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صخلملا

حبصأ،نانسلأاةحصنيسحتلةديازتملاةجاحلاونانسلأابطمولعيفمدقتلاعم
ةيكيناكيموةيسدنهصئاصخكلتمتةديدجةعارزداومريوطتيرورضلانم
نانسلأانيبةيبسنلاةكرحلانأامك،ةلاكأةئيبيهةيومفلاةئيبلا.لضفأةيئايزيفو
كاكتحلااملعوكرتشملالكآتلاةساردبجي،كلذل.ةيئادعرثكأةئيبلالعجت
تابلطتمونانسلأاةعارزلةدقعملالاكشلأانإ.تاسرغلالكآتمسابفورعملا
عينصتلاتايلمعللاخنمابعصعينصتلالعجتتاسرغلاهذهليلاعلاءادلأا
ريوطتحبصأ،داعبلأاةيثلاثةعابطلاوأيفاضلإاعينصتلاروهظعم.ةيديلقتلا
،حطسلاةنوشخلثمةفلتخملاتابلطتملانإف،كلذعمو.لاهسارمأتاسرغلا
ضرعتست.تاسرغلاعينصتةبوعصنمديزتلكآتلاةمواقمو،ةيكيناكيملاةوقلاو
امك.داعبلأاةيثلاثةعوبطملاتاسرغلابةقلعتملاةفلتخملاتاساردلاةيلاحلاةقرولا
داعبلأاةيثلاثةعابطلاهبعلتنأنكمييذلارودلاىلعءوضلاطيلستةقرولالواحت
ةيددعلاوةيبيرجتلاتاساردلانمديزمىلإةجاحكانه.نانسلأاةعارزلاجميف
تاذتاسرغلاريوطتلداعبلأاةيثلاثةعابطلاتاسرغلىلثملافورظلاطابنتسلا
.ةنسحملاةيجولويبلاولكآتلاوةيكيناكيملاصئاصخلا

؛كاكتحلااملع؛لكآت؛داعبلأاةيثلاثةعابطلا؛نانسلأاعرز:ةيحاتفملاتاملكلا
؛يحطسلابيكرتلا؛يثلاثلالكآتلا؛يويحلاقفاوتلا؛فاضملاعينصتلا
ةيكيناكيملاصئاصخلا

Abstract

With the advancements in dental science and the growing

need for improved dental health, it has become impera-

tive to develop new implant materials which possess

better geometrical, mechanical, and physical properties.

The oral environment is a corrosive environment and the
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relative motion between the teeth also makes the envi-

ronment more hostile. Therefore, the combined corrosion

and tribology commonly known as tribocorrosion of

implants needs to be studied. The complex shapes of the

dental implants and the high-performance requirements

of these implants make manufacturing difficult by con-

ventional manufacturing processes. With the advent of

additive manufacturing or 3D-printing, the development

of implants has become easy. However, the various re-

quirements such as surface roughness, mechanical

strength, and corrosion resistance further make the

manufacturing of implants difficult. The current paper

reviews the various studies related to3D-printed implants.

Also, the paper tries to highlight the role of 3D-Printing

can play in the area of dental implants. Further studies

both experimental and numerical are needed to devise

optimized conditions for 3D-printing implants to develop

implants with improved mechanical, corrosion, and bio-

logical properties.

Keywords: 3D printing; Corrosion; Dental implants; Surface

texturing; Tribocorrosion; Tribology
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Brief overview of dental implants

Around 2500 BC, ancient Egyptians used gold ligature
wires to stabilize periodontally affected teeth. Their ancient
manuscripts and texts offer fascinating insights into their
dental practices, referencing not only the use of gold ligature

wire but also providing intriguing accounts of toothaches
and related oral health concerns prevalent during that time.1

Around 500 BC, the Etruscans showcased their remarkable
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dental craftsmanship by creating customized soldered gold
bands sourced from animals, which served to restore oral

function in humans. Additionally, they displayed their
resourcefulness by crafting tooth replacements using oxen
bones. During the same era, the Phoenicians also

demonstrated their dental ingenuity by employing gold
wire as a means to stabilize teeth affected by periodontal
issues. Advancing further in history, around 300 AD, these

innovative societies continued to impress by carving tooth
replacements out of ivory and ingeniously stabilizing them
with gold wire, resulting in the creation of fixed bridges. As
we delve deeper into the annals of time, the Mayan

population emerged as pioneers in dental implants, with
evidence dating back to roughly 600 AD. The Mayans
skillfully utilized pieces of shells as implants, effectively

replacing mandibular teeth, leaving an enduring legacy in
the field of dental implantology and underscoring the
progressive nature of early dental practices.2e4 During the

1930s, Dr. Alvin and Moses Strock, in their pioneering
efforts, conducted experiments using orthopedic screw
fixtures made of Vitallium, a chromium-cobalt alloy.
Inspired by successful hip bone implants, they ventured to

restore individual teeth by implanting these screws in both
humans and dogs. The Vitallium screw proved to be an
effective anchor, providing support for replacing missing

teeth. Their groundbreaking work was recognized for
choosing a biocompatible metal for human dentition,
marking a significant milestone in the history of dental

implantology.5 During the 1950s, Dr. Bodine conducted
observations on several patients in the armed forces and
noticed a significant evolution in the framework design of

dental implants. The new design featured a more
streamlined approach, requiring fewer struts or girders. He
also strategically positioned the screw holes in areas of the
bone with the greatest strength and thickness, ensuring

improved stability and support for the dental implants.
These advancements in design and placement marked a
notable step forward in enhancing the success and

effectiveness of dental implant procedures.6 Starting from
the mid-1980s, the prevalent choice among dental clinicians
for dental implants were the endosseous root-form implant.

