of four short chain fatty
acids (SCFA) producing-genera (Christensenellaceae R-7, Ruminococcaceae UCG-014; Akkermansia and
[Eubacterium] eligens group) was significantly higher in controls. Notably, [Eubacterium] eligens group
abundance was also significantly associated with higher HDL-C levels in RYGB patients one year
after surgery. Although dietary polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio
and PUFA intake were higher in controls than in AD subjects, of the four genera differentiated
in cases and controls, only Akkermansia abundance showed a positive and significant correlation
with PUFA/SFA ratio. Our results suggest that SCFA-producing bacteria promote a healthy lipid
homeostasis, while the presence of LPS-producing bacteria such Escherichia-Shigella may contribute to
the development of atherogenic dyslipidemia.
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1. Introduction

Dyslipidemia characterized by elevated triglyceride (TG), low HDL cholesterol (HDL-C),
and high LDL cholesterol (LDL-C) plasma concentrations are among the main risk factors
for cardiovascular disease (CVD) [1,2]. The prevalence of these dyslipidemias varies among
ethnic groups and Mexican Americans show a higher prevalence of elevated TG and low
HDL-C levels as compared to other ethnic groups in the USA [3]. Low HDL-C levels are
a well-known independent epidemiological risk factor for CVD, and this dyslipidemia is
highly prevalent in Mexican adults [4–6]. Moreover, the combination of low HDL-C and
elevated triglyceride levels is considered as atherogenic dyslipidemia (AD) [7,8].

Among the various lifestyle factors affecting serum lipid levels, habitual intake of
nutrients such as dietary fat and unsaturated/saturated fatty acids is closely related to lipid
metabolism [9,10], and has been recognized as an important determinant in the develop-
ment of dyslipidemia [11]. Moreover, it has recently become clear that the gut microbiota
contributes to host metabolism regulation, including circulating lipid levels [12–16]. Gut
microbiota was found to explain 6% variance of triglyceride and 4% of variance of HDL-C
serum levels but has a small effect on LDL-C and total cholesterol levels [12]. Gut micro-
biota produces enzymes involved in dietary lipid and bile acid metabolism that affect the
blood lipid profile of the host. Moreover, gut microbiota may modulate lipid absorption,
potentially altering intestinal lipoprotein formation [17]. However, how the plasma lipid
profile is modified by the gut microbiota to date is not fully understood.

There are few studies seeking associations between gut microbiota and lipid concentra-
tions in humans, which have consistently reported that lower gut microbiota alpha-diversity
is associated with higher triglyceride and lower HDL-C levels. Although several genera
have been associated with lipid levels, these associations have been inconsistent [12,16,18].
Furthermore, because certain bacterial genera vary in abundance among different ethnic-
ities, it is important to seek these associations in populations with a high prevalence of
dyslipidemias, such as the Mexican population.

Obesity is intimately associated with the development of dyslipidemia [19,20]. Differ-
ent weight loss interventions are known to improve triglyceride and HDL-C levels [21,22].
Notably, patients undergoing Roux-en-Y gastric bypass (RYGB) surgery show significant
changes in the gut microbiota along with improved lipid levels [23]. However, whether
the post-RYGB gut microbiota profile is associated with improvement of lipid levels after
bariatric surgery requires further study.

Thus, we analyzed case–control associations of gut microbiota with atherogenic dys-
lipidemia (low HDL-C and hypertriglyceridemia), and its effect on serum lipid levels after
bariatric surgery.

2. Materials and Methods
2.1. Study Populations

We studied 41 subjects with AD, and 38 controls aged 18 or older recruited as part of
the Health Workers Cohort Study and at the Hospital Infantil de México Federico Gómez in
Mexico City. Participants were recruited as described elsewhere [24,25]. Exclusion criteria
included the use of antibiotics three months before recruitment or the use of lipid lowering
drugs in subjects without a diagnosis of dyslipidemia. Additionally, 20 patients with
obesity undergoing laparoscopic RYGB were recruited from the Bariatric Surgery Program
at the Instituto Nacional de Ciencias Médicas y Nutrición in Mexico City.

