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Genetic fingerprinting with heritable
phenotypes of the resting-state brain
network topology
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Cognitive, behavioral, and disease traits are influenced by both genetic and environmental factors.
Individual differences in these traits have been associatedwith graph theoretical properties of resting-
state networks, indicating that variations in connectome topology may be driven by genetics. In this
study, we establish the heritability of global and local graph properties of resting-state networks
derived from functionalMRI (fMRI) andmagnetoencephalography (MEG) using a large sample of twins
and non-twin siblings from the HumanConnectome Project.We examine the heritability ofMEG in the
source space, providing a more accurate estimate of genetic influences on electrophysiological
networks. Our findings show thatmost graphmeasures aremore heritable for MEG compared to fMRI
and the heritability for MEG is greater for amplitude compared to phase synchrony in the delta, high
beta, andgamma frequencybands. This suggests that the fast neuronal dynamics inMEGoffer unique
insights into the genetic basis of brain network organization. Furthermore, we demonstrate that brain
network features can serve as genetic fingerprints to accurately identify pairs of identical twinswithin a
cohort. These results highlight novel opportunities to relate individual connectome signatures to
genetic mechanisms underlying brain function.

Network neuroscience refers to the conceptualization of the brain as a
system of regions (i.e., nodes) interconnected via structural and/or func-
tional pathways (i.e., edges) through which neural information transfer
occurs1,2. Spontaneous neuronal activity during rest can be noninvasively
captured with functional magnetic resonance imaging (fMRI) and mag-
neto/electroencephalography (M/EEG)2, and large-scale functional con-
nectomes can be defined on the basis of phase and amplitude interactions
between these neuroimaging signals3,4. Graph theoretical approaches have
been developed to quantitatively describe global and local topological
properties of functional brain connectomes, providing insight into brain
organization and communication5. For instance, pioneering studies in
network neuroscience have discovered that brain networks exhibit a high
degree of localized processing with a few efficient routes for long-range
signaling, representing a trade-off between functional segregation and
integration1.

Over the recent decades, an increasing number of studies have utilized
graph theory to investigate resting-state brain network characteristics in
both healthy and diseased populations. In particular, global and local

networkpropertieshavebeen shown to covarywithdifferences in individual
behavior, cognition, andpersonality6–8. Likewise, studies have demonstrated
that graph measures can effectively characterize the presence and progres-
sion of aberrant brain network topology in a multitude of neurological and
neuropsychiatric disorders9–12. Local graph measures have even been
employed to successfully localize key network hubs as targets for surgical
intervention and neuromodulation13,14. This suggests that graph measures
have the potential to be useful biomarkers for clinical diagnosis and per-
sonalized medicine15.

Interindividual variability in cognition and behavior is influenced by
both genetic and environmental factors16, and genetic abnormalities are
implicated in the development of numerous brain pathologies17. Similarly,
genetic factors may contribute to individual variations in topological fea-
tures of the resting-state brain network, which can serve as valuable endo-
phenotypes for understanding the complex genetic architecture underlying
brain pathology18. Prior studies in twins have reported a substantial influ-
ence of heritability on structural brain morphology and connectivity19–21,
neuronal activation during task performance22–24, spectral power of
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neuronal oscillations at rest25,26, and functional connectivity (FC) of resting-
state brain activity27–31. However, the heritability of only a small number of
local network characteristics (e.g., nodal strength) has been examined in
fMRI28, and twin studies of graph measures in MEG and EEG have been
limited to the sensor spacewithout accounting for the confounding effects of
spatial leakage32–35. Spatial leakage of common source activity can artificially
inflate estimates of FC and obscure the true network structure36,37.

Most research investigations of brain network abnormalities in clinical
populations have focused on average differences between heterogeneous
groups. Although initial results are promising, the translation of putative
biomarkers from research into clinical practice depends on their ability to
provide information that is unique to a particular individual and stable over
time15. Indeed, previous work has indicated that dominant network features
of functional brain connectomes are individual-specific, reliable across
multiple scanning sessions, and robust against state-dependent changes38–43.
More recently, studies have proposed the use of functional brain con-
nectomes as neural fingerprints to distinguish individuals within a
cohort44,45. Connectome fingerprinting has been performed to a high level of
accuracy using fMRI44,46, EEG47,48, and MEG45,49. Given the evidence for the
contribution of genetics to brain connectomes, FC profiles may also be able
to identify pairs of twins and non-twin relatives, thereby acting as genetic
fingerprints50,51. Heritable neural fingerprints may provide valuable infor-
mation about the biological correlates of genetic susceptibility to brain
disease52,53.

In the current work, we establish the heritable basis of global and local
graph theoretical properties of resting-state brain networks derived from
fMRI and source-levelMEGusing publicly available, high-quality data from
the Human Connectome Project (HCP)54,55. Both fMRI and MEG were
analyzed considering that hemodynamic and electrophysiological signals
have complementary yet distinct neural connectivity signatures56,57. fMRI is
an indirect measure of neuronal activity58 while MEG directly records
neuronal activity on a faster temporal scale, allowing for investigation of
brain connectivity over a wider frequency spectrum. We evaluated the
heritability separately for FC metrics of amplitude and phase synchrony in
MEG to examine how genetic contributions to brain network properties
differ based on the functional coupling mechanism59. Finally, the utility of
graph measures as genetic fingerprints was demonstrated with a machine
learning classifier trained to differentiate pairs of identical twins and non-
identical siblings from pairs of unrelated individuals.

Results
This study included resting-state MEG and fMRI (n = 89, 1003) from the
HCPdatabase, which consists of a large number ofmonozygotic (MZ) twin
pairs (n = 17, 120), dizygotic (DZ) twin pairs (n = 12, 65), and non-twin
families (n = 4, 156) within a greater population of individuals54,55. Demo-
graphic information for the subjects is shown in Table 1. FCmatrices (246-
by-246) were constructed for MEG and fMRI time-series in 246 brain
regions-of-interest (ROIs). The 246 (210 cortical and 36 subcortical) ROIs
were defined from the connectivity-based Brainnetome atlas60. Pearson
correlation was used to estimate the FC between the parcellated and

0.01–0.1 Hz bandpass-filtered fMRI signals after standard preprocessing to
remove non-neural motion and physiological confounds61–63. Positive and
negative correlations were then isolated to form separate positive and
negative fMRI correlation networks.

The sensor-level MEG data were projected into the source space via
atlas-based beamforming64,65, and the debiased weighted phase lag index
(dwPLI)66, amplitude envelope correlation (AEC)4, and leakage-corrected
AEC (lcAEC)67,68 were used to estimate the FC between the source time-
series in six conventional frequency bands. The amplitude envelope cor-
relation (AEC) is a metric of amplitude synchrony, while the dwPLI and
lcAEC are leakage-invariant metrics of phase and amplitude synchrony,
respectively. Graph theoretical measures were extracted from the fMRI and
MEG connectivity matrices and provided as neuroimaging phenotypes to
the heritability analysis and genetic fingerprinting algorithm. The graph
measures included four global and four local measures describing topolo-
gical properties of the entire connectome and of the 246 nodes embedded
within the network5. An overview of the methodological procedure is illu-
strated in Fig. 1 and described in more detail in the Methods section.
Equations and descriptions for the graph measures are given in Supple-
mentary Information, Table S1.

