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A B S T R A C T

Background: Metabolic reprogramming plays an essential role on lymphoma progression. Dysregulation of
glutamine metabolism is implicated in natural-killer T-cell lymphoma (NKTCL) and tumor cell response to
asparaginase-based anti-metabolic treatment.
Methods: To understand the metabolomic alterations and determine the potential therapeutic target of
asparaginase, we assessed metabolomic profile using liquid chromatography-mass spectrometry in serum
samples of 36 NKTCL patients, and integrated targeted metabolic analysis and RNA sequencing in tumor sam-
ples of 102 NKTCL patients. The biological function of solute carrier family 1 member 1 (SLC1A1) on metabolic
flux, lymphoma cell growth, and drug sensitivity was further examined in vitro in NK-lymphoma cell line
NK-92 and SNK-6, and in vivo in zebrafish xenograft models.
Findings: In NKTCL patients, serummetabolomic profile was characterized by aberrant glutamine metabolism
and SLC1A1 was identified as a central regulator of altered glutaminolysis. Both in vitro and in vivo, ectopic
expression of SLC1A1 increased cellular glutamine uptake, enhanced glutathione metabolic flux, and induced
glutamine addiction, leading to acceleration of cell proliferation and tumor growth. Of note, SLC1A1 overex-
pression was significantly associated with PD-L1 downregulation and reduced cytotoxic CD3+/CD8+ T cell
activity when co-cultured with peripheral blood mononuclear cells. Asparaginase treatment counteracted
SLC1A1-mediated glutamine addiction, restored SLC1A1-induced impaired T-cell immunity. Clinically, high
EAAT3 (SLC1A1-encoded protein) expression independently predicted superior progression-free and overall
survival in 90 NKTCL patients treated with asparaginase-based regimens.
Interpretation: SLC1A1 functioned as an extracellular glutamine transporter, promoted tumor growth through
reprogramming glutamine metabolism of NKTCL, while rendered tumor cells sensitive to asparaginase treat-
ment. Moreover, SLC1A1-mediated modulation of PD-L1 expression might provide clinical rationale of co-tar-
geting metabolic vulnerability and immunosuppressive microenvironment in NKTCL.
Funding: This study was supported, in part, by research funding from the National Natural Science Founda-
tion of China (82130004, 81830007 and 81900192), Chang Jiang Scholars Program, Shanghai Municipal Edu-
cation Commission Gaofeng Clinical Medicine Grant Support (20152206 and 20152208), Clinical Research
Plan of SHDC (2020CR1032B), Multicenter Clinical Research Project by Shanghai Jiao Tong University School
of Medicine (DLY201601), Shanghai Chenguang Program (19CG15), Shanghai Sailing Program
(19YF1430800), Medical-Engineering Cross Foundation of Shanghai Jiao Tong University (ZH2018QNA46),
and Shanghai Yi Yuan Xin Xing Program.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Natural killer T-cell lymphoma (NKTCL) is the most aggressive
extranodal lymphoma and closely related to Epstein-Barr virus infec-
tion [1]. Recurrent somatic gene mutations are major genetic
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Research in context

Evidence before this study

NKTCL is a malignant proliferation of CD56+/cytoCD3+ lympho-
cytes with aggressive clinical course and strong association of
Epstein-Barr virus infection. Asparaginase-containing chemo-
therapy may target tumor cell metabolism and is effective in
treating NKTCL. With clinical application of immune checkpoint
inhibitors, it is imperative to understand the underlying mecha-
nism of metabolic reprogramming with immune modulation in
NKTCL.

Added value of this study

We assessed metabolomic profile using LC-MS and identified
SLC1A1 as a central regulator of aberrant glutamine metabolism
in NKTCL. SLC1A1 enhanced tumor cell proliferation in a gluta-
mine-dependent manner, and independently predicted favor-
able clinical response to asparaginase-based regimens. More
importantly, we found that SLC1A1 downregulated PD-L1
expression and exhibited immunosuppressive activity. Aspara-
ginase not only counteracted SLC1A1-mediated glutamine
addiction, but also restored SLC1A1-induced impaired T-cell
immunity.

Implications of all the available evidence

SLC1A1 induced aberrant glutamine metabolism and resulted in
favorable prognosis to asparaginase-based anti-metabolic
treatment in NKTCL. Co-targeting metabolic vulnerability and
immunosuppressive microenvironment could be potential
therapeutic strategy of NKTCL.
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alterations of NKTCL, involving RNA helicase genes, tumor suppres-
sors, JAK�STAT pathway, epigenetic modifiers, and RAS-MAPK path-
way [2�4]. Integrating analysis of genomic and transcriptomic
features of NKTCL, molecular subtypes have been revealed as the
TSIM subtype (based on mutations in JAK-STAT pathway and TP53, as
well as amp9p24.1/JAK2 locus, amp17q21.2/STAT3/5B/5A locus,
amp9p24.1/PD-L1/2 locus, and del6q21), the MB subtype (based on
MGA mutation and 1p22.1/BRDT LOH), and the HEA subtype (based
on HDAC9, EP300, and ARID1Amutation), which differ in cell of origin,
Epstein-Barr virus gene expression, transcriptional signatures, and
therapeutic targets [5]. Metabolic reprogramming is another hall-
mark of lymphoma progression and has also provided clues for
NKTCL therapy [6]. Primarily resistant to anthracycline-based chemo-
therapy, clinical outcomes of the NKTCL patients are significantly
improved by asparaginase-based anti-metabolic treatment [7]. Aber-
rant glutamine metabolism attributes to asparagine synthesis of
NKTCL cells and response to asparaginase [6]. Previous report showed
that asparagine synthetase (ASNS) gene encodes the enzyme cata-
lyzed the synthesis of asparagine from aspartate and glutamine, and
indicates asparaginase resistance in NKTCL [8]. It is therefore impor-
tant to better understand the metabolomic feature and determine
the potential therapeutic target of asparaginase in NKTCL.

