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Abstract

This  mini-review  gives  a  brief  account  of  the  emergence  of  the  electron  paramagnetic  resonance  (EPR)
spectroscopy in the second half of the 20th century and reports the continuous wave EPR spectroscopy studies on
human  and  animal  blood.  The  question  posed  by  this  review  is  whether  the  EPR  spectroscopy  in  the  form  it
appeared  70  years  ago  is  still  able  to  provide  useful  information  about  different  pathological  conditions  in
humans, particularly in the area of diagnosis.
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Introduction

Soviet physicist  Yevgeny Zavoisky, while working
on microwave radar systems in evacuation in the city
of  Kazan  at  the  height  of  the  2nd World  War,  came
across a phenomenon of 'paramagnetic losses' in some
crystal substances. His observations were published in
1945[1–2] and promptly confirmed by several  indepen-
dent  groups[3–5].  The  name  for  the  phenomenon  was
coined as electron paramagnetic resonance (EPR) and
a  full  theory  published  in  1948[6] earned  the  author,
Van  Vleck,  a  Nobel  prize  in  1977.  Electron  spin
resonance (ESR), a synonym of EPR, is also in use.

Indeed,  it  took  more  than  30  years  to  realise  fully
the  true  calibre  of  the  discovery  although  from  the
very  beginning  it  became  clear  that  important
applications in physics, chemistry and biology should
follow.  Paramagnetic  states  of  molecules,  speculated

to  be  transient,  were  highly  anticipated  in  many
chemical and biochemical reactions.

Most molecules around us have an even number of
electrons  which  come  in  pairs  so  that  magnetic
moment  of  each  electron,  associated  with  its  spin,  is
cancelled out by the opposite magnetic moment of its
counterpart. But redox chemistry in general and redox
biochemistry  in  particular  are  all  about  juggling  of
electrons  between  molecules.  Therefore,  long  before
the  discovery  of  EPR  it  has  been  realised  that  there
must  be  paramagnetic  states  of  molecules  when  the
number of electrons is odd and the molecule therefore
can be considered as  a  magnet.  A typical  example of
paramagnetic  species  is  free  radicals  formed
transiently  in  redox  reactions.  Also,  several  metals
when forming inorganic complexes might have one or
more electrons unpaired thus forming an overall non-
zero electron spin of the complex.
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New method took off rapidly

Thus,  the  discovery  of  the  EPR  phenomenon  has
triggered very rapid development of the new research
method,  the  EPR  spectroscopy —for  detection  of  the
paramagnetic states of molecules. It became clear very
soon that the method is very sensitive—different salts
of  paramagnetic  transition  metals  gives  clearly
different  signatures  (EPR  spectra)  for  the  metals  in
different  coordination[7].  This  high  sensitivity  of  the
method to the very nature of the paramagnetic species
has  driven  both  the  researchers'  interests  in  many
biological systems and the technological developments
of the instruments.

Over a period of only 15 years since the first report
of free radicals in biological materials[8], the EPR/ESR
spectroscopy  has  emerged  as  an  important  research
method  in  a  score  of  laboratories  around  the  world,
including  those  in  the  USA[9–14],  the  UK[15–16],
Australia[17–18],  Soviet  Union[19–22],  Sweden[23–25],  and
Japan[26–28].

From the beginning of use of the new method, two
groups  of  paramagnetic  species  have  been  brought
into focus of study: metal active sites in proteins (and
enzymes)  and  the  transient  free  radical  intermediates
of  some  biochemical  reactions.  The  studies  of  the
metal sites have been prompted by the initial works on
paramagnetic  salts[3–4].  And  the  first  reports  of
paramagnetic  free  radical  intermediates[16–17],  first
found  in  the  reactions  of  haem  proteins  with  per-
oxides[29–30], have been followed by many publications
on free radicals in organic and inorganic chemistry as
well  as  biochemistry  and  biology  in  general.  In
addition  to  the  obvious  aim  of  understanding  the
mechanistic  aspects  of  how  biological  molecules
work, looking into individual paramagnetic metals and
radicals has a common practical reason – to provide a
tool  for  identifying  the  EPR  signatures  of  these
molecules  in  the  EPR  spectra  of  complex  systems,
such  as  cell  cultures  and  tissues.  It  was  thought  that
the ability to see and, possibly, quantify intermediates
of  individual  biochemical  processes  in  whole  tissues
could open up possibilities of recognising abnormalities
in  humans  at  early  stages,  when  other  tests  are  not
able  to  detect  them. Understandably,  the tissue easily
available  without  invasive  sampling  procedures  has
come into focus—blood. Logically, the EPR signatures
of blood components were to be studied first. 