Heritability of global network properties
Sequential oligogenic linkage analysis routines (SOLAR)were implemented
to estimate the proportion of the variance of each graphmeasure explained
by shared genetic factors (i.e., the heritability h2 score)69. The heritability
scores of the global graphmeasures of theMEG and fMRI connectomes are
displayed in Fig. 2 (source data in Supplementary Data 1). The global
efficiency (GE), characteristic path length (CPL), and transitivity (T) of the
MEG connectomes were significantly heritable (pFDR(h

2) < 0.05) for the
dwPLI in the theta, alpha, and low beta frequency bands and for the AEC
and lcAEC in all six frequency bands (i.e., delta, theta, alpha, low beta, high
beta, and low gamma). The heritability of the GE, CPL, and T was high
(h2 = 0.59–0.90) for the dwPLI, AEC, and lcAEC in theta, alpha, and low
beta; high (h2 = 0.65–0.78) for the lcAEC in delta and theAEC and lcAEC in
high beta; andmoderate (h2 = 0.46–0.59) for the AEC in delta and the AEC
and lcAEC in low gamma. The global measures were mostly more heritable
for the dwPLI than the amplitude metrics in the alpha band but were more
heritable for the amplitude metrics than the dwPLI in delta, high beta, and
low gamma.

In general, the synchronizability (S) of theMEG connectomes was less
heritable than theGE, CPL, and T, except for the AEC in delta and the AEC
and lcAEC in low gamma. The Swas significantly heritable for the dwPLI in
the alpha band, for the AEC in all six frequency bands, and for the lcAEC in
the theta, alpha, low beta, high beta, and low gamma bands. The heritability
of the S was high (h2 = 0.63–0.73) for the AEC and lcAEC in theta and high
beta; high (h2 = 0.69–0.76) for the dwPLI in alpha and AEC in delta; and
moderate (h2 = 0.42–0.48) for the AEC and lcAEC in low beta and gamma.

All the global measures were significantly heritable (pFDR(h
2) < 0.05)

for the fMRI connectomes, except for the S of the positive correlation
network. The heritability of the GE and CPL was high (h2 = 0.63–0.66) for
the positive correlation network and moderate (h2 = 0.46–0.47) for the
negative correlation network. The heritability of the T wasmoderate for the
positive network (h2 = 0.53), and the heritability of the T and S was
moderate-low (h2 = 0.29–0.33) for the negative network. The global mea-
sures were generally more heritable for the positive than the negative net-
work, except for theS.Theglobalmeasures of the fMRI connectomes tended
to be less heritable compared toMEG for the dwPLI in theta, alpha, and low
beta and for the AEC and lcAEC in theta, alpha, low beta, and high beta.

Heritability of local network properties
For the local graphmeasures of theMEG connectomes, k-means clustering
(k = 4) with the squared Euclidean distance metric was applied to the h2

estimates across all the ROIs to identify graph measure, FC metric, and
frequency band combinations with similar spatial heritability profiles. The
cluster assignments and summary statistics for the heritability of the

Table 1 | Demographic information for the healthy young adult
subjects of the open-source Human Connectome Project
database (HCP S1200 data release)

fMRI dataset MEG dataset

Total Subjects (n) 1003 89

Age (mean ± SD years) 28.7 ± 3.7 28.6 ± 3.9

Sex (M/F) 469/534 48/41

Monozygotic twin pairs (n) 120 17

Dizygotic twin pairs (n) 65 12

Non-twin families (n) 156 4

Unrelated singletons (n) 88 23
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different parameter combinations are reported in Supplementary Infor-
mation, Table S2. Cluster 1 (“highly heritable”) consisted of parameter
combinations with many significant and highly heritable nodes (96-100%
significantly heritable nodes at pFDR(h

2) < 0.05; mean h2 across the whole
brain ranging from0.62-0.78).Cluster 2 (“moderately heritable”) comprised
parameter combinations with moderately heritable nodes (44–98% sig-
nificantly heritable; mean h2 = 0.37-0.59), cluster 3 (“weakly heritable”) had
a few significant andweakly heritable nodes (10-32% significantly heritable;
meanh2 = 0.15–0.30), and cluster 4 (“notheritable”) had almost noheritable
nodes (0-9% significantly heritable; mean h2 = 0.02-0.16).

The h2 estimates of the local measures of all the ROIs for the MEG
dwPLI and lcAEC in the alpha band are displayed in Fig. 3 (source data in
Supplementary Data 2). The h2 estimates for the MEG AEC and the other
frequency bands are shown in Supplementary Information, Fig. S1–S6. The
heritability of the strength (STR), clustering coefficient (CC), and nodal
efficiency (NE) was moderate to high (assigned to clusters 1 and 2) for the
AEC and lcAEC in all six frequency bands and for the dwPLI in theta, alpha,
and low beta, except for the STR in theta. In line with their global coun-
terparts (i.e., theGE,CPL, andT), the STR,CC, andNEweremore heritable
for the AEC and lcAEC compared to the dwPLI in delta, high beta, and low
gamma but, unlike the global measures, were also more heritable in theta
and low beta. The heritability of the eigenvector centrality (EVC) was
moderate (assigned to cluster 2) for the AEC in theta and for the AEC and
lcAEC in alpha, low beta, and high beta. The EVC and S are both graph
measures based on the spectral decomposition of the connectivity matrix,

and, similar to the S, the EVC was less heritable than the other local
measures.

Summary statistics for theheritabilityof the local graphmeasures of the
fMRI connectomes are reported in Supplementary Information, Table S3,
and the h2 estimates of the local measures of all the ROIs are displayed in
Fig. 4. All the local measures had many significant but weakly heritable
nodes for both the positive fMRI correlationnetwork (80-100%significantly
heritable; mean h2 = 0.20–0.41) and the negative fMRI correlation network
(71–96% significantly heritable; mean h2 = 0.16–0.26). The heritability of all
the local measures was greater for the positive than the negative network.
For both the positive and negative networks, the NEwas themost heritable,
the STR and CC were the next most heritable, and the EVC was the least
heritable.