Tumor-derived metabolites detected in serum represent major
cancer by-products [9]. As our previous reports in peripheral T-cell
lymphoma (PTCL) and diffuse large B-cell lymphoma (DLBCL), distinct
serummetabolomics offer reliable biomarkers of diagnosis, prognosis
prediction and disease monitoring [10,11]. Solute carrier (SLC) family
is one of the main transporter superfamilies, transporting inorganic
ions, sugars, and amino acids needed for cell growth and vital cellular
processes [12]. In cancer cells, dysregulation of SLC family leads to
metabolic reprogramming and tumor progression [13]. For example,
increased expression of SLC2A5 enhances fructose utilization, exacer-
bates malignant phenotype and predicts inferior prognosis in acute
myeloid leukemia [14] and in B-cell acute lymphoblastic leukemia
[15]. SLC7A5 is overexpressed in PTEN-/- T-cell acute lymphoblastic
leukemia and related to leukemic transformation induced by PTEN
deletion [16]. Solute carrier family 1 member 1 (SLC1A1, also known
as EAAT3 for protein form), the predominant amino acid transporter
of glutamate and aspartate [12], is associated with disease develop-
ment and clinical outcomes in solid tumors such as breast cancer [17]
and osteosarcoma [18]. In the present study, metabolomic profile of
NKTCL was assessed and compared with that of DLBCL and PTCL,
revealing aberrant glutamine metabolism in NKTCL. SLC1A1 was
overexpressed in NKTCL and mediated glutamine addiction, contrib-
uting to unique metabolomic feature with therapeutic potential.

2. Methods

2.1. Ethics statement

The study was approved by the Shanghai Ruijin Hospital review
board and informed consent was obtained in accordance with the
Declaration of Helsinki. The research program and all the related pro-
cedures were carried out according to standard operating procedures
for Good Clinical Laboratory Practice standards (Ref no.: 2020-108).

2.2. Patients

Between July 2003 and May 2019, a total of 175 patients with
newly diagnosed NKTCL, 34 patients with newly diagnosed PTCL, and
33 patients with newly diagnosed DLBCL, were included in this study
(Figure S1). Histologic diagnoses were established according to WHO
classification [19]. Serum samples (n=138) and tumor biopsies
(n=175) of NKTCL patients were collected at diagnosis and further
subjected to metabolomic assay (n=36), targeted metabolomic analy-
sis (n=102), RNA-sequencing (RNA-seq, n=128), and immunohis-
tochemistry (n=147). As for NKTCL treatment, induction regimens
consisted of 4 to 8 cycles of CHOP/CHOP-like regimens (N=68) or 4 to
6 cycles of asparaginase-based regimens (MESA [methotrexate, eto-
poside, dexamethasone, and pegaspargase]/ESA [etoposide, dexa-
methasone, and pegaspargase] sandwiched with radiotherapy in 89
Ann Arbor stage I-II patients enrolled in NCT02825147 [6] and
NCT02631239, and MESA in 18 Ann Arbor stage III-IV patients).
Sixty-four age- and sex-matched healthy volunteers were referred as
the control groups for metabolomics assay.

Baseline information was collected prospectively including
patients’ age, gender, ECOG performance status, Ann Arbor stage,
Extranodal involvement, serum lactate dehydrogenase. The thera-
peutic regimens, treatment response and follow-up data was also
prospectively collected (Table 1).

2.3. Metabolomic assay

Serum metabolomic profiles were assessed by liquid chromatog-
raphy-mass spectrometry (LC-MS, Ultimate 3000LC, Orbitrap Elite
Thermo, San Jose, CA, USA), as previously described [6]. Metabolic
data were analyzed by SIEVE (Thermo) and SIMCA-P software (Ume-
trics AB, Umea� , Sweden). Quantification of targeted amino acids in
serum samples and cells were assessed by high-performance liquid
chromatography-mass spectrometry (LC-MS/MS, Shimadzu LC20AD,
Kyoto, Japan and API 3200MD TRAP, Framingham, MA, USA) after
pretreatment according to standard procedures [6].

2.4. RNA sequencing

Library construction was performed with Illumina TruSeq RNA
Sample Prep Kit (Cat# RS-122-2001, RS-122-2002, for high quality



Table 1
Comparison of clinical characteristics of NKTCL patients according to tumor EAAT3 expression (n=147).

High EAAT3expression (n=117) Low EAAT3expression (n=30) P value

Age
�60 years
>60 years

93 (79.5%)
24 (20.5%)

23 (76.7%)
7 (23.3%)

0.735

Gender
Female
Male

39 (33.3%)
78 (66.7%)

9 (30.0%)
21 (70.0%)

0.728

ECOG performance status
0/1
�2

94 (80.3%)
23 (19.7%)

24 (80.0%)
6 (20.0%)

0.967

Ann Arbor stage
I-II
III-IV

99 (84.6%)
18 (15.4%)

22 (73.3%)
8 (26.7%)

0.149

Extranodal involvement
0/1
�2

100 (85.5%)
17 (14.5%)

24 (80.0%)
6 (20.0%)

0.462

Serum lactate dehydrogenase
Normal
Increased

59 (50.4%)
58 (49.6%)

16 (53.3%)
14 (46.7%)

0.776

Regimens
Asparaginase-based
Anthracycline-based

71 (60.7%)
46 (39.3%)

19 (63.3%)
11 (36.7%)

0.790

Treatment response*
Overall response rate (ORR)
Complete remission rate (CR)

63 (88.7%)
61 (85.9%)

10 (52.6%)
10 (52.6%)

<0.001
0.002

P values were calculated by Pearson’s chi-square test.
* Treatment response was analyzed in patients receiving asparaginase-based regimens.
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frozen samples, n=84) and TruSeq RNA Exome Prep Kit (Cat#
20020189, 20020490, and 20020183, for low quality frozen samples
and FFPE samples, n=44). Paired-end sequencing was performed
using Illumina Hiseq X10. The raw RNA-seq reads were aligned to
human reference genome hg19 using Hisat2 (v2.0.5) [20] and STAR
(v2.5.2b) [21]. All gene expression levels in RNA-seq data were esti-
mated as previously described [5].

