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IL-33 Depletion in
COVID-19 Lungs

To the Editor:

IL-33 is an alarmin that plays an integral role in lung
homeostasis through its actions in wound repair,
fibrosis, and remodeling processes.1 Stored in the
nucleus, IL-33 is released to the cytoplasm and
extracellular fluids following insult or damage that was
induced by various infectious, noxious, or
environmental agents.2 In addition to its role in allergic
asthma,3,4 studies have demonstrated elevated IL-33 in
COPD plasma,5 COPD airways,1 and idiopathic
pulmonary fibrosis (IPF) lung tissues6; however, a
comparative analysis of lung IL-33 expression in the
setting of infectious sequalae are lacking. Infection with
SARS-CoV-2 causes an inflammatory cascade that
results in reduced diffusion capacity, hypoxia, and
death.7,8 The Rapid Evidence Appraisal for COVID-19
Therapies (REACT) COVID investigators screened
serum from 100 subjects with COVID-19 for cytokines
(ie, IL-6, tumor necrosis factor, IL-8, IL-1ß, granulocyte-
macrophage colony-stimulating factor, IL-33,
interferon-ɣ, IL-10) and found that increased serum IL-
33 levels (as well as tumor necrosis factor) were
independently predictive of poor outcomes with SARS-
CoV-2 in patients <70 years old (adjusted OR for IL-33,
11.14; 95% CI, 1.01-123.72).9 The objective of this study
was to characterize IL-33 expression in the lungs of
patients with fulminant COVID-19, comparing this
expression with that observed in other inflammatory
lung diseases.

De-identified, postmortem lung sections of patients with
COVID-19 (N ¼ 8; age, 35 to 85 years; female, 25%;
smokers, 50%; hypertensive, 87.5%; obese, 50%; diabetic,
62.5%; vascular disease, 50%) were obtained from the
University of Nebraska Medical Center institutional
review board-approved lung and/or cardiology bio-
banks. De-identified samples from normal human lungs
(“controls”) deemed unsuitable for transplantation (N ¼
7; age range, 19 to 59 years; female, 14.3%; smokers,
57%), IPF (N ¼ 4; age range, 47 to 69 years; female,
25%), COPD (N ¼ 6; age range, 57 to 64 years; female,
50%), and post-COVID fibrosis (N ¼ 1) with limited
clinical information were obtained from explanted lungs
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from the lung transplant bio-bank through an honest
broker. Sections were stained with human anti-IL-33
(R&D Systems, AF3625, Lot #YYZ0918051, 2.5 mg/100
mL), prosurfactant protein C (Millipore Sigma, AB3786,
Lot #3466551, 1:200), and vimentin (Abcam, AB 92547,
Lot #GR3258719-9, 1:200). Donkey anti-goat
(AlexaFluorPlus555, A32816, Lot #VB299353) and anti-
rabbit (AlexaFluor488, A21206, Lot #2156521) from
Thermo Fisher at 1:100 dilutions were used.
Photographs (10 per lung section per patient) of lung
parenchyma were taken from the entire section under a
Zeiss fluorescent microscope (Zeiss Observer.Z1 [Zeiss,
White Plains, NY]) at �20 magnification. A total of 11
COVID-19 sections (each patient with one section,
except three patients had two sections each, representing
different regions of the lung) were included. The
integrated densities (the product of area and mean gray
value) of each protein were measured as single color on
black background with color threshold by Image J
software (version: 2.1.0/1.53c). Statistical analysis was
conducted with averaged densities of each patient with
Prism 9 software (version: 9.0.0) with the use of the
Mann-Whitney test vs control group; a probability value
of <.05 was accepted as statistically significant.

Tissue IL-33 expression was increased significantly in
IPF (6.57-fold; P ¼ .0012) and COPD (3.91-fold;
P ¼ .0012) compared with control subjects, whereas
patients with COVID-19 had low to negligible IL-33
expression that was significantly reduced as compared
with control subjects (0.03-fold; P ¼ .0003) (Fig 1A-C).
Costaining with prosurfactant protein C was used to
assess type II alveolar epithelial cells (AEC2); vimentin
stain was used to assess mesenchymal cells (ie,
fibroblasts, smooth muscle cells, and endothelial cells)
and macrophages (Fig 1A-B). In control subjects, IL-33
expression was predominately nuclear and localized to
endothelial cells. In comparison, patients with IPF and
COPD demonstrated increased nuclear and
cytoplasmic IL-33 expression in endothelial cells,
macrophages, and AEC2. Minimal expression of IL-33
was demonstrated in COVID-19 lungs in some
vimentinþ endothelial cells. Vimentin staining was
increased in COVID-19 (2.15-fold; P ¼ .0093) and IPF
(1.74-fold; P ¼ .0424) as compared with control
subjects with no difference between COPD and control
subjects (Fig 1D). As compared with control subjects,
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Figure 1 – Lung expression of IL-33, vimentin and prosurfactant protein C among healthy control subjects, idiopathic pulmonary fibrosis , COPD,
COVID, and post-COVID-19 fibrosis. Photomicrographs (10 per lung section per patient) were taken of the entire lung section under a (Continued)
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AEC2 numbers were decreased in COVID-19 (0.01-
fold; P ¼ .0003) and COPD (0.43-fold; P ¼ .0047) lungs
with no difference between IPF and control subjects
(Fig 1E). In post-COVID fibrosis, IL-33, vimentin, and
AEC2 were all increased to levels at or above that
demonstrated in COPD and IPF (Fig 1A-E).