The Wilcoxon signed-rank test and Dice similarity coefficient (DSC)
were used to compare themagnitude and spatial pattern, respectively, of the
heritability of each localmeasure betweenMEGand fMRI.The results of the
comparisons for the dwPLI and lcAECare given in Fig. 5 and for theAEC in
Supplementary Information, Fig. S7 (source data in SupplementaryData 3).
Similar to the global graph measures, most of the local measures exhibited
significantly less heritability (signed-rank test pFDR < 0.05) for the fMRI
networks compared toMEG lcAEC andAEC in all six frequency bands and
compared to MEG dwPLI in alpha and low beta. However, the local mea-
sures were significantly more heritable for fMRI thanMEG dwPLI in delta,
high beta, and low gamma. The ROIs with themost heritable STR, CC, and
NE were moderately concordant (DSC = 0.41–0.59) between fMRI and the

a) MEG Source Reconstruction and Functional Connectivity Analysis
Sensor Space Source Space

b) fMRI Parcellation and Functional Connectivity Analysis

d) Heritability Analysis

Familial 
Relationship Kinship Matrix

Self 1
Monozygotic twins 1

Dizygotic twins 1/2
Non-twin siblings 1/2

Unrelated 0

e) Genetic Fingerprintingc) Global and Local Graph Theoretical Analysis

Global Efficiency (GE)
Characteristic Path Length (CPL)
Transitivity (T)
Synchronizability (S)

Nodal Efficiency (NE)
Strength (STR)
Clustering Coefficient (CC)
Eigenvector Centrality (EVC)

Fig. 1 | Overview of methodological procedure for the heritability analysis and
genetic fingerprinting algorithm. a Scalar beamforming was applied to the MEG
data to reconstruct source time-series for the 246 brain regions of the Brainnetome
atlas. The debiased weighted phase lag index (dwPLI), amplitude envelope corre-
lation (AEC), and leakage-corrected AEC (lcAEC) were used to estimate the func-
tional connectivity between the source signals in six frequency bands. b Pearson
correlation was used to estimate the functional connectivity between the mean fMRI
time-series of the regions of the Brainnetome atlas. Positive and negative correla-
tions were isolated to form separate positive and negative fMRI correlation net-
works. c Graph theoretical measures were extracted from the fMRI and MEG

connectivity matrices and provided as brain network phenotypes to the heritability
analysis and genetic fingerprinting algorithm. d The proportion of variance of each
graph measure explained by shared genetic factors (i.e., the heritability score) was
estimated based on the kinship matrix. The kinship matrix was constructed
assuming that monozygotic twins share 100% of their genes and dizygotic twins and
non-twin siblings share 50% of their genes. e A support vector machine (SVM)
classifier was trained to identify the familial relationship between a pair of indivi-
duals based on the distance between their brain network phenotypes (“genetic
fingerprints”).
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MEG amplitude metrics in all six frequency bands and between fMRI and
MEGdwPLI in theta, alpha, and lowbeta, except for the STRof thedwPLI in
theta. The EVC was moderately concordant (DSC = 0.42–0.55) between
fMRI and MEG AEC and lcAEC in alpha, low beta, and high beta and
between fMRI and MEG AEC in theta and low gamma.

Wealso examined the spatial distributionof theh2 estimates of the local
graph measures across the ROIs (see Fig. 3b, Fig. 4b, and Supplementary
Information, Fig. S1b–S6b). The spatial distribution for the STR, CC, and
NE was generally more variable for the MEG dwPLI compared to the AEC
and lcAEC (average standard deviation of h2 across the whole brain = 0.14
for the dwPLI and 0.08 for the amplitudemetrics) while the distributionwas
relatively stable for the positive and negative fMRI correlation networks
(average standard deviation of h2 = 0.08) (see Supplementary Information,
Table 2, 3). There was not an appreciable difference between the heritability
of higher-order transmodal versus unimodal brain regions for any of the
graph measures in MEG or fMRI.

In previous neuroimaging literature, several software packages have
been used to perform heritability analysis27,30. We assessed the reproduci-
bility of the h2 estimates of the local graph measures between two software
implementations: the SOLAR-Eclipse and Accelerated Permutation infer-
ence forACE (APACE) toolboxes69,70. The SOLAR-Eclipse toolbox employs
iterative maximum likelihood estimation (MLE) while the APACE toolbox
employs a fast, noniterative linear regression model69,70. The h2 estimates
were strongly consistent between the two methods with a spatial (Pearson)
correlation of 0.61-0.98 across all the nodes and a mean absolute difference
of 0.0019-0.087. The spatial correlation and absolute difference values (95%
confidence intervals) for all the MEG and fMRI local graph measures are
provided in the supplementary information (see Supplementary Informa-
tion, Table S8-S9).

Performance of genetic fingerprinting algorithm
The results of the heritability analysis revealed that most of the global and
local topological properties were significantly heritable for both the resting-
stateMEGand fMRInetworks.Next,we assessedhowwell these topological
features can serve as genetic fingerprints to distinguish pairs of MZ twins
and/or non-MZ siblings from a larger population. This was accomplished
by training and testing a linear support vectormachine (SVM) on the graph
measures of the MEG and fMRI connectomes to classify three groups (i.e.,
MZ twin pairs, non-MZ sibling pairs, and randomly assigned pairs of

unrelated individuals) and each combination of two groups. The input
features were the distance of each graph measured between pairs of indi-
viduals. The distance metric was the absolute difference for the global
measures and the correlation distance across all ROIs for the localmeasures.
A schematic of the training and testing cross-validation procedure is pre-
sented in Fig. 6a. The accuracy (ACC) and area under the receiver operating
curve (AUC) for the MZ twin versus unrelated pair classification are dis-
played in Fig. 6b (source data in Supplementary Data 4). The ACC, AUC,
sensitivity, specificity, andprecision for all classification tasks are reported in
Supplementary Information, Table S4-S7.

For all of the MEG and fMRI connectomes, the distance of the global
and local graph measures between pairs of MZ twins was significantly
smaller than the distance between pairs of unrelated individuals (Wilcoxon
rank-sum test pFDR < 0.05; see Fig. 6c and source data in Supplementary
Data 5). The distance was significantly smaller for MZ twins compared to
non-MZ siblings for the global measures of the MEG dwPLI and fMRI
correlation networks and for the local measures of theMEG amplitude and
fMRI correlation networks. The distance was significantly smaller for non-
MZ siblings compared to unrelated individuals for the global and local
measures of the MEG amplitude and fMRI correlation networks.

For all of the MEG and fMRI connectomes, the genetic fingerprinting
algorithm was able to achieve a performance (ACC and AUC) significantly
greater than chance for the three-group and MZ twins versus unrelated
classification tasks (permutation test p < 0.005; see Fig. 6b). When trained
on the globalmeasures of theMEG connectomes, the algorithm attained an
ACCof 69-77%(AUC = 0.79–0.86) forMZ twins versus unrelatedpairs and
an ACC of 48-50% (AUC= 0.65–0.69) for the three-group classification.
When trained on the MEG local measures, the algorithm demonstrated
improved performance with anACC of 68-88% (AUC = 0.78–0.96) forMZ
twins versus unrelated pairs and an ACC of 49–60% (AUC= 0.69-0.77) for
the three-group classification.

The SVM performance for the three-group classification and for MZ
twins versus unrelated pairswas greater forMEGdwPLI than the amplitude
metrics when trained on the global measures, but greater for the amplitude
metrics when trained on the local measures. The performance of the algo-
rithm was worse for fMRI thanMEGwhen trained on the global measures
(fMRI: ACC = 63%, AUC = 0.67 for MZ twins versus unrelated; ACC=
42%, AUC= 0.58 for three group). However, the performance was com-
parable between fMRI andMEGwhen trainedon the localmeasures (fMRI:

Fig. 2 | Global network properties of resting-state MEG and fMRI are heritable.
The heritability h2 scores of the global graph measures of the positive and negative
fMRI correlation networks and the MEG dwPLI, AEC, and lcAEC connectomes in
six frequency bands. The error bars denote the standard error of the heritability
estimates, and the asterisks correspond to a significant heritability at p(h2) < 0.05 (*)

and p(h2) < 0.005 (**) (false-discovery rate [FDR]-corrected for multiple compar-
isons). The heritability scores were estimated with 17 monozygotic (MZ) twin pairs,
12 dizygotic (DZ) twin pairs, 4 non-twin sibling pairs, and 23 unrelated singletons
for MEG (n = 89 subjects) and 120 MZ twin pairs, 65 DZ twin pairs, 156 non-twin
families, and 88 unrelated singletons for fMRI (n = 1003 subjects).
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ACC= 88%, AUC = 0.94 for MZ twins versus unrelated; ACC= 61%,
AUC= 0.78 for three group).