2.5. Immunohistochemistry

Immunohistochemistry was performed with commercial antibod-
ies anti-EAAT3 antibody (Cat# ab124802, RRID: 10974334, Abcam,
Cambridge, UK) or anti-ASNS antibody (Cat# ab126254, RRID:
11127885, Abcam). Protein expression was scored semi-quantita-
tively based on staining intensity (SI) and percentage of positive cells
(PP) [22]. Immunoreactive score=SI£PP. SI was determined as 0, neg-
ative; 1, weak; 2, moderate; and 3, strong. PP was defined as 1, <25%;
2, 25-50%; 3, 50-75%; and 4, 75-100% positive cells. Immunoreactive
score <4 was referred as “- /+” (Low EAAT3 or ASNS expression),
Immunoreactive score �4 was “++” (High EAAT3 or ASNS expres-
sion).

2.6. Cell line and reagents

Natural-killer cell line NK-92 (Cat# CRL-2407) was available from
American Type Culture Collection (Manassas, VA, USA). SNK-6 was
kindly provided by Professor Norio Shimizu and Yu Zhang of Chiba
University. Cell lines were authenticated using Short Tandem Repeat
(STR) analysis (Genetic Testing Biotechnology, STR Profile Reports in
Supplemental Data). Recent mycoplasma testing has been performed
with Lonza LT07-705 MycoAlertTM PLUS Mycoplasma Detection Kit.
NK-92 cells were cultured in a-MEM medium supplemented with
10% FBS, 10% HBS and recombinant human IL-2 (20ng/ml). SNK-6
cells were cultured in RPMI-1640 medium supplemented with 10%
FBS, 10% HBS and recombinant human IL-2 (80ng/ml). Asparaginase
(Cat# A3809), 13C-glutamine (Cat# 184161-19-1), and glutamine
(Cat# 56-85-9) were obtained from Sigma-Aldrich (St.Louis, MO,
USA). Anti-PD-1 antibody pembrolizumab (Cat# A2005) was from
Selleck Chemicals (Houston, TX, USA).
2.7. Cell transfection

Cells were incubated overnight with viral particles containing
purified plasmids pGV367-EGFP-SLC1A1 vector, pGV367-EGFP-con-
trol vector, pGV358-EGFR-TP53-R248Q, pGV358-EGFR-TP53-R273H,
pGV358-EGFP-control vector, pGV365-EGFR-EP300-WT, or
pGV365-EGFP-control vector (MOI=50). The stably transfected
clones were selected by Green Fluorescent Proteins (GFP). Cells
were also transfected with MGA shRNA (Cat# TL317004, Origene,
Rockville, MD, USA) or SLC1A1 shRNA (Cat# TL309389, Origene)
using Lipofectamine 3000 (Cat# L3000015, Invitrogen, Shanghai,
China) transfection reagents, according to the manufacturer’s
instruction.
2.8. Analysis of 13C-glutamine uptake and the derived metabolites by
LC-MS/MS

To assess the glutamine uptake and glutamine-derived metabo-
lites, cells were cultured in glutamine-free medium supplemented
with 2 mM 13C-glutamine (Sigma-Aldrich). After incubation for 24
hours, cell lysis was collected for metabolic analysis using an UHPLC
system (1290, Agilent Technologies) with a UPLC HSS T3 column
(2.1 mm£100 mm, 1.8mm) coupled to Q Exactive mass spectrome-
ter (Thermo). The raw data were converted to the mzXML format
using ProteoWizard and processed with an in-house program,
which was developed using R and based on XCMS [23], for peak
detection, extraction, alignment, and integration. In-house MS2
database (BiotreeDB, Shanghai, China) was applied in metabolite
annotation.
2.9. Cell viability

Cells (2£105/ml) were seeded in 96-well plates and incubated
with indicated concentration of reagents. Cell growth was assessed
by CCK8 (1:10, Cat# CK04, Dojindo, Kumamoto, Japan) and the absor-
bance was measured at 450nm by spectrophotometry. The percent-
age of cell growth inhibition was calculated as treated or transfected
cells divided by untreated or non-transfected cells.
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2.10. Colony formation

Cells were mixed with an equal volume of 0.7% soft agarose and
then plated in 12-well plates and incubated for 14 days. Colony for-
mation was calculated as count of colonies with diameter more than
0.1 mm.

2.11. Quantitative real-time PCR

Total mRNA was extracted using TRIzol reagent (Cat# 15596026,
Invitrogen, Shanghai, China). Complementary DNA was synthesized
using PrimeScript RT Reagent Kit with gDNA Eraser (Cat# RR047A,
TaKaRa, Dalian, China). Quantitative real-time PCR was performed by
SYBR Premix Ex TaqTM II (Cat# RR820A, TaKaRa) and ABI ViiA 7
(Applied Biosystems) with primers as follows: SLC1A1 (Forward: 5’-
TCGAGAACACAGCAACCTCT-3’, Reverse: 5’- TCACCACCAGCACAA-
TACCT-3’), PD-L1 (Forward: 5’-GCTGCACTAATTGTCTATTGGGA -3’,
Reverse: 5’- AATTCGCTTGTAGTCGGCACC -3’), and GAPDH (Forward:
5’-GCTCATTTCCTGGTATGACAAC-3’, Reverse: 5’-CTGTGAGGAGGGGA-
GATTCA-3’) was used as an endogenous control.

2.12. In vitro co-culture system

Transwell cell culture chambers (8mM, Millipore Corporation, Bill-
erica, MA, USA) were used for co-culture assay [24]. In the co-culture
system, lymphoma cells were plated on the upper chamber, with
immune cells on the lower chamber. Immune cells were peripheral
blood mononuclear cells (PBMC) isolated from peripheral blood of
healthy volunteers using Ficoll by density gradient centrifugation. As
for recognition of NKTCL cells by T cells, the MHC genotype of NKTCL
cell lines are common and the MHC typing of PBMCs is not necessary.

2.13. Multi-color flow cytometry

Multi-color flow cytometry was carried out to assess the growth
and immune receptor expression of tumor cells and immune cells.
Co-cultured PBMC and NK-92 or SNK-6 cells were stained with com-
mercial antibodies Fixable Viability Stain 440UV (BD pharmingen
Cat# 566332, RRID:AB_2869748), anti-CD45 (BD pharmingen Cat#
563792, RRID:AB_563792), anti-CD19 (BD pharmingen Cat# 555415,
RRID: AB_398597), anti-CD3 (BD pharmingen Cat# 612940, RRID:
AB_2870222), anti-CD4 (BD pharmingen Cat# 624298, special order),
anti-CD8 (BD pharmingen Cat# 563919, RRID: AB_2722546), Ki-67
(BD pharmingen Cat# 558615, RRID: AB_647130), anti-PD-L1 (BD
pharmingen Cat# 751185, RRID: AB_2875207), anti-TIM-3 (Thermo
Fisher Scientific Cat# 35-3109-42, RRID: AB_2811801) and collected
by BD FACSymphony A5.