Coating the dental implants with calcium phosphate in-
creases the osseointegration in the implants.7 However, use
of titanium alloys in dental implants induce stress-shielding

due to the high modulus of elasticity.8 The selection of a
specific endosseous implant the system was influenced by
various key factors, such as its design, surface roughness,
prosthetic considerations, ease of insertion into the bone,

cost-effectiveness, and long-term success rates. These con-
siderations played a crucial role in determining which
implant system was preferred over others, as clinicians

sought to achieve optimal outcomes for their patients during
this period of dental implant evolution. On the other hand, at
the moment, tooth loss or other medical complications in

theoral cavity are unfortunately very common not only in the
elderly age but also in adults or young people, requiring a
rapid response from the clinical and engineering community.
Hence, at the moment, several different implants are pro-

duced and inserted in the human oral cavity, according to the
clinical conditions of the patients, medical procedures, spe-
cific necessities, and so on.9 In particular, the number is

growing day by day,10 thanks to high success rate11 and
reliability but also thanks to the progressive development
of technologies and competencies adopted for avoiding

unpleasant events such as infections or mechanical failures,
protecting thus the functionality of the prosthesis. In that
sense, the structure, material, and topography of the

implant are key aspects for its survival, being directly
correlated with the process of osseointegration.12,13

Unsurprisingly, the research is going towards new trends in

terms of biomaterial used and the treatments applied, the
design of the implant and so on, representing concrete
opportunities for implant improvement,14 satisfying, in this
way, the necessities and requests of the single individual.

In this scenario, to our knowledge, the current state of art
provides review articles focused on the fabrication method-
ologies15,16 and applications17 of additive manufacturing for

dental implants. On the other hand, the tribocorrosive
behavior was documented by Saha and Roy,18 by
Villanueva et al.19 but only for conventional fabrication

methods and by Awasthi et al.20 referred to general
orthopedic tools. Hence, in this manuscript the authors
aim to provide firstly a deep background of dental
implants in terms of structure, topography and material,

presented respectively in sections 2, 3 and 4. Successively
an insight into the biotribocorrosion field is proposed, for
both conventional and additive manufacturing, in which

the main literature results will be discussed. Section 5 will
highlight these aspects. Lastly, the conclusions together
with the future developments of this ongoing field.
Dental implant structure

The structure of a common dental implant is essentially

composed of three elements21 as the implant, which is
coupled with the abutment by mechanical workings or a
fixing screw, and the crown which represents the artificial

tooth and corresponds to the uppest zone of the total
system. More precisely, the coupling abutment-implant is
realized by hexagonal internal or external connection or by

morse taper fixing as underlined in Figure 1. The main
difference is that the hexagonal internal requires the
fixing screw whereas the other ones the conical keying.

In any case, other junctions are common such as the
octagonal, conical, or trilobe.22 Concerning, instead, the
connection with the prosthesis, the screw is the most
adopted choice but, as shown by Cicciù et al.,23 the

cementation technique provided a more homogeneous
distribution of the loads.

Nevertheless, innovative prototypes are diffused, as

shown by Chen et al.24 who realized a new design providing a
no-gap mechanism and sealing. The scope is to reduce as
much as possible the potential micromovements generated

by occlusal forces since they are strictly correlated with the
stability of the implant as well as the formation of micro gaps
where bacteria may penetrate and locate, leading to in-
flammations in the proximity of the bone tissues. Another

opportunity is offered by Sugiura et al.25 who noted that the
tilted implants had a lower maximum extent of micromotion
than axial implants. Regarding the design, instead, the

implants are divided with respect to the geometrical design
in terms of total length, head diameter, and the type
of thread, each one relevant to stress distribution and



Figure 1: Representative images of commercial implants connections: morse taper (a), external hexagonal (b) and internal hexagonal with

fixing screw (c). CAD files realized in SolidWorks 2022.
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long-term survival.26 In Table 1 some examples with
common dimensions and thread patterns are reported.

The diameter and the length are important variables in

biomechanical couplings as stated by Li et al.27 and by
Himmlová et al.28 in the way that for longer and wider
implants the stress and the strain were lower.

Nevertheless, short implants (Figure 2a), when the length
is<8 mm, or ultrashort (Figure 2b), when the length<6 mm,
are at the moment center of discussion in the scientific

community,29e31 since they outline a valid alternative to
the first ones,32 as demonstrated by De Stefano et al.33,34

being though less invasive with a lower probability of
inflammation and, at the same time, faster and cheaper as

surgical treatment.35

Analogously, the thread types (Figure 3) and features in
terms of depth, pitch, face angles and width (Figure 4), are

also crucial for stress distribution.36 For instance, the
number of threads and their depth are important because
the more they are, the more are spot contacts,37 where the

bone can grow and develop. In this circumstance, new
patterns have been introduced as done by Paracchini
et al.38 Indeed, they demonstrated, by a FEM analysis, that

their nest shape structure showed lower stress and strain,
above all in the interface cortical bone-neck of the implant.

Finally, in the case of edentulism, i.e., when the patient
misses all teeth, a recent technique involves the use of an

arch, most of the times in resin or CrCo alloys,39 and just
four implants (Figure 5) positioned two vertically in the
incisive and two obliquely (18e45� respect to the vertical

axis) molar regions, in accordance with the Paulo Malo
concept.40

The geometrical features as much as the design of all the

medical tools were provided by MaCo International (In-
dustrial area-Buccino-Italy).
Table 1: Most common geometrical dimensions and thread

patterns of dental implants.

Diameter Ø [mm] Length L [mm] Thread patterns

2 8 Buttress

3 10 Reverse Buttress

4 11.5 V-shape

5 13 Sinusoidal

6 16 Square
Surface topography and biocompatibility in dental implants

Biomechanics explores the intricate interactions among
body tissues and organs, alongwith the forces they encounter.

