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Abstract

Original Article

Introduction

Proton stopping power ratio (SPR) is used to compute 
proton range for proton therapy treatment. This helps utilize 
the property of proton known as Bragg peak, which gives 
it advantage over photon during therapy. The necessity to 
improve proton therapy treatment leads to finding ways of 
estimating SPR more accurately, which also depends on 
relative electron density (re) and mean excitation energy (I) 
through Bethe equation or Bethe–Bloch equation.[1-8]

There are mainly two ways of estimating re, I and SPR in 
terms of domain; these are image and projection domain 
approach. Image domain uses computed tomography (CT) 
image to estimate these quantities and has the advantage of 
simplicity in computation compared to projection domain 
but has the disadvantage of being prone to uncertainties 
such as noise, movements, and beam hardening. The 

projection domain has the advantage of being less prone to 
uncertainties as some causes of uncertainties such as beam 
hardening can be corrected on the projection data, but it has 
the disadvantage of being computational intensive. Many 
authors have presented studies on image domain[8-43] and 
many on projection domain[4,5,32-38,44-51] including the analysis 
of their uncertainties.[52] There are some approaches that might 
help improve projection domain calculation but still under 
development like the one by Chika and Hooshyar.[2]

Another approach is based on the number of energy spectra 
used. The most popularly known clinically used method is 
single-energy CT stoichiometric calibration method which is 
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image domain method. 3%–3.5% of proton range is being added 
to the distal boundary of clinical target volume when using 
this method for patients’ safety.[5,53] Dual-energy CT (DECT) 
approach is another one that is currently being explored much. 
This makes use of two energy spectra referred to as low- and 
high-energy spectra. DECT has better performance as regards 
to uncertainties as demonstrated in the study by Yang et al.[8] 
and other studies. Chenyang Shen et al.[6] and other authors 
have proposed multi-energy approach as well.

Most of the approaches being proposed are targeted at 
estimating SPR directly or estimating re and I and then 
applying it to Bethe equation or Bethe–Bloch equation to 
estimate stopping power (SP) or SPR. Some of these methods, 
especially those of projection domain, have a high accuracy in 
estimating relative electron density ρe (with root mean square 
error [RMSE] of <1%) but have relatively low accuracy in 
estimating effective atomic number (with RMSE of more than 
3%) which is used to estimate mean excitation energy mainly 
using Yang method.[7,54,55] This called for accurate means of 
estimating SPR using re to reduce the error propagation which 
led to this study.

In this study, we present a model that estimates SPR and I from 
re, discussed its accuracy and applications. Two dual energy 
and image domain methods which are referred to as Hunemorh 
and Saito (H-S) method and basis vector method (BVM) were 
used to estimate the re in the application section. This method 
is compared to some other methods that have been proposed. 
Algorithm is also presented that will help in automation.

Materials and Methods

Data acquisition
Computed tomography data
Linear attenuation and the image intensity HUk of each pixel/
voxel in CT images for any tissue are written as:
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where mwat is the linear attenuation coefficient of water and µ 
is that of unknown tissue. Low- and high-energy spectra were 
represented by the subscript k = L, H. The parameters Ak and 
Ak

*  are calculated by maximizing the fit between measured 
HUK and spectrally averaged.
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k  values for scanned sampled tissues of known 

composition and density.

We assumed that a phantom consisting of unknown tissues 
is scanned with the commercial CT scanner at low-energy 
(k = L) and high-energy (k = H) spectra, characterized by 
normalized X-ray energy fluence spectra Yk (E) where ∫E Yk 
(E)dE = 1.
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Commercial CT scanner spectra are generally not precisely 
known. HU measurements can be influenced by beam 
hardening, scattering, noise, and prepossessing corrections, 
which leads to uncertainties in the measurement. k (E) is 
approximated by a single effective energy EK most of the 

times, so that 
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gotten by minimizing the difference between the theoretical 
CT numbers computed from Eq(2) and that of single 
energies, µ(x,E). Mixture rule is used to compute the linear 
attenuation coefficients. It is computed by applying the 
mixture rule to elemental mass attenuation coefficients gotten 
from the National Institute of Standards and Technology 
XCOM database using tissue composition.[56-60] Once this is 
done, Eq. (2) is applied. Figure 1 illustrates the normalized 
form of the spectra used for computation in Eq (2) which is 
generated using SpekCalc.[61,62] 80 kVp and 150 kVp are used 
as low and high energy, respectively.