2.14. Xenograft zebrafish models

Cells were stained with Dil (Cat# D3911, Vybrant; Molecular
Probes, Invitrogen, 4mL/mL in 1£PBS) for 3 min followed by 10 min
on ice darkness and washed with 1£PBS for 2 times. Dil-labeled cells
were injected into the perivitelline space (PVS) of anesthetized 48hpf
(hours post fermentation) larvae at indicated concentration. Xeno-
grafts were observed under fluorescence microscope at 24hpi (hours
post injection). For treatment, cells were injected into the PVS of
anesthetized 48hpf larvae and treatment started at 24hpi. Censor of
sensitivity was death event of zebrafish in following 7 days. The con-
centration of asparaginase (0.5 IU/mL) was determined based on
patient plasma concentration.

3. Statistical analysis

Comparisons of metabolites in NKTCL, PTCL and DLBCL were
ascertained by Pearson's chi-square test. LASSO regression was used
to perform feature selection for identifying key amino acid trans-
porter factor using metabolic and RNA-seq data. The Lambda parame-
ter was determined by 10-fold cross-validation with squared-error.
As for metabolic analysis, LASSO regression was performed based on
the principal component analysis of three metabolites (glutamate,
glutamine, and aspartate). The coefficients of variables were calcu-
lated by fitting a general linear model of Gaussian distribution with
quantitative dependent variable. R package glmnet (v4.0-2) [25] was
executed for LASSO regression analysis. Progression-free survival
(PFS) was calculated from the date when treatment began to the date
when disease progression was recognized or the date of the last fol-
low-up. Overall survival (OS) was measured from the date of diagno-
sis to the date of death or the last follow-up. Survival functions were
estimated with Kaplan-Meier method and compared by log-rank
test. Univariate hazard was estimated using unadjusted Cox propor-
tional hazards models. Covariates demonstrating significance on uni-
variate analysis were included in multivariate model. All survival
analysis was performed using R (v3.5.0) or Statistical Package for the
Social Sciences (SPSS) 20.0 software (SPSS Inc., Chicago, IL). P<0.05
was considered statistically significant.

4. Role of funders

The Funders had no role in study design, data collection, data
analyses, interpretation, or writing of manuscript.

5. Results

Serum metabolomic profile revealed aberrant glutamine
metabolism in patients with NKTCL.

Serum metabolomic profile of NKTCL (n=36), PTCL (n=34), and
DLBCL (n=33) were assessed by LC-MS and identified 146, 120 and
167 distinguished metabolites of amino acids, nucleotides, carbohy-
drates, and lipids, respectively (variable importance in projection>1,
P<0.05 comparing with healthy volunteers, n=64, Table S1). Afore-
mentioned metabolites were illustrated in the overview of metabo-
lism network (Fig. 1a) using Interactive Pathways Explorer v3 (iPath
3, https://pathways.embl.de), showing that distinguished metabolites
of NKTCL (red dots) were mainly enriched in metabolic pathways
involving amino acids metabolism (yellow lines), while PTCL (dark
blue dots) and DLBCL (light blue dots) in metabolic pathways involv-
ing lipids metabolism (green lines). Indeed, percentage of distin-
guished amino acid associated metabolites was significantly higher
in NKTCL (29/146, 19.86%, Fig. 1b) than in PTCL (10/120, 8.33%,
P=0.010, chi-square test) and in DLBCL (20/167, 11.98%, P=0.022, chi-
square test), underlying a distinct metabolomic profile of NKTCL with
featured changes in amino acid metabolism. This was further
revealed by Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.kegg.jp) pathway enrichment (Table S2) using Consen-
susPathDB (http://cpdb.molgen.mpg.de). Aminoacyl-tRNA biosynthe-
sis was the most significantly altered metabolic pathway in NKTCL,
and 8 out of 15 enriched metabolism pathways (P<0.01) were related
to amino acid metabolism (Fig. 1c). Moreover, 14 out of 20 standard
amino acids were significantly upregulated in NKTCL (Fig. 1d). Among
them, glutamate, glutamine, and aspartate were the top three altered
amino acids, indicating a major role of altered glutaminolysis in
patients with NKTCL.

5.1. SLC1A1 enhanced cellular glutamine uptake and had increased
expression in patients with NKTCL

Among the 65 SLC families of transporters, 26 transporters were
responsible for amino acid transportation (Table S3) [12]. To deter-
mine the key transporter affecting altered glutaminolysis in NKTCL,
quantification of 20 standard amino acids (Table S4) was performed
using previously designed targeted metabolic analysis protocol [6] in



Fig. 1. Metabolomic assay indicated aberrant glutamine metabolism in patients with NKTCL.
(a) Distinguished serum metabolites of NKTCL (red dots), PTCL (dark blue dots), and DLBCL (light blue dots), comparing with healthy volunteer, were overlaid on human meta-

bolic reference map (KEGG: hsa01100) using Interactive Pathways Explorer v3 (iPath 3). Pathways involving amino acid metabolism (yellow lines), nucleotide metabolism (red
lines), carbohydrate metabolism (purple lines) and lipid metabolism (green lines) were highlighted.

(b) Distinguished serummetabolites of NKTCL, PTCL and DLBCL, comparing with healthy volunteer, were categorized into 4 subtypes according to their relevance to amino acid,
nucleotide, carbohydrate, or lipid metabolism.