This field investigates how biological tissues respond under
applied loads. Evaluating the biocompatibility of dental
implant materials involves a thorough examination of their

response to bone and soft tissue. Creating a reliable seal at the
implant-soft tissue interface is vital to isolate the implant and
bone from the oral environment. Implant biomechanics is an

evolving area of research, with significant implications for
various aspects of implant treatments. Although some evi-
dence exists on bone response to loaded implants, our un-
derstanding remains limited due to a lack of fundamental

studies combining implant biomechanics with bone biology.
This gap has hindered a comprehensive interpretation of
extensive clinical data amassed over the past three decades.41

The integration of natural teeth and dental implants to
support bridge is seems feasible, despite their distinct
mobility characteristics and potential biomechanical

challenges. The key to this compatibility lies in the screw
joint’s flexibility, enabling the natural tooth to move
downward without subjecting the implant to undue

pressure or causing the screw joint to excessively open. This
flexibility ensures a harmonious functioning of the
combined dental elements in the bridge structure.42 The
dental field faces a complex challenge in achieving

successful tooth replacement without compromising bone
health. Despite the availability of various dental implant
types and accessories, their ability to fully restore

masticatory function remains limited and controversial.43,44

Therefore, it becomes crucial to understand and assess the
stresses that dental implants undergo. To achieve this,

researchers are exploring non-invasive methods to evaluate
the impact of various parameters and implant positions in the
mandible, allowing for a comprehensive assessment without

incurring the costs and risks associated with actual implan-
tation procedures.45,46 A prominent area of interest is the
study of cell-implant surface interactions, as understanding
these interactions in detail can pave the way for the devel-

opment of innovative surface treatments.47 Cell growth and
function during the initial stages of osseointegration is
influenced by topographical characteristics, surface

roughness, energy, and chemical composition impacting the
longevity of the prosthesis, because strictly linked to the



Figure 2: An example of commercial short implant (a) of diameter 4.6 mm and length 7 mm and ultrashort implant (b) of diameter 4.6 mm

and length 5 mm. CAD files realized in SolidWorks 2022.

Figure 3: Type of threads: V-shape (a), Sinusoidal (b), Square (c), Buttress (d), Reverse Buttress I. CAD files realized in SolidWorks 2022.

Figure 4: Geometrical features of the thread. CAD files realized in SolidWorks 2022.
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process of osteointegration,48 the biological process by which
the formation of bone tissue around the implant surface

happens.49 The surface characterization can be performed
by different techniques such as confocal technique or
interferometry, which is commonly adopted in dentistry50

since its accuracy and range resolution of order of

nanometers,51,52 but also scanning electron microscopy and
stylus profilometry are valid alternatives.53 In any case,
describing a roughness surface is not a trivial task since the

great amount of roughness parameters (height, spatial,
hybrid, functionals) as much as the different scales of
investigation which may yield diverse outcomes. In that

sense, in dentistry, the topography should be divided into
three levels54:
1. Macro (10 mm-1mm) for the contact between bone surface
and implant.

2. Micro (1e10 mm) for the contact between mineralized
bone and implant.

3. Nano (less than 1 mm) for the adsorption of proteins and
adhesion of osteoblast cells.

Moreover, among the multitude of the parameters re-
ported in the literature,55 only the arithmetical roughness

was demonstrated to be correlated with the
osseointegration process.53 More precisely it should be
included in the range 1e2 mm for an appropriate bone
growth (Figure 6). Hence, increasing roughness results in a

better biological response56 since for this interval there is a



Figure 5: Four-implants supported by an arch in a human mandible. CAD files realized in SolidWorks 2022.

Figure 6: Topography of top surface of commercial dental implant surface with Ra 1.5 mm in horizontal direction.
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right equilibrium between osteoblasts, which are responsible
for the construction of new bone matrix, and osteoclasts,
responsible for the destruction of old bone matrix.57

On the contrary, rougher surfaces are more sensitive to
bacterial attack.58 In particular the presence of
microorganisms represents a deep issue among the

researchers because it could compromise the efficiency of
the implants by favoring infections, and diseases, not only
in the implants (peri-implantitis) but also in the gingiva

(gingivitis), and near the bone (peri-odontis). The
phenomenon is referred to as microbially induced corrosion
(MIC)59 and it is the cause of corrosion for about 1/3 of
the metallic corrosion cases. Therefore, for the optimal

design of implants is crucial to consider not only the
topographical aspect but also the biological response and
thus the cell behavior to avoid a premature failure.60 The

biological aspect does not involve only the microbial factor
but every bio-mechanism that occur after and during the
implantation of the appliance: ions diffusion, the presence of

water molecules, protein adhesion, and all the other exam-
ples of dynamic interactions between implant and sur-
rounding tissues which occur at the material surface

(Figure 7).
These natural processes depend on the clinical situation of

the patient, and they are also time-dependent since during
the implant life cycle the topography and the oral
environment are constantly modified.61 In this light, various
surface modification methods have been created to enhance
the osseointegration of dental implants made from

commercially pure titanium.62,63 These approaches aim to
increase primary stability and reduce healing time. The
surface properties of implants, including their morphology,

roughness, oxide layer thickness, chemical composition,
impurity level, and types of oxides, are all dependent on
the specific surface treatment process used.64,65 At the

moment, essentially two kind of techniques can be
adopted: physical such as plasma spraying, sputter
deposition, magnetron sputtering, etc. and chemical such
as solegel or electrochemical deposition.66 Extensive

research through in vivo and in vitro studies has
demonstrated that the characteristics of dental implant
surfaces significantly influence cell activity, leading to

changes in cell differentiation, proliferation, and
extracellular matrix formation. The bioactivity, defined as
ability of an external object to interact with the biological

environment to enhance the appropriate biological
response, results even crucial for the longevity of the
prosthesis. Any material cannot be considered as

completely inert and therefore biological interactions
always occur. The aim of researchers and engineers is to
promote positive interactions and to avoid toxic reactions,
safeguarding at the same time the mechanical performance



Figure 7: Examples of interactions between implant and surrounding biological environment.
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of the device. In this light, acid etching, sandblasting, and

electrochemical treatments are more effective than plasma
spray or laser treatment.67,68 However, there is a lack of
consensus among researchers regarding the optimal surface
type and implant shape. Conical implants, in particular,

require higher installation torque compared to cylindrical
dental implants.69 Further research is needed to enhance
our understanding of cell-implant surface interactions and

to analyse the impact of various parameters on protein in-
teractions, bone formation stimulation, and the development
of individualized therapies for critically considered patients.