The ACC and AUC of the SVM algorithm were significantly greater
than chance (permutation test p < 0.05) for MZ twins versus non-MZ sib-
lings when trained on the global measures of the fMRI, MEG dwPLI, and
MEG lcAEC networks and when trained on the local measures of the fMRI
andMEGamplitude networks. The classifier performance was significantly
greater than chance for non-MZ siblings versus unrelated pairs when
trained on the global measures of the fMRI and MEG amplitude networks
and when trained on the local measures of all the MEG and fMRI
connectomes.

The SVM algorithm performed slightly worse when classifying MZ
twins versus non-MZ siblings compared toMZ twins versus unrelated pairs
(MEG: ACC = 61–72%, AUC= 0.68–0.80; fMRI: ACC = 56–74%,
AUC= 0.57–0.80). Moreover, the algorithm had the worst performance
when classifying non-MZ siblings versus unrelated pairs (MEG:
ACC= 49–69%, AUC = 0.47–0.78; fMRI: ACC = 55–66%,
AUC= 0.57–0.73). These results are reflected in the evaluation metrics for
the three-group classification, where the precision was the worst for non-
MZ siblings and the sensitivity was considerably higher for the MZ twins
(MEG: sensitivity = 63–81%; fMRI: sensitivity = 61-76%). Overall, the high
accuracy of the genetic fingerprinting algorithm indicates that global and
local characteristics of the resting-state brain network are valuable

phenotypes for identifying identical twins and, to a lesser extent, non-
identical siblings.

Discussion
Neuroimaging phenotypes of the resting-state brain network topology
reflect cognitive and behavioral differences in individuals6–8 as well as
pathological abnormalities in numerous brain disorders9–12. The well-
established genetic basis of cognition, behavior, and brain pathology indi-
cates that individual variations inbrainnetwork topology are likewisedriven
by underlying genetic factors16,17. Using high quality multimodal neuroi-
maging data from twins and non-twin families in the HCP database, our
current work demonstrated that global and local graph theoretical prop-
erties of resting-state networks were significantly heritable for both fMRI
and source-level MEG. The heritability of most of the graph measures was
greater for MEG compared to fMRI, and the heritability for MEG was
dependent on the intrinsic coupling mechanism and frequency band.
Furthermore, we showed that graph measures can serve as genetic finger-
prints to distinguish pairs of identical twins within a cohort to a high degree
of accuracy (up to 88% accuracy and 0.94/0.96 AUC for fMRI and MEG).

Measures of global integration and segregation were moderately to
highly heritable for the positive fMRI correlation network, which agrees
with prior results reporting h2 values of 0.26 to 0.5628,71. These findings are
unsurprising given that studies in fMRI have established that spontaneous

Strength (STR) Eigenvector Centrality (EVC) Clustering Coefficient (CC) Nodal Efficiency (NE) 

MEG dwPLI 

MEG lcAEC 

a) 

b) 

h2 

Fig. 3 | Local network properties of resting-state MEG are heritable. The herit-
ability h2 scores of the local graph measures of the brain regions of the Brainnetome
atlas for theMEGdwPLI and lcAEC connectomes in the alpha band. The heritability
scores were estimated with 17monozygotic (MZ) twin pairs, 12 dizygotic (DZ) twin
pairs, 4 non-twin sibling pairs, and 23 unrelated singletons for MEG

(n = 89 subjects). aThe h2 scores thatwere significantly heritable at p(h2) < 0.05 (false
discovery rate [FDR]-corrected for multiple comparisons). The brain node plots
were visualizedwith the BrainNet Viewer toolbox100. bThe spatial distribution of the
h2 scores across the brain regions, grouped according to brain area (as in https://atlas.
brainnetome.org/bnatlas.html).
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neural activity at rest is organized into multiple reproducible large-scale
networks41,42. The FC within these resting-state networks and the coupling
of the FC with the structural connectivity are strongly influenced by
genetics29,72. Moreover, functional network characteristics have been shown
to be partially constrained by structural brain connectivity and
morphology73, andmetrics of brain volume, cortical thickness, whitematter
microstructure, and structural connectome topology are heritable at global
and local scales19. The results of previous studies suggest that the heritability
of both structural and functionalmetrics tends to be higher whenmeasured
at a more global level19. In our current work, we found that graphmeasures
in fMRI were more heritable for the whole-brain network than for the
individual brain regions. At the local level, the heritability of individual
structural connections differs across brain regions and is greater for trans-
modal links between higher-order association brain hubs21. This tendency
does not hold true for fMRI as genetic influences on within-network FC
were reported to be relatively equal for transmodal and unimodal
regions19,29, similar to our results for the heritability of local graphmeasures.

Unlike previous fMRI studies, we also investigated the heritability of
the network topology of negative correlations and found that most of the
global and local network characteristics were significantly heritable.
Although the default mode and task-positive networks have been proposed
to be anticorrelated at rest, negative correlations in resting-state fMRI were
thought to be potential artifacts of global signal regression74. However,
alternative preprocessing methods that aim to remove the non-neuronal
component of the global signal (e.g., aCompCor or physiological noise

regression) were shown to enhance the magnitude and spatial extent of
negative correlations, suggesting that theymay in fact have a true biological
origin75,76. Interestingly, studies have reported that global signal regression
reduces the heritability of global network properties28. The global signalmay
be composedofneuronal (e.g., ascending arousal system) andnon-neuronal
(e.g., motion and physiological noise) sources, both of which may be under
genetic control77. In our study, we implemented several techniques to
account for non-neuronal contributions in the fMRI analysis, including
addition of a headmotion covariate in the heritabilitymodel and removal of
aCompCor and motion confounds in the fMRI data during preprocessing.

Our results revealed that global and local network properties in MEG
were moderately to highly heritable for amplitude-based functional con-
nectomes in all six frequency bands and for phase-based networks in theta,
alpha, and low beta. We observed that the graph measures were more
heritable for amplitude compared to phase synchrony in delta, high beta,
and low gamma but that phase-based network measures were more heri-
table in the alpha band.Amplitude coupling is considered to bemore tightly
constrained by structural connectivity59, and statistical and biophysical
models have shown that functional coupling at higher frequencies (e.g., high
beta and gamma) has an increased dependence on structural
connectivity78,79. This may partly explain the greater genetic influence on
amplitude-based network topology in the higher frequency bands. For
phase-based network measures, the significant heritability in the theta,
alpha, and low beta bands may reflect the functional role of phase coupling
at lower frequencies. In particular, higher-order cognitive states during rest

Strength (STR) Eigenvector Centrality (EVC) Clustering Coefficient (CC) Nodal Efficiency (NE)

fMRI Positive 
Correlations

fMRI Negative 
Correlations

a)

b)

h2

Fig. 4 | Local network properties of resting-state fMRI are heritable. The herit-
ability h2 scores of the local graph measures of the brain regions of the Brainnetome
atlas for the positive and negative fMRI correlation networks. The heritability scores
were estimated with 120monozygotic (MZ) twin pairs, 65 dizygotic (DZ) twin pairs,
156 non-twin families, and 88 unrelated singletons for fMRI (n = 1003 subjects).

a The h2 scores that were significantly heritable at p(h2) < 0.05 (false discovery rate
[FDR]-corrected for multiple comparisons). The brain node plots were visualized
with the BrainNet Viewer toolbox100. bThe spatial distribution of the h2 scores across
the brain regions, grouped according to brain area (as in https://atlas.brainnetome.
org/bnatlas.html).
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are characterized by large-scale brain networks that exhibit strong coher-
ence in the theta and alpha bands80.