(c) KEGGmetabolic pathway enrichment by ConsensusPathDB using distinguished serummetabolites of NKTCL, comparing with healthy volunteer.
(d) Standard amino acids significantly altered in NKTCL, comparing with healthy volunteer.
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102 NKTCL patients with available serum samples. A three-metabo-
lite (glutamate, glutamine, and aspartate) model was developed
using LASSO regression on data from targeted serum metabolic anal-
ysis and paired tumor RNA-seq data (detailed in Mendeley dataset).
With the lambda at minimum mean-squared error in 10-fold cross
validation (Fig. 2a), SLC1A1 was screened out by the highest coeffi-
cient (0.724), while the coefficient of the remaining genes converged
to zero (Fig. 2b). SLC1A1 encodes the excitatory amino acid



Fig. 2. SLC1A1 enhanced glutamine uptake and was highly expressed in patients with NKTCL.
(a) LASSO regression analysis in 10-fold cross-validation was performed with selected metabolites (glutamate, glutamine, and aspartate). Two dotted vertical lines marked the

lambda at minimum and 1-s.e. mean-squared error, respectively.
(b) LASSO coefficient profiles of 26 SLC-family genes. A vertical line indicated the value of lambda at minimummean-squared error.
(c) Tumor EAAT3 expression detected by immunohistochemistry.
(d) Quantification of targeted amino acids (arranged by P values from left to right) in serum samples of NKTCL patients (n=88) according to tumor EAAT3 expression.
(e) Quantification of targeted amino acids (arranged by P values from left to right) in cytoplasm samples of NK-92 cells transfected with SLC1A1 vector or control vector.
(f) Tumor EAAT3 expression correlated with its mRNA levels in NKTCL patients (n=100).
(g) Correlation of tumor SLC1A1 mRNA expression with serum glutamine levels in NKTCL patients (n=102).
Assays in (e) were set up in 6 replicated. Data in (d), (e) and (f) were represented as mean§SD. P values in (c) were calculated by Pearson’s chi-square test. P values in (d), (e) and

(f) were calculated with unpaired t-test. P value in (g) was calculated by Pearson correlation test.
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transporter EAAT3 and is essential in glutamate transport across cell
membrane [26]. Immunohistochemistry of tumor EAAT3 expression,
which is more feasible in clinical practice, was then performed in 100
NKTCL patients with available paraffin sections. High EAAT3 expres-
sion (immunoreactive score �4, representative images in Fig. 2c) was
observed in 117 of 147 (80%) NKTCL patients (P<0.001, chi-square
test, comparing with 15% in other types of lymphoma). To identify
the key metabolite in SLC1A1/EAAT3-mediated amino acid metabolic
alteration, we performed quantification of 20 targeted amino acids
both in serum samples of NKTCL patients and in NK-92 cells. As for



Fig. 3. Increased glutamine uptake mediated by SLC1A1 enhanced glutathione metabolic flux.
(a) SLC1A1 mRNA expression (left panel) and cellular glutamine levels (right panel) in NK-92 cells transfected with SLC1A1 vector or control vector. The control vector values of

SLC1A1 mRNA expression were normalized to 1.
(b) Relative abundance (left panel) and isotope-labeled fraction (right panel) of glutamine in NK-92 cells transfected with SLC1A1 vector or control vector.
(c) Heatmaps of isotope-labeled metabolites significantly altered in NK-92 cells transfected with SLC1A1 vector, comparing with control vector. The aberrant metabolites were

enriched into the KEGG pathways indicated at left: hsa00471, D-glutamine and D-glutamate metabolism; hsa00250, alanine, aspartate and glutamate metabolism; hsa00480, gluta-
thione metabolism.

(d and e) The isotope-labeled fraction (d) and relative abundance (e) of aspartate, asparagine, GSH, and GSSG in NK-92 cells transfected with SLC1A1 vector or control vector.
(f) A schematic to show the metabolic flux of isotope-labeled glutamine.
Assays in (a, right panel) were set up in 6 replications. Assays in (b), (d) and (e) were set up in triplicate. Data in (a), (b), (d) and (e) were represented as mean §SD. P values in

(a), (b), (d) and (d) were calculated with unpaired t-test.
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serum metabolites quantification, glutamine and asparagine were
significantly decreased in NKTCL patients with high EAAT3 expres-
sion group, as compared to low EAAT3 expression group (Fig. 2d). As
for cytoplasm metabolites quantification of NK-92 cells, glutamine
was significantly increased in NK-92 cells transfected with SLC1A1
vector, as compared to control vector (Fig. 2e). Also confirmed in
transcriptional levels assessed by RNA-seq, tumor SLC1A1mRNA level
was significantly correlated with protein expression (Fig. 2f), and
negatively correlated with serum glutamine (Fig. 2g). Therefore,
SLC1A1/EAAT3 was overexpressed and enhanced cellular glutamine
uptake, leading to altered glutaminolysis in patients with NKTCL.

5.2. SLC1A1 enhanced glutathione metabolic flux and mediated
glutamine addiction

Glutamine belongs to a group of conditionally essential amino
acids, providing carbon and nitrogen source to support biosynthesis,
energetics and cellular homeostasis that necessary for tumor growth
[27]. NK-92 is the only commercially available NK phenotype (CD3-/
CD4-/CD8-/CD56+/TCR-) cell line without STAT3-activating muta-
tions (Table S5) [28�30]. To determine the biological function of
SLC1A1 on altered glutaminolysis in NKTCL, NK-92 cells were trans-
fected with SLC1A1 vector or control vector (Fig. 3a, left panel). Cellu-
lar glutamine uptake was significantly increased by ectopic
expression of SLC1A1 (Fig. 3a, right panel). Metabolic flux assay was
further performed using 13C-glutamine to trace glutamine utilization.
Cells were cultured in 2 mM 13C-glutamine (C5H10N2O3 [M+5],
MW146.0691) for 24 hours and then cell lysates were collected for
analysis. SLC1A1-transfected NK-92 cells displayed significantly
higher 13C-glutamine uptake than those transfected with control vec-
tor, mainly as isotope-labeled glutamine (Fig. 3b). Among 345 iso-
tope-labeled metabolites filtered by KEGG database (Table S6), 94
metabolites revealed significant changes of relative abundance in
SLC1A1-transfected NK-92 cells, and enriched in metabolism path-
ways, namely D-Glutamine and D-glutamate metabolism (KEGG:
hsa00471), alanine, aspartate and glutamate metabolism (KEGG:
hsa00250), and glutathione metabolism (KEGG: hsa00480) (Fig. 3c;
Table S7). The metabolic flux of glutamine was traced by calculating