Dental implants offer the ability to chew food, maintain and
strengthen the bone structure and patient gain the confidence
to smile. They also preserve bone structure which provides
additional protection for the existing teeth.70 The

degradation of implant materials and the subsequent
release of particles or ions, along with their impact on
complications related to dental implant therapy, have been

extensively documented. Any lack of conformity in this
regard raises significant concerns about patient safety. The
physicochemical characteristics of wear debris not only

interfere with biological responses but also enable these
particles to permeate cell membranes and be absorbed by
the cells. Figure 8 shows a schematic representation of the

causes and concerns associated with material degradation
and particle release in dental implants.
Figure 8: Schematic representation of the causes and concerns asso

implants.
Dental implant material aspects

Dental implants have been constructed using an extensive
array of materials, encompassing metals, ceramics, and poly-
mers. Metals as the most traditional materials, have histori-
cally been the earliest and most widely employed form of

material for dental implants, and to this day, they continue to
be the prevailing choice in implant dentistry. There are various
types of ceramics material available for dental implants

including: Hydroxyapatite, Alumina, Beta tricalcium phos-
phate, etc. Polymers play a significant role in fulfilling specific
requirements for temporary or provisional dental restorations

and certain implant components. Figure 9 below represents the
different types of materials used for dental implants.

In biomedical field, high molecular weight biocompatible

polymers are typically considered non-degradable and cate-
gorized as bioinert. However, concerns regarding toxicity
may arise from the leaching of low molecular weight plasti-
cizers and additives associated with these polymers. There-

fore, it is imperative to thoroughly characterize the grade of
polymer being utilized. To enhance the osseo conductive
properties and surface roughness of polymers, they can be

subjected to coating and blending processes with bioactive
particles. Consequently, recent research endeavors have
predominantly focused on the modification of polymers by
ciated with material degradation and particle release in dental



Figure 9: Different materials used for dental implants.
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incorporating nanosized particles and creating nanolevel

surface topography.7,8

Within the domain of dental implants micro design
modifications are made to the implant surface while preser-

ving the macro design features. These alterations encompass
adjustments to the surface roughness, topography, compo-
sition, and other intricate aspects of the implant. Diverse

surface modification strategies, such as physical, chemical,
and thermal treatments, are employed to achieve these
changes.71 Some treatments introduce micro-sized features

on the implant surface, while others create nanotexturing or
a hybrid of micro and nano features on the implants.
Numerous studies suggest that, when compared to a smooth
surface, an optimal micron-scale roughness has the potential

to improve osteoblast differentiation and promote bone-
implant contact in vivo.72,73 Early modifications of dental
implants in the latter part of the last century mainly

concentrated on increasing surface area through micro-
texturing techniques, which proved beneficial in enhancing
bone-implant contact.74e76 An alternative approach to

creating biomimetic surfaces involves utilizing charge
effects and cell signaling through submicron or nanoscale
topography, sometimes combined with micron-scaled sur-

faces. The objective is to establish a close connection between
tissues and implants, facilitating controlled, predictable, and
guided tissue healing. The literature describes several inno-
vative nanostructured materials, including titanium-based

nanotubes and other bioactive ceramic materials, which
hold significant promise for modifying implant surfaces.
Nanostructured surfaces, characterized by nanoscale pores,

irregularities, or spike-like nanofeatures on titanium
implants, play a pivotal role in mimicking the natural

structure of bone or soft tissue. This enhancement in imita-
tion facilitates the healing process, promoting more effective
tissue integration and regeneration. Surfaces featuring

nanoscale topography play a crucial role in the initial stages
of integration, influencing processes such as protein
adsorption, blood clot formation, and cellular behavior after

implantation. These early events exert a substantial and
influential impact on the migration, adhesion, and differen-
tiation of progenitor cells. Furthermore, it has been observed

that nanostructured surfaces can regulate the differentiation
pathways, guiding cells towards specific lineages and ulti-
mately influencing the nature of peri-implant tissues. Human
bone exhibits a hierarchical composition, encompassing

various mechanical, biological, and chemical functionalities
at different levels. This hierarchy comprises elements at the
macro, micro, sub-micro, nano, and sub-nanoscale levels. At

the macroscale, the bone’s overall shape, marrow spaces, and
trabeculae are observed. At the microscale, features such as
osteons, lacunae, lamellae, canaliculi, erosion cavities, and

resorption sites, as well as cells like osteocytes, osteoblasts,
and osteoclasts, are measured. The building blocks of bone,
namely collagen fibers and hydroxyapatite nanocrystals, are

considered as nano or sub-nanostructures. Blending micro
and nanoscale modifications of implants based on scaling
principles has demonstrated significant benefits in promoting
osteogenic cell growth.77 By replicating the hierarchical

structure found in natural bone tissue, this approach
creates a random structure that positively influences the
performance of the implants, leading to improved

outcomes. According to the literature, micro-texturing
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applied to implants creates structures similar in size to bone
resorption pits and cells.78 Consequently, the micron

topography on the surface can provide mechanical
interlocking and support cell differentiation, but it may
hinder cell spreading and proliferation as cells tend to stay

within the microgrooves.79,80 In contrast, nanoscale
topography typically promotes cell adhesion, proliferation,
and differentiation, possibly because of its resemblance in

size to extracellular matrix proteins and membrane
receptors. The synergistic effect of combining micro and
nano-scale surface topography on implant materials reveals
that this multi-scale hierarchical hybrid surface effectively

addresses the negative impact of microscale topography on
cell spreading.

Surface coating for dental implants

Integrating bioactive materials onto robust biometals
combines the bone-bonding capability of the bioactive ma-

terials with the mechanical performance of the biometals.
These bioactive materials include hydroxyapatite (HA),
magnesium-containing mixed coatings, graphene, various

proteins, and more.81e85 The thickness and roughness of the
coatings can influence the chemical inertness, cell adhesion,
and antimicrobial properties of the dental implant surface.