The project was approved by the Ethics Committees of participant Institutions, and all
participants signed informed consent.

For patients with AD and controls, anthropometric parameters such as weight, height,
waist and hip circumferences were measured by trained personnel following standardized
procedures and calibrated equipment. Body mass index (BMI) was calculated as weight
(kg) divided by squared height (meters) and obesity was considered as BMI ≥30 kg/m2

according to the World Health Organization (WHO) classification (WHO, 2021). For
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patients undergoing bariatric surgery, all measurements were taken by nutritionists of a
multidisciplinary team, before and 12 months after the intervention.

2.2. Habitual Dietary Intake Assessment

A semi-quantitative food frequency questionnaire (FFQ) previously validated in the
Mexican population [26] was used to evaluate habitual dietary intake. This questionnaire
assesses the consumption of 116 food items during the previous year. For calculating
average daily energy and nutrient intake, data from the FFQ were captured and computed
through the Evaluation System of Nutritional Habits and Nutrient Intake software [27].
Daily consumed grams of proteins, carbohydrates and different types of fats such as mo-
nounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and saturated
fatty acids (SFAs) were converted to kilocalories using the corresponding Atwater fac-
tor [28]. In this way, consumption of each macronutrient was expressed as the percentage
of the daily energy intake. The total dietary fiber intake in grams was standardized per
1000 kilocalories to reduce inter-individual energy intake variation.

2.3. Biochemical Determinations

Blood samples were drawn after 8–12 h of overnight fasting to determine serum levels
of glucose, total cholesterol, triglycerides, and HDL-C. Atherogenic dyslipidemia was
defined as the simultaneous presence of elevated levels of triglycerides ≥150 mg/dL and
low HDL-C (high-density lipoprotein cholesterol) <40 mg/dL in men and <45 mg/dL
in women [29]. Type 2 diabetes was defined considering a fasting glucose measurement
≥126 mg/dL or previous self-reported diagnosis [30].

2.4. Stool Sampling

Fecal samples were collected at home in a sterile polypropylene container following
printed instructions to avoid contamination. Aliquots of 180–220 mg were stored at −70 ◦C
until processing. DNA was extracted from aliquots using QIAamp® DNA Stool or Power
fecal kit (Qiagen, Hilden, Germany.) adding a previous step of mechanical sample lysis
with a FastPrep device. The final elution volume was 200 µL and was stored at−20 ◦C until
further analysis. DNA concentration and purity were determined by spectrophotometry
(Nanodrop 2000c, Thermo Scientific, Wilmington, DE, USA).

2.5. 16S rRNA Sequencing

DNA samples from 30 AD patients and 31 controls were sequenced using the primers
515F and 806R of the 16S rRNA gene V4 hypervariable region as described elsewhere [31].
Samples from the remaining 11 AD cases, 7 controls and the 20 RYGB patients before
and 12 months after surgery were sequenced to amplify the 16S rRNA gene V3-V4 region,
following the protocol for Illumina library preparation. Briefly, a first PCR was run using
the primers with attached overhang adapters. The amplicons were purified using AMPure
XP beads (Beckman Coulter). A second PCR was executed employing the Nextera XT
Index Kit (Illumina) to incorporate dual indices and the Illumina sequencing adapters. The
resulting libraries were purified with AMPure XP beads, amplicon size and concentrations
were assessed with an Agilent D1000 ScreenTape for 4200 TapeStation System (Agilent
Technologies) and a Qubit 2.0 fluorometer (Invitrogen), respectively. Both sequencing
protocols were carried out at the Sequencing Unit of the National Institute of Genomic
Medicine (INMEGEN) using the Illumina MiSeq platform.