A potential factor contributing to the heritability estimation is the test-
retest reliability of the phenotypes. The error term in the heritability model
comprises stable effects due to the subject’s unique environment and
transient intrasubject effects that can occur due to measurement noise or
biological changes in state29. Ge et al. demonstrated that genetic influences
on FC may be underestimated in the presence of transient intrasubject
variations, which lead to a lower test-retest reliability29. Similarly, the her-
itability of the global network measures in MEG partially aligns with the
results of our previous work, where we found that the test-retest reliability
was greater for amplitude compared to phase synchrony in delta, theta, low
beta, high beta, and low gamma and that phase-basedmeasures in the alpha
band had the greatest reliability38. The greater reliability of phase-based
network topology in alphamay be related to the high signal-to-noise ratio of
alpha oscillations during rest81,82. We also observed that the reliability and
heritability of both phase- and amplitude-based measures were generally
lower in the gamma band compared to the other frequency bands, which
may be a consequence of a lower signal-to-noise ratio of gamma oscillations
in non-invasive measurements of electrophysiological activity81,82.

To date, prior twin studies in MEG and EEG have explored the her-
itability of network topology only in the sensor space32–35. Babajani-Feremi
et al. reported significanth2 estimates of 0.51 to 0.81 for global characteristics
of phase-based MEG networks in theta, alpha, and beta32 while several
studies in low-density EEG reported h2 estimates of 0.23-0.89 for the CPL
and mean CC of synchronization likelihood (SL)-based networks33–35. Our
current work expands on previous MEG studies by investigating the

heritability in the source space and for both global and local graphmeasures.
Analysis in the sensor space offers limited anatomical insight36, which is
particularly important when investigating genetic influences on local net-
work properties. Additionally, heritability estimates for globalmeasures can
be drastically different between sensor and source space networks, especially
for phase-based metrics of FC such as the dwPLI (see Supplementary
Information, Fig. S8 for a comparison). Projection into the source space
allows for improved signal-to-noise ratio and limits spurious inflations in
the FC due to volume conduction or field spread of common source
activity36. In contrast to previous twin studies, we also employed FCmetrics
invariant to zero-phase-lag interactions to further mitigate the effects of
common source activity (e.g., due to spatial leakage in the source
space)37,66–68. Notably, the heritability and test-retest reliability of amplitude-
based network topology do not differ appreciably between sensor versus
source spaces or leakage-invariant versus non-invariant metrics, suggesting
that amplitude-based measures may be less impacted by methodological
differences than phase-based measures38.

Overall, theheritability ofmost of the graphmeasureswas considerably
greater forMEGcompared to fMRI, whichmay be becauseMEGprovides a
directmeasurement of neuronal electrical activity. TheBOLD signalmay be
impacted by non-neuronal cardiac and respiratory effects that are not
completely removed during preprocessing, and the slow and indirect
hemodynamic response does not adequately capture all the fast neuronal
dynamics and rich spectral information encoded in MEG58. Our study also
showed that the brain areas with the most heritable topological properties
have, at most, moderate concordance between MEG and fMRI, reflecting
the heterogeneity between the spatial organization of electrophysiological

Fig. 5 | Similarity of the heritability of local network properties in MEG
versus fMRI. Similarity of the heritability h2 scores of the local graphmeasures of the
MEG dwPLI and lcAEC connectomes with the fMRI positive and negative corre-
lations networks. a Comparison of the magnitude of the h2 estimates between MEG
and fMRI across all brain regions (n = 246 brain regions from the Brainnetome

atlas). The matrix entries portray mean [h2(MEG) – h2(fMRI)] values that were
significantly different from 0 at p < 0.05 (Wilcoxon signed-rank test; false discovery
rate [FDR]-corrected for multiple comparisons). bDice similarity coefficient (DSC)
quantifying the degree of spatial overlap of the brain regions with the most heritable
graph measures between MEG and fMRI.
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and hemodynamic connectomes56,57. In addition, previous studies have
indicated that heritability estimates in fMRI are influenced by the scan
length and TR duration71. Greater scan lengths (e.g., 12min compared to
5–7min), faster TRs, and repeat scanning sessions may increase the test-
retest reliability of the FC, potentially improving the statistical power for
subsequent heritability analysis29,71,83. InMEG, the high temporal resolution
on the order of milliseconds allows for much more information to be
contained in a typical 5–7-minute scan as opposed to fMRI.

Our study examined the heritability of non-invasive electro-
physiological network measures using MEG as opposed to EEG.
Although current cryogenic MEG systems have limited clinical avail-
ability, MEG has a greater spatial resolution and accuracy than EEG
because of lower sensitivity to the inhomogeneous conductivity profile of
the head56. The lower spatial resolution of EEG may lead to less accurate
estimates of FC, particularly for standard EEG systems that have a
relatively small number of electrodes (e.g., 32–64)84,85. Therefore, the
heritability of electrophysiological network measures may be more
accurately determined with MEG. However, some studies suggest that
high-density EEG (e.g., 256 electrodes) combined with advanced head
modeling methods may be sufficient to detect FC patterns similar to
MEG85. Once large EEG datasets with genetic information become
available, future work can be performed to investigate the similarity of
the heritability between MEG and high-density EEG.

The significant genetic influence on functional network topology adds
to the growing evidence behind the biological basis of FC. Traditionally,
computational models have sought to predict FC from macroscale

structural connectomeswhile leavingout important informationabout local
biological attributes73. More recent studies have linked functional network
organization to molecular, cellular, and microstructural properties, and
intrinsic FC patterns have been related to the transcriptional similarity of
gene expression profiles in the brain19,73. Likewise, incorporating genetic
information into computational models may further elucidate the complex
relationship between brain structure and FC. For example, gene expression
profiles of neurotransmitter receptors and ionophoric proteins have enabled
more accurate predictions of hemodynamic and electrophysiological FC
from structural connectivity86,87.