Haemoglobin pioneering studies

The  pioneering  method  of  optical  spectroscopy  in

the early 20th century was used to study haemoglobin
(Hb)  reacting  with  H2O2[31]—and  (amazingly!)  the
optical  spectra  changed,  which  was  interpreted  as
H2O2 forming an adduct to methaemoglobin (metHb).
This  conclusion  was  later  challenged  with  a
suggestion that  the  optical  change was  caused not  by
mechanistic  addition  of  H2O2 to  the  protein  but  by  a
redox reaction, and a free radical was suggested to be
formed  in  the  process[29].  A  radical  demonstrated  by
the  newly  available  EPR  spectroscopy[15] was  shown
to  be  on  the  polypeptide  part  of  the  protein[16].  A
further  series  of  papers  investigating  Mb  and  Hb
reacting with peroxide demonstrated that the reported
optical changes seen on H2O2 addition were caused by
an  electron  transfer  and  the  chemistry  of  haem
oxidation was revealed[17–18].

In  a  parallel  line  of  the  new  method  applied  in
biology,  haem containing proteins  and enzymes were
in the spotlight.  A series  of  papers  were published in
the  late  sixties  by  Blumberg,  Peisach  and  the
Whittenbergs, the giants of haem proteins studies. The
paramagnetic state of the haem (when the iron is in the
oxidised Fe3+ form) was shown to give different EPR
signatures, not only for the high spin (S=5/2) and low
spin (S=1/2) Fe3+ forms, but also for the same forms in
different enzymes and proteins,  or even for α- and β-
subunits  of  the  same  Hb  molecule,  thus  revealing  a
sensitivity  to  structural  differences  in  the  haem
microenvironment[11,13,32–33]. 

EPR  spectroscopy  of  whole  tissues:  the
lyophilisation approach

Assessment  of  whole  biological  tissues  by  the
newly  arrived  EPR  spectroscopy  had  an  important
methodological  issue.  The  dominant  component  of
most  tissues  by  mass  is  water.  Water  is  not
paramagnetic  but  its  molecules  are  polar  and  a  great
deal  of  the  microwave  power  sent  to  the  sample  is
absorbed  in  a  non-resonant  way —in  re-orienting  the
polar water molecules by the electromagnetic radiation
oscillating  with  the  microwave  frequency  (this  is
exactly how the microwave oven works).  This makes
it  extremely  difficult  to  detect  the  EPR  absorption
caused by the paramagnetic molecules. There are three
ways  to  overcome  this  difficulty.  The  tissue  can  be
lyophilised  (vacuum  dried),  it  could  be  frozen  thus
making  the  re-orientation  of  water  molecules  not
possible,  or  the  tissue  could  still  be  wet,  and  at  a
temperature  above  freezing  point,  but  in  a  special
geometry  cell  (so-called  flat  cell)  that  holds  the
sample in the spectrometer—to minimise non-resonance
losses.

EPR spectroscopy of blood 295



Historically, it was the lyophilisation approach that
was used first  in  tissue studies  by EPR spectroscopy.
In 1954, Commoner, Townsend and Pake published a
pioneering paper  reporting EPR spectra  of  a  range of
plant  and  animal  tissues  (lyophilised)[8].  Free  radical
EPR spectra were analysed and quantified—to show a
great  diversity  in  free  radical  content  in  different
biological  tissues.  Interestingly,  the  greatest  diversity
in  free  radical  concentrations  was  found  in  plants —
spreading over a 30–fold difference range[8].

The  authors  of  this  seminal  paper  also  compared
EPR  spectra  of  normal  mouse  liver  and  those  of  a
hepatoma  showing  a  significantly  different  yield  of
the  radicals  (lower  in  the  tumour).  This  certainly
triggered  a  series  of  studies  investigating  into  the
correlation between the malignancy score and the free
radical level in tissues (see, for example, review[34]).