2.6. Sequence Processing

The paired-end raw reads were processed using the QIIME2 pipeline [32]. Forward
reads of the V3-V4 region were trimmed at position 194 in the 5′ and reverse reads were
trimmed at position 20 in the 5′, with truncation at position 240 in the 3′. Forward V4
region reads were trimmed at position 20 in the 5′, the reverse reads at position 38 in the 5′,
with truncation at position 220 in the 3′. A 220 bp segment was shared by reads obtained



Nutrients 2022, 14, 3545 4 of 17

from the V3-V4 and V4 sequence protocols and was used for all analyses. The DADA2
plugin [33] was used for error correction and resolution of the amplicon sequence variants
(ASVs), chimeric sequences were removed with the “consensus” method. After resolution,
ASVs were grouped in operational taxonomic units (OTUs) at 97% identity using the
“cluster-features-open-reference” plugin with the V-SEARCH algorithm [34] and the SILVA
database (v.132). A phylogenetic tree was built with OTU representative sequences using
the “align-to.three-mafft-fasttree” plugin [35,36]. Thereafter, samples were standardized by
rarefaction at a 19,000 high-quality read depth, with a total of 2,261,000 reads.

2.7. Bioinformatic Analysis

The OTU abundance table and phylogeny tree were exported to the R (v. 4.1.1) en-
vironment for further analysis with the phyloseq package (v1.38.0) [37]. Alpha diversity
was evaluated with the number of observed OTUs, Chao1, Shannon and Simpson indices.
Weighted and unweighted UniFrac distance metrics were used to estimate beta diversity. A
permutational multivariate analysis of variance (PERMANOVA) was used to test differ-
ences in beta diversity between groups, using the Vegan package (v2.5.7) and applying the
adonis function and 9999 permutations [38].

Microbial composition differences between AD cases and controls from the phy-
lum to genus level groups were assessed by Linear discriminant analysis Effect Size
(LEfSe v1.0) [39]. A LDA score >2.0 and p < 0.05 was considered statistically significant.
The possible effect of age, sex and BMI as covariates was assessed using multivariate linear
models (MaAsLin2 v1.4.0) [40]. Analyses in MaAsLin2 were performed using default
parameters. Predicted functional microbiota profiling was achieved using PICRUSt2 (Phy-
logenetic Investigation of Communities by Reconstruction of Unobserved States; Version
2.2.0) [41]. The metabolic pathways were annotated by MetaCyc database [42], and differ-
ences between AD and controls were assessed using LEfSe v1.0. Metabolic pathways with
LDA score > 2.0 and p < 0.05 were considered as statistically significant. All plots were
created using R (v4.1.1).

2.8. Statistical Analysis

Shapiro–Wilk and Levene tests were used to verify normal distribution of the data.
The Mann–Whitney U test was conducted to compare non-normally distributed variables
between AD patients and controls and the Wilcoxon signed rank test to compare variables
before and after RYGB surgery. A two-tailed Student’s t-test was used to compare diversity
indices, and X2 test was used to compare categorical variables. These analyses were
performed using SPSS (version 24.0, SPSS Inc., Chicago, IL, USA) and R (version 4.1.1).
Statistical significance was considered when p < 0.05. Spearman correlations between
relative genera abundance, BMI, HDL-C and triglyceride serum levels, PUFA/SFA ratio
and nutrient intake were tested in R (version 4.1.1). For bariatric surgery analyses, only
genera with a relative abundance >1% in at least 25% of participants were analyzed. Pearson
partial correlation analyses were implemented adjusting for BMI. p-values were corrected
for multiple testing using the Benjamini–Hochberg method [43].

3. Results

As expected, individuals with atherogenic dyslipidemia showed higher TG and lower
HDL-C serum levels compared to control group. Moreover, the AD group showed higher
BMI and lower total cholesterol serum levels (Table 1).
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Table 1. Comparison of anthropometric and biochemical characteristics in atherogenic dyslipidemia
subjects and controls.