From a commercial perspective, plasma-sprayed hy-

droxyapatite (HA) emerges as the prominent choice, given its
widespread popularity. These coatings, post-processing,
often exhibit partial amorphous characteristics and may

contain other crystalline phases in addition to HA. Notably,
both plasma-sprayed HA and other bioactive ceramic coat-
ings have been proven to promote enhanced bone apposition

when compared to uncoated metal implants, making them
highly valuable options for various implant applications.
Nano-hydroxyapatite can be used as a single coating or

combined with collagen, bioglass, or titanium dioxide in a
composite manner to mimic the bio-environment of natural
bones.86,87 When particles are reduced to the nano-size scale,
their specific surface area and adsorption ability significantly

increases. Over time, nano-hydroxyapatite coating consis-
tently enhances bone bonding with dental implants
compared to a typical dual acid-etched surface.88,89 Breding

et al.90 conducted a study to assess the osseointegration of
Titanium (Ti) implants with and without nano-
hydroxyapatite (HA) coatings using the real-time polymer-

ase chain reaction (RT-PCR) method. The surface
morphology results, obtained through electron microscopy,
revealed the presence of elongated particles on the HA-
coated implants, indicating the presence of HA nano-

crystals. Additionally, the surface roughness of the HA-
coated implants was found to be lower, suggesting the
presence of smaller surface structures. The RT-PCR results

on osteoblast, osteoclast, and proinflammation markers
exhibited significant differences between the HA-coated im-
plants and non-coated implants. According to the authors,

the incorporation of HA nanocrystals as implant coatings
resulted in superior osseointegration compared to the non-
coated implants.

Wennerberg et al.91 investigated the stability of
hydroxyapatite (HA) nanoparticles coated on titanium (Ti)
implants. The researchers introduced a total of 20 threaded
and turned titanium micro-implants, each coated with HA
nanoparticles, into ten rats for experimental purposes. To

trace the HA nanoparticles, they labeled 16 of these implants
with calcium 45 (45Ca). Over the course of the eight-week
experiment, radioactivity measurements indicated a gradual

decrease in the localization of 45Ca within the implant area
over time. The amounts of 45Ca found in the blood and
excretions of the rats also reduced as time progressed, with

only traces of 45Ca observed in the liver. From their findings,
the researchers concluded that the released nanoparticles are
eliminated from the body through the natural cleaning sys-
tem. The possibility of nanoparticle accumulation in vital

organs and potential biological risks appeared to be highly
improbable based on their observations and results.

Roy et al.92 hydroxyapatite (HA) nanocrystals measuring

200 nm in size were prepared and utilized as coatings on
commercially pure titanium through the plasma spray
technique. Both in vitro and in vivo biological responses

were evaluated. The researchers conducted cytotoxicity
tests on human fetal osteoblast cells to assess the impact of
HA coatings, and in vivo studies were performed using
rats. The results revealed that the fetal osteoblast cells

demonstrated confluence on HA coatings, with spherical
granules evident on the cell surfaces, implying the
occurrence of mineralization. Also, pure titanium surfaces

did not exhibit cell coverage or extracellular matrix
formation. Moreover, the implantation study in rats
exhibited osteoid formation on the HA-coated implant sur-

faces, suggesting early implant-tissue integration in vivo.
These findings suggest that HA nanocrystal coatings play a
significant role in promoting cell attachment, mineralization,

and favorable implant-tissue interactions in both in vitro and
in vivo environments.

Additive manufacturing: shaping the future of dental
implants

Conventional computer numerical control machining
faces significant challenges in producing dental implants that

accurately replicate the intricate geometries of natural roots
due to irregularly curved surfaces and complex 3D struc-
tures. An exciting alternative in this context is additive

manufacturing (AM), also known as 3D printing, which
possesses the unique ability to directly fabricate nearly any
desired implant geometry without requiring expensive molds

or tooling as presented in Figure 10. Consequently, AM is
now widely regarded as the future of custom-made im-
plants and has become a central focus in pioneering research
within the dental implant domain.93 The history of using 3D

printing for dental implants dates back to the early 2000s
when researchers and dental professionals first began
exploring its potential in revolutionizing implant

manufacturing with high precision.94 A diverse range of 3D
printing techniques are readily accessible in the market.
The choice of selecting an appropriate 3D printing

technique is vital and relies on the specific application in
implants. The diverse nature of implant requirements
necessitates careful consideration of the unique

characteristics and capabilities offered by various 3D
printing methods. Factors such as implant design
complexity, material compatibility, resolution, and



Figure 10: Steps involved in additive manufacturing processes.
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production efficiency play a significant role in determining
the most suitable printing technology for a particular

implant application. Taking these aspects into account
ensures the optimal selection of a 3D printing method to
fulfill the specific needs and objectives of implant

fabrication. In a study, the development of an artificial
ovary was studied using extrusion-based 3D bioprinting.
However, they reported that the viability of cells was lower in

extrusion-based 3D culture when compared to commercial
cell lines suggested that extrusion-based culture fabrication is
not suitable for the development of the artificial ovary.

Alternatively, the gelatin-methacryloyl-based 3D printing
system provided the necessary environment for the growth of
ovarian follicles in the scaffold, and thus it could be used as
an alternative strategy for follicular growth and used for the

treatment of female reproductive conditions.95

The timeline traces the development of printing tech-
niques from their inception to the current state-of-the-art in

Additive Manufacturing (AM) shown in the Figure 11.
Figure 11: History of additive manufacturing and its application in t

entific findings.112
While automated processes dealing with cells, peptides, and
biomaterials have been in existence for almost half a

century, the initial attempts to manufacture biological
constructs with living cells were reported less than a decade
ago. The pioneering work in this field was conducted in the

Boland laboratory, where they utilized a basic home-office
desktop printer with minor modifications to deposit cells
and proteins.96 Over time, inkjet printing has been

extensively studied and developed into a well-understood
process capable of precisely patterning viable cells and bio-
materials.97 Several AM techniques have been developed or

modified to include cells in the fabrication process, among
which bio-laser printing,98,99 stereolithography100e103 and
robotic dispensing (see Figure 12).104e111

AM technique utilizes data obtained from computed to-

mography or magnetic resonance imaging to design implants
tailored to the patient’s unique anatomy.114 By adding
material layer by layer, complex implant structures can be

produced without the need for specific molds, reducing
issue engineering; the introduction of technologies and major sci-



Figure 12: Different types of additive manufacturing e Selective laser sintering, Fused deposition modelling, Stereolithography, Lami-

nated object manufacturing, Electron beam melting.113

M. De Stefano et al. 653
both material and time wastage. Moreover, the flexibility of

additive manufacturing enables the fabrication of implants
in various geometries, making it an economical and
efficient choice in the field of dental implantology.115

Below figure represents the different steps involved in
additive manufacturing processes.