It  has  been  shown  later  that  the  free  radical  EPR
signal  in  lyophilised  tissues  (of  approximately  7  to  8
Gauss width) has very little to do with the biochemical
and  physiological  status  of  the  tissue  but  is  rather
bluntly caused by the ascorbic acid and the availability
of  oxygen  during  lyophilisation  (the  label  'artefact'
EPR signal has been attached to the lyophilised tissues
EPR spectra since)[20,35–36].  The line shape of  the EPR
signal of ascorbic acid radical in frozen solutions and
of  the  signal  of  lyophilised  tissues  have  been
confirmed  to  be  the  same[37].  As  the  ascorbic  acid
concentration  in  plants  varies  in  a  much  larger  range
than in the animal tissue, the observation by Commoner,
Townsend  and  Pake[8] reporting  that  the  free  radical
EPR  signals  in  the  lyophilised  plants  show  a  much
larger  range  of  intensities  than  in  animal  tissues
becomes understandable.

It turned out that EPR of frozen tissues can also be
informative.  Free  radical  EPR  spectra  of  frozen  (not
lyophilised) samples, being free from the ascorbic acid
radical  signal,  are  characterised  by  approximately  10
times  lower  integral  intensity  and  a  wider  line  width
(14 to 15 Gauss[21]). 

Continuous  wave  EPR  spectra  of  frozen
blood and components

Over  the  last  70  years,  the  ERP  spectroscopy
method  has  evolved  from  the  early  9  GHz  (X-band)
continuous  wave  instruments  to  a  spectacular  com-
plexity  and  diversity  of  instruments  and  methods
including  pulsed  spectrometers,  spectrometers  oper-
ating  on  different  microwave  frequencies  (covering  a
range of 1 to 350 GHz), new methodologies allowing
structural  and  kinetics  studies,  spin  labels  and  spin
traps techniques for a range of applications, including

the  studies  of  causative  relationship  between  nano-
particles  and  reactive  oxygen  species  (ROS)
generation,  and ex  vivo and in  vivo imaging.  A
detailed and relatively recent account of the evolution
of  EPR spectroscopy  in  biomedical  research  is  given
in the review[38].

Oxidative stress at  the organism level is  a frequent
consequence  of  erythrocytes  lysis  and  haemoglobin
release to the blood flow (or myoglobin released from
damaged  muscle).  These  haem  proteins,  without  the
in-cell  protection  by  catalase  and  superoxide
dismutase, become active producers of ROS, and EPR
spectroscopy  allows  detection  and  quantitation  of
these species.

Nano systems have been used to modulate the ROS
production. It  has been show that silver nanoparticles
applied to Arabidopsis thaliana could cause formation
of  ROS,  shown  by  EPR  to  be  mitigated  by  tissue
ascorbic  acid[39].  On  the  other  hand,  nontoxic
hydrophilic  carbon  cluster  nanoparticles  were
demonstrated  to  convert  superoxide  to  O2 and
hydrogen  peroxide  thus  providing  protection  against
O2•−[40]—notably  more  efficient  than  by  most  single-
active-site enzymes. The nanoconstructs accommodating
membrane  proteins  have  been  shown  to  be  effective
systems  for  studying  conformational  changes  in
proteins.  Styrene-maleic  acid  lipid  particles  as
nanocontainers  for  a  spin  labelled  transmembrane
proteins  complex  allowed  EPR  studies  of  light
induced  conformational  changes;  importantly,  EPR
allowed  kinetic  studies  of  such  changes[41].  Bi-
functional  spin  labels  in  combination  with  similar
nanoparticles Lipodisq were used for structural studies
of a voltage-gated potassium channels[42].

Continuous  wave  EPR  spectra  of  frozen  blood,
plasma,  and  cells,  as  published  by  different  re-
searchers,  are  collated  in Fig.  1,  which  allows  the
comparison of different experimental spectra within a
common frame[43–50].

Spectra  in Fig.  1A and B demonstrate  that  human
and  rat  venous  blood  are  characterised  by  almost
identical  EPR  spectra.  In  assigning  different  EPR
signals  in  the  spectra,  an  analysis  of  the  blood
components  can  help.  It  appears  quite  clear  that  the
EPR  signals  with g-factors  4.28  and  2.05  are  caused
by  the  components  of  blood  plasma  (Fig.  1C),
whereas the g≈5.9 and g≈2 EPR signals, as well as the
three  component  signal  with g-factors  at  2.59,  2.18
and  1.83  (Fig.  1D),  are  associated  with  the  cell
fraction  of  blood.  The  4.28  signal  is  caused  by  the
high  spin  ferric  iron  in  the  plasma  protein
transferrin[51].  The  Cu2+ ions  in  the  other  plasma
protein  ceruloplasmin  are  responsible  for  the  signal

296 Svistunenko DA. J Biomed Res, 2021, 35(4)



that  gives  the  main  (g⊥)  component  at  2.05  and  a
parallel  component g|| that  is  split  into  four  lines
(difficult to see in the spectra but obvious in the model
ceruloplasmin spectra[43–44].