Trait
Atherogenic Dyslipidemia Control p

(n = 41) (n = 38)

Female, n (%) 31 (75.6) 32 (84.2) 0.342
Age, years 59.0 (48.0–69.5) 55.0 (35.0–64.0) 0.160
BMI, kg/m2 27.9 (26.3–30.7) 24.1 (21.9–26.9) 1.0 × 10−5

HDL-C, mg/dL 38.0 (33.0–41.8) 67.9 (61.9–73.9) 2.1 × 10−14

Triglycerides, mg/dL 229.0 (183.5–267.5) 90.0 (71.3–108.0) 2.1 × 10−14

Non HDL-C, mg/dL 139.0 (122.6–163.5) 137.7 (115.9–160.9) 0.312
Total cholesterol, mg/dL 179.0 (161.0–197.5) 208.0 (180.0–229.3) 0.004
Fasting glucose, mg/dL 99.0 (92.5–109.5) 92.5 (85.8–97.3) 0.002
Diabetes, n (%) 6 (14.6) 3 (7.9) 0.207
Hypolipidemic treatment, n (%) 9 (22.0) 0 (0) 0.002

Data are presented as median (interquartile range) or as number (percentage). BMI, Body mass index; HDL-C,
High density lipoprotein cholesterol.

3.1. Dietary Patterns in the Atherogenic Dyslipidemia and Control Groups

Median dietary carbohydrate percentage in AD individuals was slightly higher, while
median dietary fat percentage was lower than macronutrient proportion recommendations
for a healthy diet in both groups [44]. Differences in macronutrient proportions between
groups were not significant. Notably, the only significant difference in nutrient intake
identified between groups was higher proportion of polyunsaturated fatty acids (PUFA)
intake in controls (Supplementary Table S1). PUFA/SFA ratio was significantly lower in
individuals with atherogenic dyslipidemia as compared to the control group (Figure 1A).
Moreover, in the whole population PUFA/SFA ratio showed a positive correlation with
HDL-C levels (Rho = 0.256, p = 0.023) and a negative correlation with triglyceride serum
levels (Rho = −0.240, p = 0.033; Figure 1B,C).

Figure 1. PUFA/SFA ratio and atherogenic dyslipidemia (AD). (A) Median PUFA/SFA ratio in study
groups. (B) Spearman correlation between HDL-C serum levels and PUFA/SFA ratio including the
whole study population (Rho = 0.256; p = 0.023). (C) Spearman correlation between TG serum levels
and PUFA/SFA ratio (Rho = −0.240; p = 0.033). PUFA, polyunsaturated fatty acids; SFA, saturated
fatty acids; HDL-C, high density lipoprotein -cholesterol; TG triglycerides. ** p < 0.005.

3.2. Differences in Gut Microbiota Diversity

Alpha diversity estimated by the number of observed species, Chao1, Shannon and
Simpson indices was lower in the AD group, although only the comparisons of the Shannon
and Simpson indices were statistically significant (Figure 2A; p < 0.005). Regarding beta-
diversity, significant differences between AD individuals and controls were observed only
for the weighted Unifrac distance (p < 0.05, Figure 2B).
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Figure 2. Comparison of gut microbiota diversity in atherogenic dyslipidemia (AD) patients and
controls. (A) Alpha diversity estimates: Observed OTUs, Chao1, Shannon and Simpson indices; the
plotted data represent medians and interquartile ranges. (B) Beta diversity estimates; the plotted
data represent the weighted (F-value= 2.298; R-value= 0.0289) and unweighted (F-value= 1.299;
R-value= 0.017) UniFrac distances; p-value was obtained using a permutational multivariate analysis
of variance (PERMANOVA). * p < 0.05; ** p < 005; ns, not significant.
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3.3. Taxonomic Gut Microbiota Differences

The average relative abundance of the gut microbiota at the phylum, class and genus
levels in AD patients and controls is shown in Supplementary Figures S1–S3. The most
abundant phyla in AD subjects and controls were Firmicutes (46.7% and 53.0%, respec-
tively) and Bacteroidetes (43.5% and 37.2%, respectively); the most abundant classes were
Clostridia (40.2% in AD and 48.5% in controls) and Bacteroidia (43.5% in AD and 37.2%
in controls); while the most abundant genera were Bacteroides (20.9% in AD and 18.0% in
controls) and Prevotella 9 (13.7% in AD and 11.3% in controls).