Interestingly, in comparison with traditional pharma-

ceutical technologies, 3D printing technology effectively
regulated the dose of tablets according to the patient’s needs
by modifying the size or filling rate and helping in preparing
individualized medicine.116 Recently, orally disintegrating

tablets printed by 3D printing technology are receiving a
lot of attention due to the increased porosity and faster
disintegration rate of the formulation.117 Khaled et al.118

stated the effective usage of printing technology in 3D to
develop a “Polypill” consisting of 5 different active
ingredients with effective personalized drug release
Figure 13: Application fie
behavior to achieve a desired therapeutic effect and

improve patient survival.

Bio-tribocorrosion aspect of dental implants

The tribocorrosion is a peculiar phenomenon involving
the synergistic effect119 of mechanical wear, in all its forms
such as adhesive, abrasive, fatigue, and so on coupled with

the corrosive environment. Nowadays, various industrial
fields (Figure 13) are subjected to tribocorrosive material
loss, from industries to transportation, but also

nanotechnologies, and above all, medicine and in
particular implantology.120 In that case, the term
tribocorrosion is better replaced by biotribocorrosion since

that the specific subject is the biology.121,122 Dental, hip,
and knee prostheses are clear examples of tools that
undergo tribocorrosion phenomenon.123e125
lds of tribocorrosion.
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Bio-tribocorrosion represents a multidisciplinary field
(Figure 14), of scientific exploration, garnering considerable

attention for its clinical significance in the both oral and
orthopedic field.126 The human body poses a challenging
environment for biomaterials, as it subjects them to various

forms of degradation, including mechanical, chemical,
biochemical, and microbiological processes.127 In this
context, bio-tribocorrosion studies offer invaluable insights

into the irreversible degradation mechanisms that biomedical
devices undergo by analyzing the combined effects of wear
and corrosion.128 Through a comprehensive understanding
of wearecorrosion interactions, bio-tribocorrosion in-

vestigations provide critical information on the factors
influencing implant performance within biological systems.
Such knowledge plays a pivotal role in enhancing the design

and durability of biomedical implants, ultimately propelling
the field of implantology forward and yielding improved
outcomes for patients.

Within the oral environment, titanium (Ti)-based im-
plants and prostheses are the best choice for dental
replacement, boasting high long-term success rates.129

However, it is crucial to acknowledge that the

tribocorrosion process can lead to implant degradation,
which has been shown to influence the overall success of
dental implants.130,131 This degradation is manifested

through the generation of wear cracks in the Ti-based ma-
terials, as well as the release of particles and ions. Conse-
quently, these degradation products may evoke unfavorable

biological responses, including an increase in peri-implant
infection and progressive bone loss. Such adverse effects
warrant meticulous attention and study to ensure long-term

efficacy and durability of dental implants in oral
rehabilitation.132

The tribolayer of metal-based implants often experiences
damage due to tribocorrosion phenomena, both during im-

plantation and throughout its lifetime in service. To begin
with, material loss can take place during implantation due to
friction forces acting on implants exposed to body fluids.133

The application of insertion torque, loading, and implant
replacement results in friction at the bone/implant
interface, potentially leading to the release of metallic wear

debris and causing alterations to the surface and geometry
of the implants.134 During mastication, the natural cyclic
loads (ranging from 250 to 450 N) exerted on dental
Figure 14: Concept and defin
implants can create micromovements, leading to the
formation of micro-gaps between the implant-abutment or

abutment-prosthetic crown interfaces.135 As a consequence
of these micromovements, metal wear particles and ions
may be released from the implant materials. The presence

of these micro-gaps further enhances the contact between
saliva, oral biofilm, and the implant surfaces, thereby exac-
erbating the corrosive process.136 In addition to these factors,

various characteristics of implant systems, such as the choice
of structural materials, connection design, and surface
treatments, also play a significant role in influencing the
extent of tribocorrosion damages associated with dental

implants.137

From a tribological perspective, the oral environment
poses a highly complex and aggressive condition for metallic

implants. The combined presence of saliva and microor-
ganisms exerts dual effects on dental implants, playing a
crucial role in the occurrence of bio-tribocorrosion phe-

nomena.138 Within the oral environment, the techniques
employed for biofilm control and decontamination of
implant surfaces, such as mechanical, chemical, and
simultaneous procedures, can also be contributing factors

that enhance the surface tribocorrosion.139

Literature tribocorrosive outcomes of traditional
manufacturing of dental implants

In this framework, several scientists tried to buffer tri-
bocorrosive effects in terms of material choice and coating,

adopted treatment140 and so on.141 For instance, Toptan
et al.142 found out that the porosity of titanium samples
acts against the corrosion during sliding thanks to the hard

oxide layer formed on the surface and to insertion of wear
debris into the pores avoiding the third-body abrasion.
Alves et al.143 investigated the effect of the plasma

electrolytic oxidation method in comparison with the bare
titanium, finding an increase in anti-wear performances as
a result of anodic film growth. Oliveira et al.144 noted that the
concentration of calcium acetate modified the microstructure

of the protective oxide layer providing better anti-
tribocorrosive behavior. The positive tribological function
made by calcium was confirmed also by Marques et al.145

because of the formation of a hard and porous rutile
crystalline structure, especially when nanoparticles of silver
ition of Tribocorrosion.
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are added.128 Zhao et al.146 analyzed the impact of NTNTs-
TiN coating on Titanium Grade V alloy immersed in a so-

lution including simulated body fluid, noting a relevant
reduction of tribocorrosive wear as well as a decrease of
friction coefficient due to the formation of lubrication film

enriched of elements like calcium, magnesium, and potas-
sium. In addition, Ribeiro et al.147 found that a calcium-rich
layer, deposited on bulk titanium, facilitated the osteoblast

adhesion and regulated the inflammatory responses and
bone microstructure, thanks to a great production of IFN-g
cytokine. Biologically speaking, even the bacteria issue, as
said before, should be taken into consideration. Indeed, He

et al.148 demonstrated that by applying a ceramic layer of
CuxO/TiO2 on titanium alloy, not only the wear resistance
increases but also the antibacterial activity, strictly

correlated with the content of copper. Cordeiro et al.,149

instead, investigated the TieZr alloy behavior in compari-
son with the commercial pure (CP) one: the former presented

lower roughness and Young’s modulus but higher hardness
and corrosion resistance with respect to the latter.