The cell  fraction of  blood is  characterised by three
signals.  One is  from the  free  radicals  at g=2.00.  This
signal  is  not  seen  at  a  high  intensity  in  the  spectra
presented  in Fig.  1 but  was  characterised  in  detail  in
ref.[45] and was shown to be caused by the free radicals

formed on the Hb molecule as a result of ferric haem
interacting with H2O2. The other two EPR signals are
from ferric haem in Hb. The signal at g≈6 is caused by
the  ferric  haem  in  the  high  spin  (S=5/2)  state[17,33,52].
Another  component  of  it  is  at g≈2,  which  is  close  to
the  g-factor  of  free  radicals  and therefore  not  easy to
be distinguished. The ferric haem of Hb also can attain
a low spin state (S=1/2), in which case it gives a rather
different  EPR signature—the  three-component  signal
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Fig. 1   Low temperature X-band (9 GHz microwave source) EPR spectra of human and rat blood, and blood components. Spectra
published  in  different  papers  have  been  scanned  and  digitised  using  UN-SCAN-IT  6.0  (Silk  Scientific,  USA).  As  slightly  different
microwave  frequencies  were  used  in  different  studies,  the  same EPR signals  appear  at  slightly  different  values  of  the  magnetic  field  (the
horizontal  axis).  Because  of  that,  the  values  of  the  field,  increasing  from left  to  right,  are  not  shown  in  the  figure,  but  rather  the  orange
gridlines,  drawn at  a  500  Gauss  interval,  indicate  the  overall  scale  of  the  scan.  All  spectra  have  been  stretched/compressed  to  a  common
horizontal scale by making the same distance between two reference EPR signals, typically the g=4.3 from transferrin and g=2.00 from free
radical or metHb. The g-values of the key EPR signals are indicated. The g|| and g⊥ values in the blood (H) and plasma (C) spectra (the latter
at the value of about 2.05) are from the Cu2+ ion in the protein ceruloplasmin[43–44]. The temperature values at which EPR measurements have
been  taken,  are  indicated.  The  references  to  the  original  papers  are  as  follows:  A[45],  B –D[46],  E –G[47],  H[48],  I[49],  J –L[50].  See  detailed
description of the spectra in the text.
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at the g-values of 2.59, 2.18 and 1.83 (Fig. 1A, B, D,
and E)[33,52].

The two spectra of  rat  blood at  77 K in Fig.  1B[46]

and E[47] reported  by  different  groups  of  authors  are
mutually  consistent,  showing  the  same  set  of  EPR
signals  at  close  proportions.  A comparison of  spectra
in Fig. 1E and F (from the same group[47]) demonstrates
dramatic changes of the blood EPR spectrum that take
place  when  the  animal  inhales  NO  gas  before  giving
blood:  the  level  of  metHb  is  increased  but  more
notable is the appearance of a new EPR signal, which
is caused by the complex of NO with ferrous Hb, Hb-
NO and shown in greater details in spectrum G.

The  EPR  spectra  similar  to  the  one  of  the  Hb-NO
complexes[53] (Fig.  1G)  have  been  reported  in  many
systems  when  physiologically  released  or  externally
added NO interacts with haem proteins in the ferrous
state.  In  many  cases,  it  takes  place  in  pathological
processes. This EPR signal was first reported in 1969
in  three  different  types  of  malignant  tissues[21]

although the  representation of  the  EPR spectra  in  the
publication  was  not  conventional  (with  a  reverse
direction  of  the  magnetic  field  (thus  showing  the g-
factors increasing from the left to the right), probably
reflecting  the  diversity  in  the  EPR instruments  at  the
time. The new EPR signal was explained to be caused
by a hyperfine interaction of the electron spin of haem
with  an  N  atom  but  was  only  later  demonstrated  to
originate from an NO complex with ferrous haems[54].