Dominant features of an individual’s FC profile have been shown to be
stable over intervals spanning from months to years, and previous studies
have employed connectome fingerprinting algorithms to achieve individual
differentiation rates greater than 90%41,43–45,49. Therefore, functional brain
network characteristics have the potential to act as personalized biomarkers
indicative of an individual’s unique cognitive, behavioral, and clinical
traits15. Biomarkers derived from non-invasive neuroimaging data can help
assess the impact of neurological treatment or rehabilitation9,13,14 and can aid
in characterizing brain disorders (e.g., mental illnesses) that lack a clear
biological mechanism10. In this current study, we extend the concept of
connectome fingerprinting to demonstrate that measures of functional
network topology are heritable phenotypes and can serve as genetic fin-
gerprints to identify pairs of genetically identical individuals. Genetic fin-
gerprinting with MEG outperformed fMRI when using global network
measures (69-77% versus 63% accuracy), but comparable performance up
to 88% accuracy was achieved when using whole-brain profiles of local

Fig. 6 | Schematic and performance of the genetic fingerprinting algorithm.
a Schematic of the cross-validation procedure of the genetic fingerprinting algo-
rithm. The distance of the graph measures between individuals were provided as
input features to a support vector machine (SVM) classifier in order to identify
monozygotic (MZ) twin pairs, non-MZ sibling pairs, and randomly assigned pairs of
unrelated individuals. b Performance of the genetic fingerprinting algorithm for
differentiating pairs ofMZ twins frompairs of unrelated individuals. The violin plots
show the distribution of the accuracy (ACC) and area under the receiver operating
curve (AUC) over 1,000 repetitions of 5-fold cross-validation. The asterisks corre-
spond to an ACC and AUC significantly greater than chance at p < 0.05 (*) and
p < 0.005 (**) (permutation test; 1000 random permutations of the family rela-
tionship labels). Genetic fingerprinting with MEG outperformed fMRI when using
global graph measures, but comparable performance up to 88% mean accuracy

(0.94/0.96 mean AUC) was achieved when using whole-brain profiles of local graph
properties. cComparison of the vector norms of the graphmeasure distance features
between MZ twin pairs (n = 17 for MEG; n = 120 for fMRI), non-MZ sibling pairs
(n = 16 for MEG; n = 527 for fMRI), and all possible combinations of unrelated
subject pairs (n = 3,883 for MEG; n = 501,856 for fMRI). The boxplots show the
distribution of the vector norms over all the subject pairs in each group. Boxplot
elements are defined as follows: center line, median; box limits, upper and lower
quantiles; whiskers, non-outliermaximumandminimum; points, outliers (i.e., more
than 1.5 times the interquartile range away from the box limits). The asterisks
correspond to a significant difference between the groups at p < 0.05 (*) and
p < 0.005 (**) (Wilcoxon rank-sum test; false-discovery rate [FDR]-corrected for
multiple comparisons).
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network properties. These results highlight novel opportunities for brain
connectomics to aid in understanding the biological correlates of genetic
susceptibility to brain disease. For instance, structural connectivity metrics
andFC in fMRIhavebeen associatedwithpolygenic risk scores for cognitive
traits and multiple neuropsychiatric conditions such as autism, schizo-
phrenia, and bipolar disorder19,52,53. In schizophrenia and epilepsy, M/EEG
and fMRI studies have reported that healthy individuals exhibit FC aber-
rations similar to those of their affected relatives88–90. Future work in larger
and more heterogeneous clinical datasets can build on these preliminary
findings to confirm the utility of individual connectome signatures as
endophenotypes for brain pathology.

Thepractical implementation of connectivity-basednetworkmeasures
as personalized biomarkers faces several ongoing challenges. Estimates of
FC during rest are impacted by transient state-dependent factors that may
obscure stable features reflective of an individual’s traits41. These state-
dependent factors include changes in neuronal activity related to vigilance
(i.e., alertness and wakefulness), cognitive and mental state (e.g., anxiety),
and autonomic processes such as heart rate and respiration58,91. Longer scan
durations ormultiple scanning sessions may sample a wider range of states,
affording a more robust estimate of FC41,83. However, the added financial
and time burden may not always be feasible in practice, particularly for
clinical applications. Accurate characterization of individuals with FC also
depends on acquisition of clean, high-quality data and the use of efficient
denoising and artifact rejection algorithms15,45. Another challenge is the
large number of techniques available for FC analysis and a lack of guidance
regarding which techniques to employ38,92. Empirical criteria, such as
repeatability and consistency, may offer guidance to clinicians and other
practitioners38,92. Standardized and open-source software can improve
reproducibility, reduce the amount of time and effort spent on data analysis,
and allow for easier implementation of advanced analysis techniques by an
interdisciplinary community.

This study has several limitations. The sample size of the MEG data is
relatively small compared to the fMRI data, which may lead to a lower
statistical power for detecting a significant influence of genetic factors. Based
on the heritability power estimation tool of the SOLAR-Eclipse toolbox, we
found that, at a power of 80% and an alpha level of 0.05, the sample size of
theMEGdatawas sufficient todetect a significanth2of~0.51 and the sample
size of the fMRIdatawas sufficient to detect a significanth2 of ~0.15.Most of
the global and local graph measures of the MEG AEC and lcAEC in all six
frequency bands and the dwPLI in theta, alpha, and low beta were highly
heritable (h2 = 0.54–0.75 [IQR across graphmeasures]), which corresponds
to a sufficiently high statistical power of 0.83–0.97. However, the graph
measures of the dwPLI in delta, high beta, and low gamma, and the EVC of
the AEC, lcAEC, and dwPLI in all six frequency bands had a relatively weak
heritability. Therefore, we cannot rule out the possibility that a non-
significant heritability for some of those graphmeasures was due to a lack of
statistical power. To our knowledge, the HCP database currently contains
the largest open-source dataset of resting-stateMEGcollected fromMZand
DZ twins with available zygosity and family structure information. Once
larger datasets become available, additional studies can be performed to
confirm our findings for the non-significantly heritable graph mea-
sures in MEG.

Another limitation of this study is that the graph measures may be
dependent on several methodological parameters such as the brain par-
cellation scheme93. For instance, the connectome fingerprinting perfor-
mance for individual and twin differentiation may be influenced by the
parcellation granularity94. However, classification tasks using FC in resting-
state fMRI have been shown to be relatively robust against the choice of
parcellation, with small improvements in accuracy for granularity levels
greater than 200 regions93,94. Parcellation schemes on the order of 200–300
regions have also been shown to be the most representative of the brain
network structure in fMRI and diffusionMRI95 and to optimally match the
spatial resolution and rank of MEG recordings with 248 magnetometers96.
We used the Brainnetome atlas (246 regions) for the brain network analysis
in our study based on these considerations60.

Methods
Human Connectome Project (HCP) database
The data used in this study were obtained from the HCP S1200 data release
(available online at https://db.humanconnectome.org)54 and included
1003 subjects with four 14.4-min sessions of resting-state fMRI data and
89 subjects with three 6-min sessions of resting-state MEG data. The pro-
tocol for this study was approved for exempt review by the Health Sciences
Institutional Review Board (HSIRB) of the University of Texas at Austin.
Informedwritten consent was obtained by theHCP team for public sharing
of the participants’ open and restricted access data. The HCP subjects are
healthy young adults (22-37 years of age), consisting of 120 monozygotic
(MZ) twinpairs, 65 dizygotic (DZ) twin pairs, 156non-twin families, and 88
unrelated singletons for the fMRI dataset and 17MZ twin pairs, 12DZ twin
pairs, 4 non-twin sibling pairs, and 23 unrelated singletons for the MEG
dataset. A summary of the demographic information is shown in Table 1.
The family structure and zygosity of the subjects were obtained under the
restricted access terms and were determined based on genotyping data if
available or on self-reporting otherwise. The fMRI data were obtained after
prior preprocessing had been performed with the ICA-FIX denoising
pipeline63, and the MEG data were obtained after prior preprocessing had
been performedwith the open-source HCPMEGpipeline55. The HCP data
collection and preprocessing procedures are described in more detail
in Supplementary Information, Supplementary Methods and in the over-
view publications54,55,63.