LEfSe analysis revealed that the relative abundance of five of the ten most abundant
phyla showed significant differences between AD patients and controls, Proteobateria and
Fusobacteria were more abundant in AD subjects, while Cyanobacteria, Verrucromicrobia
and Tenericutes were more abundant in controls. In addition, the relative abundance of two
classes was higher in AD subjects (Gammaproteobacteria and Fusobacteria), and 5 classes
were more abundant in controls (Clostridia, Verrocomicrobiae, Mollicutes, Erysipelotrichiae
and Melainabacteria). Finally, relative abundance of 20/198 genera was significantly
higher in controls (Figure 3), including 4 with LDA score >3.5 (Christensenellaceae R-7,
Ruminococcaceae UCG-014, Akkermansia and [Eubacterium] eligens group); while 6/198 genera
were significantly more abundant in the AD group, including 2 with LDA > 3.5 (Escherichia-
Shigella and Megasphaera) (Figure 4). Afterwards, 23 of the 26 genera differentiated by
LEfSe were analyzed with MaAsLin2. After adjusting for age, sex and BMI, 12 genera
were significantly more abundant in controls and 3 were more abundant in AD. Notably,
all associated genera with LDA score > 3.5 were concordant in the MaAsLin2 analysis
(p ≤ 0.01, q ≤ 0.1), except for Akkermansia, as its association lost significance after adjusting
for confounders (p = 0.156, q = 0.335; Supplementary Table S2).

The relative abundance of these 26 genera was then tested for correlations with HDL-C
and TG levels in the entire sample (AD patients and controls). As expected, all 6 genera
found to be more abundant in subjects with AD correlated negatively with HDL-C levels
and positively with TG levels, although only the correlations of Megasphaera genus abun-
dance with both lipid parameters were significant. Similarly, all 20 genera more abundant
in controls correlated positively with HDL-C and negatively with TG levels. Six of these
genera correlated significantly with both lipid parameters (p < 0.05). Notably, the negative
correlations of Ruminococcaceae UCG-013, [Eubacterium] xylanophilum group, Ruminiclostrid-
ium 6, [Eubacterium] eligens group amd Christensenellaceae R-7 group with TG levels remained
significant after correcting for multiple tests (q < 0.05). Moreover, 4 microbial genera found
to be more abundant in controls (Akkermansia, Ruminiclostridium-6, Hydrogenoanearobac-
terium and Odoribacter), showed a positive correlation with PUFA/SFA ratio (p < 0.05;
q < 0.2). Notably, only the correlation with Odoribacter remained significant after adjusting
for BMI (p = 0.025), consistent with the negative and significant correlation of Akkermansia,
Ruminiclostridium-6, and Hydrogenoanearobacterium abundances with BMI (Figure 5).
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Figure 3. LEfSe plot showing differentially abundant phyla (p), classes (c) and genera (g) between
controls (green) and atherogenic dyslipidemia (AD) subjects (red). LDA score > 2.0 and p < 0.05
indicate statistically significant differences.
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Figure 4. Relative abundance of differentiated genera (LDA score >3.5; p-value < 0.05) between AD
individuals and controls. (A) Bacterial genera significantly more abundant in controls; (B) bacterial
genera significantly more abundant in subjects with AD. * p < 0.05; ** p < 005.

Figure 5. Heatmap showing correlations of relative genera abundance with HDL-C, TG, PUFA/SFA
ratio, and BMI. HDL-C, high density lipoprotein cholesterol; TG, triglycerides; PUFA, polyunsatu-
rated fatty acids; SAF, saturated fatty acids and BMI, body mass index. * p < 0.05; ** p < 0.005.
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3.4. Differences in Microbiota Functional Profiles

To further investigate the potential mechanistic links between the gut microbiota, diet
components and AD, a predictive functional analysis was performed. We identified 40
differentiated microbial MetaCyc metabolic pathways between AD and control groups.
Overall, 17 pathways were found to be enriched in atherogenic dyslipidemia, including
lipopolysaccharide and Kdo2-Lipid A biosynthesis (Figure 6). Moreover, the relative abun-
dance of Escherichia-Shigella showed a strong and positive correlation with LPS (Rho = 0.984;
p = 2.3 × 10−59) and Kdo2-Lipid A (Rho = 0.787; p = 8.0 × 10−18) biosynthesis pathways.