Spectrum in Fig. 1H is of whole human blood and
should  be  similar  to  spectrum  in Fig.  1A,  but  it  is
rather different. The reason for it is the temperature of
EPR  spectrum  detection.  Once  the  temperature  is
decreased from 77 K to 10 K, the intensity of the high
spin  ferric  haem  signal  (g=5.86)  is  significantly
increased  with  respect  to  the  other  signals.  At  the
same  time,  two  more  lines  from  a  high  spin  ferric
haem enzyme are clearly visible. Instead of the single
line at g=5.86 (which is the perpendicular component
of  the g-value  in  metHb —almost  of  the  same  value
along the two directions in the haem's plane), the two
lines in the EPR spectrum of this haem enzyme reflect
non-equivalence  of  the  EPR  absorption  along  the  x-
and y-directions in the haem's plane—the haem is not
axial any more with the g-values being different along
the  x-  and  y-directions —6.39  and  5.31.  This  EPR
signal has been well characterised—it is caused by the
high spin ferric haem state of catalase[52,55].  Linked to
this in-plane anisotropy, the third g-value, along to the
haem's  plane  perpendicular  direction  z  (g||)  is  shifted
from  the g=2  to  a  lower  value  of  1.98.  Interestingly,
once we see these two components of ferric catalase in
the 10 K spectrum (Fig. 1H), we can discern them in

the  77  K  spectrum  of  human  blood  as  well,  as  faint
absorbance  at  the  shoulders  around  the  main g=5.86
line (Fig. 1A).

It is difficult to comment on the white cells isolated
from  human  blood  spectrum  (Fig.  1I),  and  more
spectra  from  other  sources  should  be  helpful.  The
spectrum  is  too  narrow  to  be  assigned  to  a  copper
complex.  Part  of  the  spectrum  might  be  associated
with free radicals but the origin of the main EPR line
is  not  clear.  Possibly,  a  part  of  the  overall  line  shape
originates  from  a  non-haem  iron  complex  with  NO
(dinitrosyl complexes)[56–57].  It is known that a similar
EPR  signal  was  observed  during  activation  of
macrophages[58].

The last three spectra in Fig. 1J–L published by the
same  group  of  authors  bring  an  important  message.
The  three  EPR  spectra  are  from  the  same  kind  of
samples —from  blood  of  three  female  breast  cancer
patients —of  68,  51  and  51  years  old.  The  worry-
ing  thing  is  that  the  three  spectra  differ  significantly
from  each  other,  although  obviously  of  the  same
pathology kind. The spectra differ in the line shape of
the high spin ferric haemoglobin EPR signal as well as
of  that  of  the  4.3  signal  from  transferrin.  The  strong
feature  close  to g=2.05  signal  is  not  from  cerulopl-
asmin  since  the g-value  is  slightly  but  statistically
significantly different. It still can be caused from Cu2+

ions, occasionally seen as a contaminant (which might
be coming, to our experience, from the copper parts of
the  syringe  needles  used).  The  authors  conclude  that
the EPR spectroscopy is not giving a clear signature of
the tumour tissue which poses questions on whether it
could  be  used  for  diagnostics  of  this  pathology.  The
spectra registration temperature of 170 K is likely set
by a liquid nitrogen variable temperature unit. At that
value of the temperature, a significant variance might
occur,  potentially  producing  a  variability  in  the  EPR
spectra detected.

We would  like  to  emphasise  that  the  variability  of
the  EPR  spectra  of  biological  and  particularly  blood
samples  is  caused  by  two  factors:  individual
physiological/biochemical  status  of  the  subject  (the
patient) and the way the blood sample is prepared. We
strongly  believe  that  once  the  sample  making
methodology  is  standardised  to  the  degree  that  a
number  of  samples  from  the  same  subject  provide
virtually  identical  EPR  spectra,  we  might  be  in  the
position to draw conclusions about the differences, at
a  statistically  significant  level,  between  normal  and
cancerous  blood  (or  blood  from  the  patients  with
another  pathological  condition).  The  issue  of  the
variability  of  the  blood  EPR  spectra  of  different
subjects  will  persist,  but  it  will  be  easier  to  address
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once we have a firm methodology of preparing blood
samples and analysing them by the EPR spectroscopy. 

Conclusions

Continuous  wave  X-band  EPR  spectra  of  blood
exhibit  intimate  details  of  the  paramagnetic  status  of
the  donor's  blood.  Statistical  significance  of  the
difference  between  EPR  data  from  normal  subjects
and  those  with  a  pathology  depends  on  two  factors,
one being much more manageable that the other—the
methodology of sample preparation. While blood from
different  patients  of  the  same  cohort  might  differ  as
well  (and that  constitutes  a  challenge imposed by the
other  factor!),  the  ground zero approach should be in
developing  a  methodology  of  taking  blood  samples
from  patients  which  would  ensure  identical  EPR
spectra  from  a  number  of  samples  taken  from  the
same person.
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