Fig. 4. SLC1A1-mediated glutamine addition and malignant phenotype in NKTCL.
(a, b, and c) SLC1A1 expression (a), cell proliferation (b) and colony formation (c) of NK-92 cells transfected with SLC1A1 vector or control vector and SNK-6 cells transfected

with SLC1A1 shRNA or scramble.
(d) Cell viability of NK-92 cells transfected with SLC1A1 vector or control vector under glutamine-depleted medium.
(e and f) Cell growth inhibition (e) and colony formation (f) of NK-92 cells transfected with SLC1A1 vector under indicated culture medium.
(g) IC50 of NK-92 cells transfected with SLC1A1 vector or control vector and SNK-6 cells transfected with SLC1A1 shRNA or scramble treated with asparaginase.
(h) Tumor formation of NK-92 cells transfected with SLC1A1 vector or control vector under indicated number of injected cells in xenograft zebrafish models.
(i) Survival of xenograft zebrafish models injected with NK-92 cells transfected with SLC1A1 vector or control vector upon asparaginase treatment (0.5 IU/mL).
All the assays were set up in triplicate. Data in (a), (b), (c), (d), (e), (f), (g) and (h) were represented as mean § SD. P values in (a), (b), (c), (d), (e), (f), (g) and (h)were calculated

with unpaired t-test. P values in (i) were calculated with log-rank test.
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the fraction of isotope-labeled carbons in total pool. Isotope-labeled
aspartate (M+4), asparagine (M+2), glutathione (GSH, M+5), glutathi-
one disulfide (GSSG, M+5) represented the main forms of metabolites
(Fig. 3d), suggesting that uptake of extracellular glutamine may serve
as the carbon source for aspartate/asparagine and GSH/GSSG metabo-
lism. As for relative abundance, increased metabolic end-product
GSSG, while decreased upstream metabolic intermediates aspartate,
asparagine, and GSH, were observed in SLC1A1-transfected NK-92
cells (Fig. 3e). Together, SLC1A1 enhanced cellular glutamine uptake
and regulated glutathione metabolism in NKTCL (Fig. 3f).

Meanwhile, low expression of ASNS was observed in 58 of the 68
NKTCL patients (85%) as assessed by immunohistochemistry (Fig. S2a)
and negatively correlated with prognosis of asparaginase-treated
patients (Fig. S2b) [8]. In according with the metabolic flux assay,
EAAT3-transported glutamine was the major source for glutathione
metabolism rather than ASNS-catalyzed synthesis of asparagine.

5.3. Asparaginase counteracted SLC1A1-mediated glutamine addiction
and tumor cell proliferation in NKTCL

Altered glutaminolysis may exacerbate malignant phenotypes in
cancers [31]. Ectopic expression or molecular silencing of SLC1A1 was
induced by transfecting with SLC1A1 vector or SLC1A1 shRNA in NK-
92 and SNK-6 cells, respectively (Fig. 4a). Indeed, SLC1A1 remarkably
accelerated cell proliferation (Fig. 4b) and promoted colony forma-
tion (Fig. 4c). Glutamine addiction in SLC1A1-transfected NK-92 cells
was further demonstrated by cell viability, which was reduced when
cultured in medium lack of glutamine and interlinked asparagine
(Fig. 4d), but rescued by the addition of glutamine (Fig. 4e). Similar
results were obtained for colony formation assay (Fig. 4f). Together,
these data confirmed that SLC1A1 acted as an extracellular glutamine
transporter, promoting tumor cell proliferation through reprogram-
ming glutamine metabolism in NKTCL.

Asparaginase is a key anti-metabolic agent to treat NKTCL, exert-
ing therapeutic effect through depleting extracellular asparagine and
inhibiting glutamine-dependent tumor cell growth [32]. SLC1A1-
overexpressing NK-92 cells were more sensitive to asparaginase than
those transfected with control vector (24h IC50:2.48 vs 33.40 IU/mL,
P=0.003, 48h IC50: 0.36 vs 2.54 IU/mL, P<0.001, unpaired t-test,
Fig. 4g, left panel). SLC1A1-downregulating SNK-6 cells were less sen-
sitive to asparaginase than those transfected with scramble (24h
IC50: 14.23 vs 10.45 IU/mL, P=0.035, 48h IC50: 9.45 vs 5.43 IU/mL,
P<0.001, unpaired t-test, Fig. 4f, right panel). Similar results were
observed upon treatment with glutamine inhibitor BPTES. SLC1A1-



Fig. 5. Asparaginase treatment increased NKTCL cell sensitivity to anti-PD-1 antibody.
(a) SLC1A1 expression on NK-92 cells transfected with SLC1A1 vector or control vector (upper panel) and SNK-6 cells transfected with SLC1A1 shRNA or scramble (lower panel).
(b) Ki-67 and TIM-3 positivity of CD3+/CD8+ T cells in PBMC co-cultured with NK-92 cells (upper panel) or SNK-6 cells (lower panel) transfected with indicated vectors or

shRNAs in medium with or without extra glutamine (2mM).
(c) PD-L1 mRNA expression in NK-92 cells transfected with SLC1A1 vector or control vector (upper panel) and SNK-6 cells transfected with SLC1A1 shRNA or scramble (lower

panel) upon asparaginase (10 IU/mL) treatment. The control vector or scramble values were normalized to 1, respectively.
(d and e) Median fluorescence intensity of PD-L1 (d) on NK-92 cells (upper panel) or SNK-6 cells (lower panel), as well as Ki-67 and TIM-3 positivity of CD3+/CD8+ T cells in

PBMC co-cultured with NK-92 cells (upper panel) or SNK-6 cells (lower panel) upon indicated treatment.
(f) Gene expression correlation of tumor SLC1A1 with PD-L1 in NKTCL patients (n=128).
(g) Tumor EAAT3 expression according to the TSIM, HEA, and MB subtypes in NKTCL patients (n=100).
(h) PD-L1 mRNA expression of NK-92 cells transfected with TP53 R248Q, TP53 R273H, EP300 vector, or MGA shRNA upon indicated treatment.
(i) Ki-67 positivity of CD3+/CD8+ T cells in PBMC co-cultured with NK-92 cells transfected with TP53 R248Q, TP53 R273H, EP300 vector, or MGA shRNA upon indicated

treatment.
Assays in (a), (b), (c), (d), (e), (h), and (i) were set up in triplicate. Data in (a), (b), (c), (d), (e), (h), and (i) were represented as mean § SD. P values in in (a), (b), (c), (d), (e), (h), and