Figure 6. Pathway enrichment analyses and functional categories in AD cases. Pathways and
functional categories with LDA score > 2 and p < 0.05 are shown.

3.5. Gut Microbiota Associated with TG and HDL-C Levels before and after RYGB Surgery

In patients with RYGB, TG levels decreased while HDL-C levels increased significantly
12 months after surgery (p < 0.01; Table 2).
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Table 2. Comparison of anthropometric and biochemical parameters before and after bariatric surgery.

Trait
Pre-Surgery Post-Surgery p

(n = 20) (n = 20)

Female, n (%) 13 (65.0) - -
Age, years 40.0 (31.3–44.8) - -
BMI, kg/m2 45.7 (42.3–51.9) 32.9 (28.7–36.2) 5.0 × 10−6

HDL-C, mg/dL 35.0 (31.3–41.8) 45.0 (37.0–49.0) 0.001
Triglycerides, mg/dL 159.5 (104.3–180.8) 100.0 (67.0–144.0) 0.011
Total cholesterol, mg/dL 154.5 (136.3–186.5) 86.0 (78.0–96.0) 0.097
Hypolipidemic treatment, n (%) 4 (20.0) 1 (5.0) 0.151

Data are presented as median (interquartile range) or as number (percentage). BMI, Body mass index; HDL-C,
High density lipoprotein cholesterol.

We thus sought correlations of the genera differentiated between AD patients and
controls found in at least 25% of RYGB participants (18 of the 26 genera), with HDL-C
and TG levels in these patients. Before surgery, only a negative and significant correlation
between Fusobacterium relative abundance and HDL-C levels was observed, consistent
with the higher abundance of this genus in AD patients (Figure 7). After surgery, two
significant correlations were observed: a positive correlation of [Eubacterium] eligens group
with HDL-C levels, and a negative correlation of [Eubacterium] xylanophylum group with
TG levels (Figure 5), which remained significant after adjusting for BMI (p < 0.05). Only
10 of the 20 bariatric surgery patients met the diagnostic criteria for AD, whose lipid pro-
files improved significantly after surgery (Supplementary Table S3). We then compared
the relative abundance of these three genera before and after surgery in these 10 patients.
Only the relative abundance of [Eubacterium] xylanophilum group increased significantly
after bariatric surgery in AD subjects (p = 0.03; Figure 8), consistent with the positive and
negative correlations of this genus with HDL-C and TG levels, respectively, in both study
groups (AD cases/controls and bariatric surgery).

Figure 7. Heatmap of Spearman’s pairwise correlation coefficients between bacterial genera identified
by LEfSe and lipid levels. Blue squares indicate negative correlations, and red squares indicate
positive correlations. BMI, body mass index; HDL-C, high density lipoprotein-cholesterol; TG,
triglycerides * p < 0.05.
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Figure 8. Relative abundance of [Eubacterium] eligens group, [Eubacterium] xylanophilum group and
Fusobacterium in patients with AD before and after bariatric surgery. * p < 0.05, ns; not significant.

4. Discussion

In this study, we found that gut microbiota diversity and abundance were significantly
associated with atherogenic dyslipidemia. Decreased alpha diversity was observed in
subjects with atherogenic dyslipidemia, in consistency with previous studies in European
and Asian populations reporting a negative correlation between gut microbiota diversity
and TG levels, and positive correlation with HDL-C levels [12,16,45].