MEG brain network analysis
Additional processing of the MEG data was performed following the same
procedure described in our previous work12,38. We briefly describe the
methods for the MEG brain network analysis here and provide a more
detailed description in Supplementary Information, Supplementary
Methods. The MEG data were high-pass and low-pass filtered at
0.1–150Hz, and an atlas-based beamforming approach64,65 was applied to
the preprocessed and bandpass-filtered MEG data to reconstruct brain
source time-series for the centroids of the 246 (210 cortical and 36 sub-
cortical) regions-of-interest (ROIs) of the Brainnetome atlas60.

The functional connectivity (FC) between the 246 source time-series
was estimated in six conventional frequency bands (i.e., the delta [1-4Hz],
theta [4–7Hz], alpha [8–13Hz], lowbeta [13–20Hz], highbeta [20–30Hz],
and low gamma [30-50Hz] bands), resulting in 246-by-246 symmetric
adjacency matrices. Three metrics were used for the FC estimation: the
debiased weighted phase lag index (dwPLI)66, the amplitude envelope cor-
relation (AEC)4, and the leakage-correctedAEC (lcAEC)67,68. Field spread of
common source activity in the sensor signals or source leakage in the source
space can spuriously inflate the FC estimate37. The dwPLI is a measure of
phase synchrony insensitive to zero (modulus π) phase lag interactions and
is therefore robust against the effects of common source activity66. The AEC
is a measure of amplitude synchrony, and the lcAEC corrects for zero
(modulus π) phase lag interactions via a signal orthogonalization
procedure67,68,97.

Four global and four local graph measures were computed for the
adjacency matrices of the dwPLI, AEC, and lcAEC in the six frequency
bands5. The global graph measures included the global efficiency (GE),
characteristic path length (CPL), transitivity (T), and synchronizability (S).
The local graphmeasureswere computed for eachnode in the network (246
ROIs) and included the nodal efficiency (NE), clustering coefficient (CC),
strength (STR), and eigenvector centrality (EVC). Equations and more
detailed descriptions for the graph measures are given in Supplementary
Information, Supplementary Methods and Table S1. The graph measures
were averaged across all threeMEG sessions and provided as neuroimaging
phenotypes to the heritability analysis and genetic fingerprinting algorithm.

fMRI brain network analysis
Additional denoising of the fMRIdatawasperformedwith theCONNv18.b
toolboxbasedon the SPM12softwarepackage61. Thedenoising stepswere as
follows: scrubbing of volumes with high subject motion and global signal
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outliers, regression of first-order trends to remove scanner drift, regression
of six subject-specific motion realignment parameters and their first-order
temporal derivatives, application of the anatomical CompCor method to
regress out thefirstfiveprincipal componentsof thewhitematter (WM)and
cerebrospinal fluid (CSF) signals62, and bandpass filtering at 0.01–0.1 Hz
following the regression steps (RegBP approach)98. After denoising, the
CONN toolbox was also used to calculate the atlas-based connectivity.
Time-serieswere extracted for eachof the 246ROIsof theBrainnetomeatlas
by averaging across the time-series of all the voxels in the ROI. The FC was
estimated by computing the Pearson correlation between each pair of ROI
signals, generating a 246-by-246 symmetric adjacency matrix. The corre-
lation values were transformed to z-values with Fisher’s r-to-z transform to
stabilize the variance, and the matrices of all four fMRI sessions were
averaged before computing the inverse Fisher transform to revert to cor-
relation values.

Four global graphmeasures (i.e., the GE, CPL, T, and S) and four local
graph measures (i.e., the NE, CC, STR, and EVC) were computed from the
averaged fMRI correlationmatrix. An open question in network analysis of
resting-state fMRI is the importance of negative correlations (i.e., antic-
orrelations), which are regarded as potential artifacts of preprocessing (e.g.,
global signal regression)74. However, previous studies have shown that
negative correlations may reflect meaningful interactions during resting-
state brain activity75,76. Therefore, the graph measures were computed once
after setting all the negative correlation values to 0 (i.e., positive correlation
network) and once after setting all the positive correlation values to 0 and
taking the absolute value (i.e., negative correlation network). The graph
measures of the positive and negative correlation networkswere provided as
neuroimaging phenotypes to the heritability analysis and genetic finger-
printing algorithm.

Heritability of global and local graph measures
The Sequential Oligogenic Linkage Analysis Routines (SOLAR)-Eclipse
toolbox (https://solar-eclipse-genetics.org) was used to estimate the herit-
ability of each global and local graph measure for both the MEG and fMRI
connectomes. The variance of each phenotype (i.e., graph measures) was
decomposed into additive genetic and individual environment factors (AE
model), and the narrow-sense heritability score (h2) was computed as the
fraction of the total phenotypic variance explained by additive genetic
factors69. Amore detailed description of the heritability estimationmodel is
given in Supplementary Information, Supplementary Methods.

Before computing the heritability, an inverse Gaussian transformation
was applied to each graphmeasure to ensure normality, and covariateswere
adjusted for by regressing out the effects of age, sex, age2, age x sex, and age2 x
sex (as recommended in Kochunov et al., 201969). A summary measure of
absolute in-scanner head motion was also included as a covariate for the
fMRI dataset, as previous studies have established that head motion during
resting-state fMRI recordings is heritable77. The significance of the herit-
abilitywas tested by comparing the likelihood of themodel that includes the
estimated σ2g to the model with σ2g constrained to 0 (i.e., null model)69, and
the p-values of the h2 estimates (i.e., p(h2)) were false discovery rate (FDR)
corrected for multiple comparisons (Benjamini-Hochberg procedure). The
comparisons for the global graphmeasures consisted of 4 graphmeasures, 3
FC metrics and 6 frequency bands for MEG, and 2 positive/negative cor-
relation networks for fMRI (4 ⋅ (3 ⋅ 6+ 2) = 80 comparisons in total). The
comparisons for the local graph measures also included 246 ROIs (80 ⋅
246 = 19,680 comparisons in total).

Given the relatively large number of parameter combinations for the
MEG dataset (72 parameter combinations), k-means clustering was
employed to group local graphmeasures according to the similarity of their
spatial heritability profiles. Thedistancemetricwas chosen to be the squared
Euclideandistanceacross theh2 values of all theROIs, thenumberof clusters
was selected to be k = 4, and the clustering was repeated for 1000 initial
cluster centroid locations.