(i) were calculated with unpaired t-test. P value in (f) was calculated with Pearson correlation test. P values in (g) were calculated by Pearson’s chi-square test.
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overexpressing NK-92 cells were more sensitive to BPTES than those
transfected with control vector (24h IC50: 56.33 vs 123.40 mM,
P<0.001, 48h IC50: 41.67 vs 91.12 mM, P=0.004, unpaired t-test, Fig.
S3, left panel). SLC1A1-downregulating SNK-6 cells were less sensi-
tive to BPTES than those transfected with scramble (24h IC50: 160.27
vs 128.25 mM, P=0.011, 48h IC50: 74.79 vs 25.03 mM, P<0.001,
unpaired t-test, Fig. S3, right panel). Meanwhile, zebrafish xenograft
models injected with NK-92 cells bearing ectopic expression of
SLC1A1 also presented enhanced xenograft tumor formation rate
(Fig. 4h) and prolonged survival time upon asparaginase treatment
(Fig. 4i). Therefore, dependence of extracellular glutamine induced
by SLC1A1 on NKTCL cells were overcome by asparaginase treatment
both in vitro and in vivo, suggestive a potential mechanism of target-
ing metabolic vulnerabilities in NKTCL.

5.4. Asparaginase restored SLC1A1-induced impaired T-cell immunity
and sensitized tumor cells to anti-PD-1 antibody

Glutamine metabolism can modulate immunological states in
cancers [33]. To mimic in vivo situation, NK-92 or SNK-6 cells were
Fig. 6. Clinical outcome according to EAAT3 expression in patients with NKTCL.
(a and b) Progression-free survival (PFS, upper panel) and overall survival (OS, lower pa

patients (b) treated with asparaginase-based regimens.
(c) Tumor EAAT3 expression in stage I-II or III-IV patients.
(d) Multivariate analysis of predictors indicated on the left (EAAT3 and IPI, EAAT3 and P

interval (95% CI) and P value were indicated on the right of each forest plot.
P values in (a) and (b) were calculated with log-rank test. P value in (c) was calculated w

ards models.
co-cultured with PBMC. Ectopic expression of SLC1A1 was induced in
NK-92 cells transfected with SLC1A1 vector (Fig. 5a, upper panel) and
molecular silencing of SLC1A1 was induced in SNK-6 cells transfected
with SLC1A1 shRNA (Fig. 5a, lower panel). Tumor cells avidly con-
sume and compete T cells for amino acids by overexpressing amino
acid transporter [34]. As revealed by multi-color flow cytometry,
high SLC1A1 (NK-92 cells transfected with SLC1A1 vector, or SNK-6
cells transfected with scramble) provoked significantly decreased Ki-
67 and increased TIM-3 expression on CD3+/CD8+ T cells, as com-
pared to those with low SLC1A1 (NK-92 cells transfected with control
vector, or SNK-6 cells transfected with SLC1A1 shRNA), respectively
(Fig. 5b), indicating that SLC1A1 overexpression impaired cytotoxic T-
cell function. To demonstrate the relevance of glutamine competition
between tumor cells and T cells, complementary study was per-
formed and showed that the addition of glutamine (2 mM) restored
CD3+/CD8+ T cell function by increasing Ki-67 and decreasing TIM-3
expression (Fig. 5b). No significant change was observed in CD3
+/CD4+ T cells (Fig. S4). NK-92 cells transfected with SLC1A1 vector
showed lower PD-L1 level than those transfected with control vector
and SNK-6 cells transfected with shRNA SLC1A1 showed higher PD-L1
nel) according to tumor EAAT3 expression in all the patients (a), and stage I-II or III-IV

INK, or EAAT3 and PINK-E) for PFS and OS in NKTCL. Hazard ratio (HR), 95% confidence

ith Pearson’s chi-square test. P values in (d) was calculated with Cox proportional haz-
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level than those transfected with scramble, both of which were upre-
gulated by asparaginase (10 IU/mL) (Fig. 5c), underlying an alterna-
tive mechanism of tumor escape from immune surveillance.
Moreover, when treated with anti-PD-1 antibody pembrolizumab,
NK-92 and SNK-6 cells pretreated with asparaginase (10 IU/mL, 24h)
elicited significantly increased expression of PD-L1 of NKTCL cells
(Fig. 5d), increased Ki-67, but decreased TIM-3 expression of CD3
+/CD8+ T cells in PBMC (Fig. 5e), as compared to untreated cells in co-
culturing systems. SLC1A1 (chr9: 4,490,427-4,587,469) was located at
the same chromosome segment of JAK2 (chr9: 4,984,390-5,129,948)
and PD-L1 (also known as CD274, chr9: 5,450,503-5,470,567). A nega-
tive correlation between SLC1A1 and PD-L1 was observed (Fig. 5f).
Based on the fact that JAK-STAT pathway molecules (JAK2, JAK3,
STAT3, STAT5A, and STAT5B) frequently mutated in NKTCL [5] may
also affect cytotoxic T-cell proliferation [35] and tumor PD-L1 expres-
sion [30], expression levels of JAK-STAT pathway molecules were
also assessed by RNA-seq data (Fig. S5).

Expression levels of tumor EAAT3 were comparable across the
TSIM (71.2%, 37/52), HEA (83.3%, 25/30), and MB subtypes (88.9%, 16/
18, Fig. 5g) in NKTCL patients. NK-92 cell models were established as
our previous study described [5], representing three molecular sub-
types of NKTCL, including TSIM-like: TP53 R248Q, TP53 R273H, HEA-
like: EP300 vector; MB-like: MGA shRNA). When treated with anti-
PD-1 antibody pembrolizumab, pretreatment of asparaginase upre-
gulated NKTCL cellular PD-L1 expression (Fig. 5h) and increased ki-67
expression of CD3+/CD8+ T cells (Fig. 5i) in the TSIM, HEA, or MB cell
models, indicating anti-metabolic treatment also induced therapeutic
vulnerability for immune checkpoint inhibitor.