The association of lower abundance of three genera (Coprococcus 1, Christensenellaceae
R-7 and Odoribacter) with atherogenic dyslipidemia found in the present study is in line
with a previous report in a European populaion from the LifeLines-DEEP cohort [12].
In this cohort, Coprococcus abundance showed a strong and negative association with
triglyceride levels (p = 6 × 10−5) [12]. Coprococcus species are SCFA-producing bacteria,
known to decrease lipogenesis and to improve insulin resistance [46]. A recent study
reported that omega-3 polyunsaturated fatty acid supplementation increases Coprococcus
abundance, positively associated with serum levels of SCFA and branched-chain fatty acids,
and negatively associated with triglyceride levels [47]. These findings suggest that the
cardiovascular benefits associated with a higher PUFA intake may be at least partially
mediated by the gut microbiome. However, in the present study Coprococcus abundance
was not significantly associated with PUFA/SFA ratio. Moreover, Christensenellaceae abun-
dance was associated with lower triglyceride levels (p = 2× 10−5) and higher HDL-C levels
(p = 0.004) in Europeans. Christensenellaceae has been inversely related to host body mass
index (BMI) in different populations including Mexican children [48,49]. Because increased
BMI is associated with dyslipidemia, an inverse association of Christensenellaceae R-7 group
abundance with dyslipidemia dependent of BMI would be expected [50]. However, we
observed that the association Christensenellaceae with AD remained significant after adjust-
ing for BMI, suggesting that this association could be independent of BMI. Nevertheless,
the mechanism underlying its negative association with atherogenic dyslipidemia remains
to be elucidated. Finally, Odoribacter genus was associated with lower triglyceride levels
in the LifeLines-DEEP cohort (p = 0.001) [12]. Odoribacter was also found to be associated
with a healthy fasting serum lipid profile in European women with obesity [51]. In our
study, the association of Odoribacter with a healthy lipid profile lost significance after ad-
justing for BMI. This is consistent with a previous report, where Odoribacter abundance
was inversely associated with obesity in Mexican children [49]. Interestingly, Odoribacter, a
SCFA-producing bacterium, has been associated with a healthy fasting serum lipid profile
jointly with the SCFA-producing Akkermansia [12,51]. Thus, their possible SCFA-mediated
role in metabolic disorders such as dyslipidemia, could be BMI dependent.

Notably, we observed higher abundance of Eubacterium (eligens and xylanophilum),
Ruminococcaceae, Ruminiclostridium and Blautia genera in controls. All these genera are
known to produce different types of SCFAs [52]. Although functional prediction of gut
microbiota profiles in controls did not identify enrichment of any metabolic pathway
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directly related with SCFA biosynthesis, our results suggest that SCFA-producing bacteria
may confer protection against atherogenic dyslipidemia.

In contrast with the control group findings, all genera with increased abundance in
AD subjects are not known SCFA-producing bacteria. AD patients showed gut microbiota
dysbiosis characterized by an overall reduction in microbial richness and diversity as
compared to control subjects. Moreover, 6 genera showed higher abundance in this group,
Escherichia-Shigella with the highest LDA score. In line with our findings, Escherichia coli
has been associated with metabolic traits such as higher triglyceride levels [53] and non-
alcoholic fatty liver disease (NAFLD) [54]. It has been suggested that Escherichia-Shigella
increases intestinal permeability in humans by elevating LPS levels in the gut lumen [55,56].
This is in line with our functional prediction results showing enriched lipopolysaccharide
and Kdo2-Lipid A biosynthesis pathways in atherogenic dyslipidemia patients, although
bacterial gene expression studies are required to validate the role of these pathways in
AD. In animal models, LPS administration produced hypertriglyceridemia by increasing
hepatic fatty acid synthesis and adipose tissue lipolysis, while suppressing fatty acid
oxidation [57]. Interestingly, increased Escherichia-Shigella abundance has been observed
following RYGB surgery, with no apparent detrimental effects on the host [58]. However,
in an independent study, Escherichia-Shigella abundance was significantly correlated with
increased LDL-cholesterol levels 3 months after RYGB surgery [23]. In our study, relative
Escherichia-Shigella abundance increased significantly after RYGB and correlated positively
with triglyceride levels and negatively with HDL-C levels, without reaching statistical
significance. Further studies with a longer follow-up are needed to assess whether the
increased abundance of this genus is in fact metabolically detrimental to the host.