Overall, it is almost obvious that CP titanium has worse
mechanical and tribological properties than specific titanium

alloys. Nevertheless, there is no still clinical evidence for a
complete and permanent substitution in favor of the worked
alloys,150 reason why more in vivo experiments are required.

However, as it easily is notable, the majority of the studies
conducted have involved titanium as implant material,
which is the most common kind among orthopedics and

dental implants.151 This does not entail that is the best and
unique alternative. Indeed, it has some drawbacks such as
a Young’s modulus much higher than human cortical

bone, which is not perfectly mechanically balanced with the
bone. Consequently, it should be useful to consider
introducing elements such as zirconium to reduce the
modulus, as done by Kuroda et al.152 Moreover, it, as well

as vanadium or aluminum, is toxic to human cells. The
ions, in particular, can attack both the bone-implant inter-
face and the blood circulation causing inflammations and

severe biological reactions.153 In this regard, Silva et al.154

discussed the effect of gold as abutment framework in
relation to ion release, discovering that it reduced the

concentration of titanium spikes. For these reasons, valid
alternatives have been proposed for example by Xu
et al.155 for the use of niobium not only for good

mechanical performance but also from a biological and
clinical point of view. In fact, it can promote cellular
attachment, and osteogenic processes and it is not clinically
dangerous.

On the whole, the tribocorrosive research, despite the
massive improvements, has still several questions and doubts
to answer.

Bio-tribocorrosion study of dental implant made by additive
manufacturing

The selective laser melting (SLM) method is increasingly

utilized for producing Ti6Al4V due to its ability to create
alloys with comparable or superior mechanical properties
respect to conventional techniques.156 During the SLM

process, a high-intensity laser beam selectively scans across
a powder bed, melting the irradiated particles, and allowing
them to solidify into a solid layer. Successive layers of
powder are deposited on top of each previously formed solid
layer, and this cycle continues until the entire part is fully

fabricated.157 When considering design freedom,
manufacturing flexibility, specific requirements for complex
designs, strict quality control, and low to medium-volume

production, SLM emerges as a significantly superior
choice.158e160 Attar et al.161 investigation of wear properties
reveals that SLM-processed samples exhibit enhanced wear

resistance in comparison to their cast counterparts. Despite
this difference, both the SLM-processed and cast CP-Ti
samples display similar wear mechanisms. These promising
findings suggest that the SLM process is capable of pro-

ducing CP-Ti parts with complex shapes and superior wear
properties when compared to the casting technique.

Toh et al.162 conducted a study to examine the dry sliding

wear behavior of Ti6Al4V alloy produced through electron
beam melting (EBM), which is a technique akin to SLM.
The investigation involved testing the alloy against a 6 mm

diameter 100Cr6 steel ball under a 1 N normal load and a
sliding speed of 2 cm/s for a total of 50,000 cycles and
comparing it with the same alloy made by casting. Despite
observing similar wear characteristics in samples produced

by the two different techniques, the EBM-produced sam-
ples demonstrated superior wear resistance. Amaya-Vazquez
et al.163 investigated the impact of laser remelting on the

electrochemical behavior of Ti6Al4V in a 3.5 wt.% NaCl
solution. Their findings revealed that the presence of a
martensitic microstructure in laser-remelted Ti6Al4V sam-

ples led to enhance corrosion resistance. Toptan et al.164

examined the corrosion and tribocorrosion characteristics
of SLM-produced Ti6Al4V alloy and compared them with

the alloy’s counterparts produced through Hot Pressing and
commercial methods. The results indicated that the SLM
processing route had an impact on the electrochemical
response of the SLM-produced alloy. Specifically, it led to a

comparatively lower formation of the passive film due to the
reduction in b phase and the formation of a0 phase. However,
the tribocorrosion outcomes showed no statistically signifi-

cant differences between the processing routes in terms of
total volume loss or volume loss influenced by mechanical
wear and wear-accelerated corrosion. Vaithilingam et al.165

investigation into the surface chemistry of SLM-produced
Ti6Al4V following remelting and skin scanning processes.
They found significant differences compared to the conven-

tional forged alloy. Notably, the variations in oxide film
thickness and the higher Al concentration on the surface
were identified as potential factors influencing the electro-
chemical response. The use of laser, and in particular the

selective laser melted technique, was adopted also by Hamza
et al.,166 by comparing the corrosion behavior of a Ti6Al4V
treated with this technique and a conventional manufactured

one, in different solutions. The results showed a preference
for the former in solutions with pH > 6 thanks to higher
amount of b-phase and of vanadium which promoted the

formation of protective oxide layer. On the contrary, the
latter performed better for pH < 6 thanks to higher
amount of a-phase and the presence of aluminum which
enhanced the corrosion resistance. However, the selective

laser method should be coupled with acid etching as
confirmed by de Souza Soares et al.167 because of not fused
particles which decreased the barrier to corrosion. Hence

the acid results crucial for removing these particles as much
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as for obtaining a surface with appropriate roughness.
Moreover, Atapek et al.168 studied the tribocorrosion

behavior of both cast and selective laser melted CoCr
alloy, discovering that the second one were more resistant
to tribocorrosive wear because of the higher hardness and

more stable oxide protective layer formed on the surface.
Vilenha et al.169 weighed Ti6Al4V fabricated by selective
laser melting against one realized conventionally. If the

friction coefficient and the wear rate coefficient were
almost similar, the current density was found lower for the
former. The same comparison was considered by de Jesus
et al.170 during a fatigue test including artificial saliva

environment. The calculated wear rate were of the same
order of magnitude certifying thus the feasibility of
additive manufacturing dental implants. Buciumeanu