5.5. Higher expression of EAAT3 independently predicted favorable
clinical outcomes in NKTCL patients treated with asparaginase-based
regimens

Clinical efficacy of EAAT3 was evaluated, indicating relatively poor
clinical outcome in NKTCL patients receiving CHOP/CHOP-like regi-
mens (Fig. S6). As for asparaginase-based regimens, significantly
improved overall response rate (88.7% vs 45.5%) and complete remis-
sion rate (85.9% vs 45.5%) were revealed in patients with high EAAT3
expression than those with low EAAT3 expression, while other base-
line clinical characteristics were comparable (Table 1). Prolonged PFS
(median follow-up: 24.3 months, predicted 2-year PFS rates: 78.3% vs
46.8%) and OS (median follow-up: 27.4 months, predicted 2-year OS
rates: 86.3% vs 52.6%) were also observed in patients with high
EAAT3 expression, as compared to those with low EAAT3 expression
(Fig. 6a). Particularly, high EAAT3 expression was associated with
favorable clinical outcome in stage I-II patients (Fig. 6b). Although
expression levels of EAAT3 were comparable between stage I-II
(80.8%, 59/73) and stage III-IV patients (70.6%, 12/17, Fig. 6c), stage I-
II patients with low EAAT3 expression presented similar inferior
prognosis as stage III-IV patients (predicted 2-year PFS rates: 49.0%
vs 39.9%, P=0.537, log-rank test; predicted 2-year OS rates: 57.1% vs
48.6%, P=0.796, log-rank test). In multivariate analysis, when interna-
tional prognostic index (IPI), prognostic index of NKTCL (PINK), or
PINK-EBV (PINK-E) [36] was controlled, EAAT3 was an independent
prognostic factor for better PFS and OS (Fig. 6d).

6. Discussion

Growing evidence indicates a pivotal effect of aberrant glutamine
metabolism on lymphoma progression and therapeutic resistance. In
DLBCL, enhanced glutamine utilization is induced by SIRT3, which
provokes B-cell lymphomagenesis through a metabolic-provoked
non-oncogene mechanism [37]. Mitochondrial-targeted class I sirtuin
inhibitor YC8-02 interrupts glutamine utilization and induces DLBCL
cell death [37]. In mantle cell lymphoma, altered glutaminolysis has
also been found and linked to therapeutic resistance to the Bruton's
tyrosine kinase inhibitor ibrutinib [38]. IACS-010759 targets complex
I of the mitochondrial electron transport chain and results in marked
growth inhibition in ibrutinib-resistant patient-derived tumor mod-
els [38]. The SLC-family amino acid transporters are responsible for
increased cellular glutamine uptake, such as SLC1A5 [38], SLC38A1
[39], and SLC1A1 [40]. SLC1A5, acting upstream of mTOR and MYC sig-
naling, is upregulated in ibrutinib-resistant mantle cell lymphoma
[38]. SLC38A1 expression is an independent adverse prognostic factor
of acute myeloid leukemia [41]. Here we revealed distinct feature of
aberrant glutamine metabolism in NKTCL and identified SLC1A1 as
key inducer of glutamine addiction. SLC1A1 enhanced glutamine utili-
zation, activated glutathione metabolic flux, and consequently
increased GSSG production. In NK-92 cells and xenograft models,
SLC1A1-induced altered glutaminolysis was involved in tumor cell
proliferation and colony formation, exacerbating malignant pheno-
types in NKTCL.

SLC1A1 induced dependence of tumor cells on extracellular gluta-
mine, suggestive an alternative mechanism of metabolic reprogram-
ming on lymphoma progression, and a potential therapeutic target of
asparaginase in NKTCL. Asparaginase exerted anti-metabolic effect
through depleting extracellular asparagine and inhibiting glutamine-
dependent tumor cell growth [42]. SLC1A1-overexpressd tumor cells
revealed increased sensitivity to asparaginase both in vitro and in
vivo. In NKTCL patients treated with asparaginase-based regimens,
prognostic analysis further indicated correlation of high EAAT3
expression with good clinical response to asparaginase treatment.
Stage I-II NKTCL usually presents with favorable clinical outcome
upon anti-metabolic treatment combined with local radiotherapy.
However, prognosis of stage I-II patients with low EAAT3 expression
was not only worse than those with high EAAT3 expression, but also
as poor as stage III-IV patients, pointing out the necessity for this sub-
set of NKTCL patients to receive molecular subtype-specific targeted
therapy.

Cancer metabolism can modulate immune cell function and
recent studies have focused on the role of amino acid metabolism
in T-cell activation [43]. Glutamine is exploited as a “metabolic
checkpoint” by inducing divergent metabolic plasticity between
cancer cells and effector T cells [44]. For example, SLC43A2 overex-
pression outcompetes for methionine in tumor microenvironment,
reducing STAT5 expression and contributing to impaired T-cell
survival and function [34]. Oncogenic JAK2 mutation affects methi-
onine and cysteine metabolism in T cells [45], upregulates PD-L1
expression, and promotes tumor cell response to PD-1 blockade
[46]. Here we found a competition for glutamine between SLC1A1-
overexpressed tumor cells and co-cultured CD8+ T cells. Asparagi-
nase, therapeutically targeting SLC1A1-mediated glutamine addic-
tion, induced tumoral PD-L1 expression and modulated CD8+ T cell
activity, potentially sensitized NKTCL cells to anti-PD-1 antibody
pembrolizumab. Similar results have been recently reported in
renal cancer [33] and lung cancer [47], revealing that tumor PD-L1
expression is increased during glutamine deprivation [33] and
inhibition of glutamine metabolism and immune checkpoint aug-
mented CD8+ T cell-mediated anti-tumor immunity [47]. We
hypothesized that co-targeting metabolic vulnerability alterations
and immune checkpoints could be a promising therapeutic strat-
egy in treating NKTCL. Further studies will be carried out to inves-
tigate the molecular mechanism of metabolism-regulated tumor
immunity, as well as validate the efficacy of co-targeting metabo-
lism and immunity in clinical trials.

In conclusion, SLC1A1mediated aberrant glutamine metabolism in
NKTCL and was closely related to tumor progression and immuno-
suppressive status. Our findings indicated SLC1A1 as a potential ther-
apeutic target of NKTCL in the era of asparaginase-based anti-
metabolic treatment, and might provide clinical rationale for co-tar-
geting metabolic vulnerability and immunosuppressive microenvi-
ronment in NKTCL.
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