Lung tissue IL-33 was expressed in basal epithelial cells,
AEC2, endothelial cells, fibroblasts, macrophages, and
other progenitor cells with markedly increased
expression in COPD and IPF. However, IL-33 was
nearly entirely depleted from the lung tissue of subjects
with COVID with negligible availability or reserve in the
nucleus of any lung cell. Five of eight COVID-19 lungs
demonstrated extracellular or cytoplasmic IL-33
expression, but at extremely low levels to suggest release
and depletion. These findings also corresponded to a
near absence of prosurfactant protein Cþ AEC2 in the
COVID-19 lungs potentially to suggest cellular death
and/or lack of progenitor epithelial cells to aid in lung
repair and recovery processes. There was wider patient
variability in vimentin expression with COVID-19,
which could reflect variation in time course of COVID
infection (timing unknown). Similar to COVID-19,9

serum IL-33 levels are also increased with influenza and
lung IL-33 increases in healthy control subjects who
were infected with influenza.10 However, there remains a
gap of knowledge as to whether other fulminant
infectious respiratory diseases are also associated with
IL-33 exhaustion.

Corticosteroids are used commonly in COVID-19 and
can down-regulate several cytokines,11 but IL-33 has
been recognized to be nonresponsive to glucocorticoid
therapy.3,4 Moreover, all bio-banked lungs received
glucocorticoids in the standard optimization procedure
before harvest. It remains possible that circulating IL-33-
producing cells are also important in the response to
SARS-CoV-2 infection; however, the striking depletion
of lung tissue IL-33 suggests the importance of a lung
compartment-specific source of IL-33. It is also noted
that IL-33 is cleaved to a number of inflammatory
products that potentially were not detected; however, the
antibody that was used recognizes mature and cleaved
forms through recognition of the Ser112-Thr270 amino
Figure 1 | (Continued) Zeiss fluorescent microscope (Zeiss) at �20 magnific
yellow. A, Vimentin (green), IL-33 (red), and DAPI (blue) stains and a mer
Prosurfactant protein C (green), IL-33 (red), DAPI (blue) stains and a merge
plots depict median of averaged integrated densities per each patient for IL-
values are averaged from ten images per section per patient for the respective p
protein C, 20 images (ten from vimentin and ten from prosurfactant protein C
following manner: #P < .05; ##P < .01; ###P < .0001. IPF ¼ idiopathic pulm
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acid sequence of IL-33. Nonetheless, these studies
underscore the complexity of IL-33 in lung disease
because lung IL-33 expression was increased strikingly
in chronic lung disease, whereby serum IL-33 levels can
also be elevated variably.5,6 IL-33 is a key mediator not
only in danger signaling but also in wound repair and
lung recovery processes that can be marked by
dysregulated fibrosis. Investigating IL-33 levels in the
lung of survivors of COVID-19 would also provide
insight into restoration of IL-33 in normal homeostasis.
Indeed, IL-33 and AEC2 expression was increased in
post-COVID fibrosis lung to support these future
studies. Whether replenishment of IL-33 by lung
progenitor cells as observed in chronic disease states
would be beneficial or harmful in the setting of
overwhelming infection is not known. In contrast,
blocking viral-mediated IL-33 release early in the
infectious process could be explored. When an integral
role of IL-33 in Th2 diseases is considered, future studies
could also use asthmatic lung samples in comparison
studies. A limitation of this study is that IL-33 protein
expression was assessed by immunohistochemistry
because of availability; IL-33 investigations in various
compartments that include lavage fluid, tissue, and
serum at both protein and gene expression level to
inform the role of IL-33 fully in SARS-CoV-2 are
warranted.

In conclusion, these studies strengthen the relationship
of IL-33 in COVID-19 to suggest that additional and
longitudinal assessments are warranted to understand
the mechanisms and timing of lung IL-33 expression
and regulation for promoting damage or driving wound
repair processes to inform potential interventional
strategies.
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