The similarity of the heritability of the local graph measures between
theMEGand fMRI connectomeswas evaluatedwithWilcoxon signed-rank

tests (two-sided) and the Dice similarity coefficient (DSC). For each local
graph measure, the signed-rank test was conducted to test for a significant
difference between the h2 estimates of MEG and fMRI across all 246 ROIs
(i.e., [h2(MEG) – h2(fMRI)] ≠ 0). The p-values of the signed-rank tests were
FDR corrected for 144 pairwise comparisons (4 local graph measures, 2
negative/correlation networks for fMRI, and 3 FC metrics and 6 frequency
bands for MEG). The DSC was used to quantify the spatial overlap of the
most heritable ROIs between MEG and fMRI after thresholding the h2

values of all the ROIs at pFDR(h
2) < 0.05 and at 50% of the highest h2 values.

Genetic fingerprinting algorithm
A machine learning algorithm (i.e., linear support vector machine [SVM],
one versus one coding design formulti-class classification)was trained on the
graph measures to classify individual pairs of twins and/or siblings within a
larger population of individuals. An overview of the training and testing
procedure is shown in Fig. 6a. Five-fold cross-validation (80% training/20%
testing) was implemented to evaluate the performance of the classification
algorithm. Training and testing were performed separately for the global and
local graphmeasures and separately for the fMRI connectomes (i.e., 4 graph
measures and 2 positive/negative correlation networks [8 features]) and for
each MEG FC metric (i.e., 4 graph measures and 6 frequency bands [24
features]).Thegraphmeasuresof the trainingdatawere standardized, and the
mean and standard deviation of the training data were applied to the testing
data. The distance of the graphmeasures was computed between each pair of
MZ twins, each pair of non-MZ siblings, and each randomly assigned pair of
unrelated individuals. The absolute differencewas used as the distancemetric
for the global measures, and the correlation distance across all 246 ROIs was
used as the distance metric for the local measures. The distance values were
then provided as input features to the SVM classifier in order to classify all
three groups (i.e., MZ twin pairs, non-MZ sibling pairs, and unrelated pairs)
and each combination of two groups.

For theMEGdataset, the sample size was n = 17 for theMZ twin pairs
and n = 16 for the non-MZ sibling pairs. Pairs of unrelated individuals
(n = 17 pairs) were randomly selected from all the MEG subjects. For the
fMRI dataset, multiple sibling pairs belonged to the same family, and the
number of non-MZ families (n = 221) was about twice the number of MZ
twin pairs (n = 120). Therefore, each non-MZ sibling pair was randomly
selected from an independent family (i.e., unrelated to the other sibling
pairs), and the non-MZ sibling group was randomly under-sampled to
match the sample size of the MZ twin pairs. Pairs of unrelated individuals
(n = 120 pairs) were randomly selected from all the fMRI subjects.

The cross-validation procedure was repeated 1000 times, each time
randomly selecting pairs of unrelated individuals, randomly selecting and
under-sampling non-MZ sibling pairs for the fMRI dataset, and randomly
partitioning the training and test sets. Metrics evaluating the classification
performance on the test set were averaged across all 1000 repetitions of the
5-fold cross-validation. The evaluation metrics included the accuracy
(ACC), area under the receiver operating curve (AUC), true positive rate
(TPR)/sensitivity, true negative rate (TNR)/specificity, and positive pre-
dictive value (PPV)/precision. A permutation test was performed to test for
an ACC and AUC significantly greater than chance. Null distributions for
the ACC and AUC were generated by randomly permuting the family
relationship labels across the subjects 1000 times, each time permuting the
labels prior to implementing the repeated 5-fold cross-validation scheme
described previously99.

The Wilcoxon rank-sum test (two-sided) was performed to evaluate
the difference between the vector norms of the graph measure distance
features between all pairs of MZ twins, all pairs of non-MZ siblings, and all
possible combinations of unrelated subject pairs. The vector norm of the
distance features was computed separately for the global and local graph
measures and separately for the fMRI correlation networks (8 features) and
eachMEG FCmetric (24 features). The p-values of the rank-sum tests were
FDR corrected for 3 pairwise group comparisons and 8 sets of distance
feature vectors (i.e., 2 graphmeasure categories [global or local] and 4MEG
and fMRI connectomes).
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Statistics and reproducibility
The heritability h2 scores of the global and local graph measures were esti-
matedwith the SOLAR-Eclipse toolbox using 17MZ twin pairs, 12DZ twin
pairs, 4 non-twin siblingpairs, and23unrelated singletons forMEGand120
MZ twin pairs, 65 DZ twin pairs, 156 non-twin families, and 88 unrelated
singletons for fMRI. The reproducibility of the h2 scores of the local graph
measures was assessed with spatial (Pearson) correlations and absolute
difference confidence intervals computed between two software imple-
mentations (i.e., the SOLAR-Eclipse andAcceleratedPermutation inference
for ACE [APACE] toolboxes69,70) across all brain regions (n = 246 brain
regions of the Brainnetome atlas). The similarity of the h2 scores of the local
graph measures between MEG and fMRI was evaluated with Wilcoxon
signed-rank tests and the DSC (n = 246 brain regions). The performance of
the genetic fingerprinting algorithm (ACC and AUC) was evaluated with
1000 repetitions of 5-fold cross-validation, and permutation tests were
implemented to evaluate whether the ACC and AUC were significantly
greater than chance (1000 random permutations of the family relationship
labels). The vector norms of the graph measure distance features were
comparedbetweenallMZ twinpairs (n = 17 forMEG;n = 120 for fMRI), all
non-MZ sibling pairs (n = 16 for MEG; n = 527 for fMRI), and all possible
combinations of unrelated subject pairs (n = 3883 forMEG; n = 501,856 for
fMRI) usingWilcoxon rank-sum tests.Multiple comparisons correction for
the statistical tests was performed using FDR adjustment. Further details
about the statistical tests are provided throughout theMethods section and
the Supplementary Information, Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The open-access MEG, fMRI, and demographic data are available online at
ConnectomeDB (https://db.humanconnectome.org) under the HCP Open
Access Data Use Terms. The family structure and zygosity of the HCP
subjects are available under the HCP Restricted Access Data Use Terms.

Code availability
The custom code used for data analysis is provided on GitHub (https://
github.com/hprmtbbd/genetic_neural_fingerprinting). This includes
functions and scripts for computing the synchronizability and nodal effi-
ciency graph measures, performing statistical analyses on the heritability
values, generating figures and tables of the results, and implementing the
genetic fingerprinting machine learning algorithm. The MEG and fMRI
data were downloaded after prior preprocessing had already been per-
formed by the HCP team. Additional preprocessing, beamformer source
reconstruction, and connectivity analysis of the MEG data was performed
with the FieldTrip toolbox v20180905 (https://www.fieldtriptoolbox.org)
and MEG-ROI-nets toolbox v2.0 (https://github.com/OHBA-analysis/
MEG-ROI-nets). Additional preprocessing, atlas-based parcellation, and
connectivity analysis of the fMRI datawas performedwith theCONNv18.b
toolbox (https://web.conn-toolbox.org/home). Computation of the graph
measures was performed with the Brain Connectivity Toolbox v20170115
(https://sites.google.com/site/bctnet), and the heritability models were
implemented with the SOLAR-Eclipse toolbox v8.1.1 (https://solar-eclipse-
genetics.org) and APACE toolbox (https://www.nisox.org/
Software/APACE).
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