Fusobacterium abundance was also significantly increased in the atherogenic dyslipi-
demia group and showed a negative correlation with HDL-C levels before bariatric surgery.
This is consistent with previous studies reporting higher abundance of this genus in subjects
with metabolic unhealthy obesity, hypertriglyceridemia and T2D [16,45,59]. Although the
mechanism is unclear, several studies suggest that genera highly abundant in metabolic
disorders such as Fusobacterium are involved in inflammatory processes, possibly altering
gut barrier permeability [60].

Of all macronutrients assessed in the FFQ, PUFA intake and PUFA/SFA ratio were
significantly lower AD cases than in controls, as previously described for dyslipidemia
and other metabolic diseases [61]. Although dietary factors are known to modulate gut
microbiota composition, only four of the 26 genera were significantly associated with
PUFA/SFA intake ratio: Akkermansia, Ruminiclostridium 6, Hydrogenoanaerobacterium and
Odoribacter. This suggests that external factors other than diet, and host-related factors such
as genetic variation, also can modulate gut microbiota composition [18]. In this regard,
Christensenellaceae, Odoribacter and Tenericutes phylum abundance, which was increased
in controls, has been found to be highly heritable across multiple populations [48,62].
Because the Mexican population has a high prevalence of atherogenic dyslipidemia, and a
particular genetic architecture conferring increased risk of dyslipidemia, studies analyzing
the relationships of genetic variation, microbiota composition and dyslipidemia are required
in this population.

Several studies have reported that RYGB causes significant changes in microbiota
composition [63]. In the present study, one year after surgery only 2 SCFA-producing
genera, which were decreased in AD patients, were significantly associated with lipid
levels: [Eubacterium] eligens group with higher HDL-C levels and [Eubacterium] xylanophilum
group with lower triglyceride levels. In a previous study, [Eubacterium] eligens group showed
a strong and negative correlation with visceral abdominal fat area and triglyceride levels,
and a positive correlation with HDL-C levels [64]. Likewise, [Eubacterium] xylanophilum
group showed a negative association with body weight and total serum cholesterol lev-
els [65]. [Eubacterium] xylanophilum is a potent butyrate-producing bacterium in the gut.
Butyrate increases after RYGB surgery in humans and murine models [66]. It has been
suggested that the beneficial effect of butyrate on diet-induced obesity and atherosclerosis
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risk is mediated by the regulation of the expression of genes involved in lipid and glucose
metabolism [67,68]. Although the abundance of these genera increased after surgery in our
AD patients, only [Eubacterium] xylanophilum was significantly more abundant. Whether
these SCFA-producing genera play a relevant role in lipid profile improvement after RYGB
surgery requires further study.

Some limitations of the study should be acknowledged. Firstly, this was a cross-
sectional study, not allowing to establish a causal relationship between the identified genera
and AD. The associations were adjusted for confounders such as BMI, but not for other
microbiota modulators such as statin use [69]. Because we used 16rRNA gene sequencing,
bacterial metagenome sequencing is required to better identify the species and metabolic
pathways associated with atherogenic dyslipidemia. Moreover, gut microbiota metabolites
with a possible role in dyslipidemia-related mechanisms such as SCFA and LPS were not
measured, and PUFA/SFA intake was not determined in subjects with obesity undergoing
bariatric surgery. Finally, as we only included 20 RYGB patients, the associations with lipid
profiles found in RYGB patients need to be confirmed in larger cohorts.

5. Conclusions

In conclusion, SCFA-producing genera were significantly more abundant in the control
group without atherogenic dyslipidemia, and some were associated with a better lipid
profile in RYGB patients 12 months after surgery. The significantly lower diversity of the gut
microbiota observed in atherogenic dyslipidemia patients was accompanied by increased
abundance of potentially pathogenic LPS-producing bacteria such as Escherichia-shigella.
To our knowledge, this is the first study assessing the association of gut microbiota with
atherogenic dyslipidemia, and its impact on serum lipid levels after bariatric surgery.
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