et al.171 instead, explored the diverse behavior of NiTi and
Titanium Grade V alloys, both realized by laser beam
directed energy deposition technique. The first showed

worse corrosion resistance, with no sliding, respect to the
other one, but showed an opposite behavior in terms of
volume loss when the tribocorrosion test was carried out.
Consequently, it exhibited a better response against the

mechanical and corrosion wear. In addition, the diversity
of outcomes highlights the importance of performing the
tribocorrosion test for a rigorous characterization of

material. Similar to titanium samples, also a CoCrMoW
alloy, worked via Laser Metal Fusion, was compared with
wrought LC CoCrMo in Mace and Gilbert172 study. Very

close anti-wear responses between them were found, con-
firming again the additive manufacturing medical tools as
valid alternative. Zhang et al.173 stated that a 3D zirconia

sample not only reached a satisfactory level of mechanical
resistance, comparable to the tools realized by subtractive
manufacturing methods, but also an enhancement of
cellular activity. In fact, the peculiar surface patterns with

directional pores promoted the osteoblast response whereas
the dense core the long-term mechanical resistance. The
relevance of porosity was discussed, for titanium scaffolds,

by Hou et al.,174 for different microstructures regarding the
stressestrain regime which was acceptable for dental appli-
cations and osteogenesis properties. Besides, larger pores,

which promote the growth of the bone, are more subjected to
corrosion as demonstrated by Morris et al.175 Hence a trade-
off between these two aspects drives to the optimal

configuration.
Before proceeding with additive manufacturing (AM), it is

crucial to engage in thorough discussions and simulations of
the research. This step holds paramount importance as it lays

the foundation for obtaining optimum results in the fabrica-
tion process. Through meticulous simulations, researchers can
explore various design iterations, assess potential challenges,

and analyze the performance of the intended product. By
simulating the proposed AM process, engineers and designers
can identify and address potential issues, optimize the geom-

etry and material parameters, and enhance overall efficiency.
Additionally, simulated research aids in minimizing errors,
reducing material waste, and avoiding costly manufacturing
setbacks. It provides a cost-effective and time-efficient means

to fine-tune the design and ensure that the final product meets
the desired specifications. By scrutinizing and validating the
simulation results, one can gain valuable insights that lead to

informed decisions during the actual additive manufacturing
process, ultimately resulting in the achievement of superior
and optimized outcomes.

Overall, it is almost obvious that further tribocorrosive
trials are required to confirm these assumptions. Moreover,
despite the great potential of this technology, some draw-

backs, unfortunately, exist such as the impossibility of
creating nanoscale or bioactive surfaces without a subse-
quent treatment176 as well as the absence of standard

protocols177 and of a biological and medical long-term
response, requiring more and more clinical investigations.178

Conclusions

The implants possess complex geometries and the me-
chanical, tribological, corrosion, and biological aspects need

to be studied in detail. Conventional manufacturing pro-
cesses face difficulties in developing complex and intricate
shapes. The literature revealed that studies have focused on

developing new implants by 3D printing and comparing the
properties with conventionally manufactured implants. The
properties as reported by researchers are promising, how-
ever, the area has not been explored for a wide range of

materials and properties as required from an oral environ-
ment point of view.

The absence of clinical and long-term tribocorrosive an-

alyses, since their undeniable relevance, underlines the most
critical limitations of this work. Hence, although dental im-
plants realized by additive manufacturing are a potential

alternative to the traditional ones, the results should be
treated with caution. Moreover, the development of new
implant materials with specific coatings179 or functionally
grading can be explored with 3D printing as future

development as much as conducting further experiments by
varying the tribological and chemical conditions like
contact pressure, motion regime, kind of solution and so

on. Indeed, the reliability of these tools can be proved only
by testing it in different scenarios reflecting specific human
daily activities and clinical conditions such as smoking

issue which is strictly correlated with implant failure.180

Analogously, nanotechnology and nanoengineering could
outline an interesting prospect especially for the concept of

osseointegration.181 In conclusion, 3D printing if exploited
in the area of dental implants can help to develop implants
with intricate shapes and with tailored properties without
jeopardizing the biocompatibility which results crucial for

the longevity of the medical tools.
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132. Suárez-López del Amo F, Garaicoa-Pazmiño C, Fretwurst T,

Castilho RM, Squarize CH. Dental implants-associated

release of titanium particles: a systematic review. Clin Oral

Implants Res 2018; 29: 1085e1100. https://doi.org/10.1111/

CLR.13372.

133. Trino LD, Bronze-Uhle ES, Ramachandran A, Lisboa-

Filho PN, Mathew MT, George A. Titanium surface bio-

functionalization using osteogenic peptides: surface chemis-

try, biocompatibility, corrosion and tribocorrosion aspects.
J Mech Behav Biomed Mater 2018; 81: 26e38. https://doi.org/

10.1016/J.JMBBM.2018.02.024.

134. Fretwurst T, Buzanich G, Nahles S, Woelber JP,

Riesemeier H, Nelson K. Metal elements in tissue with dental

peri-implantitis: a pilot study. Clin Oral Implants Res 2016; 27:

1178e1186. https://doi.org/10.1111/CLR.12718.

135. Mathew M, Kerwell S, Alfaro M, Royman D, Barao V,

Cortino S, Tribocorrosion and TMJ TJR devices. Temporo-

mandibular joint total joint replacement - TMJ TJR: a

comprehensive reference for researchers. Mater Scient Surg

2015: 251e263. https://doi.org/10.1007/978-3-319-21389-7_10.

136. Noumbissi S, Scarano A, Gupta S. A literature review study

on atomic ions dissolution of titanium and its alloys in implant

dentistry. Materials 2019; 12(3): 368. https://doi.org/10.3390/

ma12030368.

137. Mombelli A, Hashim D, Cionca N. What is the impact of ti-

tanium particles and biocorrosion on implant survival and

complications? A critical review. Clin Oral Implants Res 2018;

29: 37e53. https://doi.org/10.1111/CLR.13305.

138. Mabilleau G, Bourdon S, Joly-Guillou ML, Filmon R,
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