Relative electron density (re)
True relative electron density is computed using the following 
formula:
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where re,x denotes the mass density. wi, Zi,  and Ai are the mass 
fraction, atomic number, and atomic mass of the ith element in 
the tissue, respectively.

Mean excitation energy I
Bragg additivity rule was applied in computing the true mean 
excitation energy for each tissue:

Figure 1: Spectra used (80 kVp and 150 kVpSn normalized spectra used 
to compute theoretical attenuation coefficients)
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Ii is the mean excitation energy of the ith element in the 
tissue.

Stopping power ratio
The simplified form of Bethe equation referred to as Bethe–
Bloch equation is used to compute the true SPR . The equation 
is stated below:

SPR

m c I

m c I
e

e

e
w

� �
� �

�
� �

�

�
�

�

�
�

�

ln ln

ln ln

2

1

2

1

2 2

2

2

2 2

2

2

� (5)

where me is the rest mass of an electron, c is the speed of light, 
β is the velocity of the proton in vacuum relative to the speed 
of light, and IW is the mean excitation energy of water. This 
is used to approximate the SP at a given energy E within the 
range typically used in proton therapy.

Tissue classification
Thirty-three ICRU [Appendix] human tissues[63-65] are used as 
training data and 12 Gammex tissue inserts as validation data. 
Nucleus was not included in ICRU human tissues because we 
cannot access its composition at the time of the study.

The human tissues are classified into lung, soft, and bone 
tissues, while the Gammex inserts are classified into soft and 
bone tissues. All the classifications in this study are done 
with the re. The regions illustrated in Figure 2 represent the 
grouping.

Proposed model
Proposition: SPR and mean excitation energy are empirically 
related to electron density by the relation:

T SPR I a error
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where n ≥ 0, r ≥ 0, and T (SPR/I) is an invertible transformation 
of SPR or I.

For this first study, the model examples are proposed using 
the graphical exploration of the data relationships and the 
knowledge of mathematical functions.

Stopping power ratio
The model below was implemented for SPR:

SPR a error
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where n ≥ 0, r ≥ 0 and T (SPR) = SPR. We will follow the 
notation SPRr,n and present simple continuous and piece-wise 
functions. The following three models were studied.
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Kanematsu method
We compared the proposed model with the one proposed by 

Kanematsu et al.[66] A poly-line relation between SPR

eρ
 and re 

is presented below:
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Mean excitation energy I
We used the model stated below for illustration in the case of 
mean excitation energy.

ln( )I a error
i r

n

i e
i� �
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where n ≥ 0, r ≥ 0, preferably n = 2k, k ≥ 0, and  T(I) = ln(I)

Just as in above, we follow the notation Ir,n and present two 
examples.

Figure 2: This figure illustrates the regions of the three tissues: The first 
region from the left is for lung tissues, the middle is for soft tissues and 
the right-most region is for bone tissues
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Application
Basis vector method
We implemented the proposed model above and compared it to 
the values gotten from BVM. In this study, we used 23% aqueous 
calcium chloride (cacl2) solution and polystyrene as dissimilar 
basis materials. Other materials such as water and aluminum can 
be used, with the water representing soft tissue and aluminum 
representing bone tissue. Some studies apply different materials 
to different tissue groups like the one by Han et al.[28] The basis 
vector model for dual energy is presented below:

� � �l l lc x c x� �1 1 2 2( ) ( ), , � (15)

where mi is the unknown tissue linear attenuation at high 
and low energies, mj,l represents the basis material linear 
attenuation coefficient at high and low energies, and cj is the 
energy-independent weight j = 1,2  and l = L,H. The energy-
independent weights can be calculated as below:
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After calculating the weight, relative electron density of the 
unknown material is calculated using the relation below:

� � �e e ec c� �1 1 2 2, , � (17)

where re,1 and re,2  are the basis materials’ relative electron 
density. We implemented the two approaches that have been 
used to compute the mean excitation energy by Han et al.[28] 
and Shuangyue et al.[4]
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is referred to as an empirical correction function of 
� � �e fc e eI c I c I� �1 1 1 2 2 2, ,ln ln . Once re and I are known, SPR 
is computed using Bethe–Bloch equation.
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Hunemohr–Saito method (H-S)
Hunemohr–Saito method is the method developed by 
Hunemohr et  al.[14] whose similar re formula has been 
previously presented by Saito. We applied the method to the 
relative electron density computed by Hunemohr–Saito method 
and compared it with the usual computed I and SPR. The H-S 
model is presented below:
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The model parameters, a and b, depend on specific dual-energy 
scanning protocol. SPR is estimated from the values of re and 
Zef images using the empirical relationship between I-value and 
Zef which was first introduced by Yang et al.[7] The empirical 
relationship is as follows.
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Accuracy analysis
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where relative error is defined as
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Itrue is the reference I value and Iest is the estimated I value, 
the same definition holds for SPR. The mean error (ME) 
measures the bias of the value estimates and RMSE measures 
the estimation error for different tissues.

Results

Stopping power ratio
SPR1,1 piece-wise gave the best result in training with 
training RMSE of 0.22% and ME of 0.00%, while SPR0,3 
continuous gives the least testing RMSE of and the least 
testing ME is given by SPR1,1 piece-wise which is 0.04%. 
Kinematsu method gave the highest error among all the 
methods presented for SPR both in training and testing data; 
it gives training RMSE of 2.03%, testing RMSE of 1.77%, 
training ME of −1.85%, and testing ME of −1.61%. These 
information are shown in Tables 1 and 2. From Figures 3 
and 4, Kinematsu method gave mainly underestimated values 
and the error increases with an increase in SPR value for 
bone tissues.

Mean excitation energy I
Tables 3 and 4 show that I1,0 performs better in training data 
with RMSE of 1.12%, while I1,2 performs better in testing. 
I1,0 is less biased in testing data and more biased on training 
data compared to I1,2 since it has training and testing MEs of 
0.11% and −1.58%, respectively, while that of I1,2 are −0.02% 
and −2.51%.

Application results
The use of linear attenuation coefficients at effective energy to 
estimate relative electron density (re) shows that H-S method 
performs better on training data with total RMSE of 0.04% 
and ME of 0.02%, while BVM performs better on testing data 

Table 1: Stopping power ratio training and testing root mean square errors (%)

SPR training RMSE Total Lung Soft Bone Testing RMSE Total Soft Bone
SPR1,1 continuous 0.32 0.70 0.35 0.13 0.73 0.80 0.62
SPR1,1 piece‑wise 0.22 0.02 0.27 0.04 0.92 1.09 0.61
SPR0,3 continuous 0.31 0.14 0.38 0.07 0.71 0.77 0.62
Kinematsu 2.03 0.00 2.08 2.04 1.77 1.80 1.63
RMSE: Root mean square error, SPR: Stopping power ratio

Table 2: Stopping power ratio training and testing mean errors (%)

SPR training ME Total Lung Soft Bone Testing RMSE Total Soft Bone
SPR1,1 continuous 0.02 0.73 0.01 0.09 0.29 0.32 0.24
SPR1,1 piece‑wise 0.00 0.02 0.00 0.01 0.04 −0.05 0.17
SPR0,3 continuous 0.00 0.14 −0.02 0.04 0.28 0.34 0.19
Kinematsu −1.85 0.00 −1.95 −1.83 −1.61 −1.76 −1.28
ME: Mean error, RMSE: Root mean square error, SPR: Stopping power ratio
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with total RMSE of 0.05% and ME of 0.01%, as can be seen in 
Table 5. Figure 5 shows that BVM achieved less testing error 
for most soft tissues compared to training error, while H-S does 
the opposite. Though, all errors are quite low.

Stopping power ratio
From Table 6, SPR1,1 gave the best training error among the 
ones presented when applied to both the re estimated using 
BVM and H-S method. The total RMSE for both applied 
cases is 0.23% and 0.22%, respectively. SPR from I1,0 gave the 
least testing RMSE of 0.86% in BVM and RMSE of 0.85% 
for H-S method while SPR1,1 gave the least RMSE for bone 
in both BVM and H-S method which are 0.61% and 0.63%, 
respectively. SPR1,1 gave the least bias estimation in both 
BVM and H-S method with ME of 0.00%. In BVM, all the 
total RMSE (both modeling and testing) are <1% except that 
estimated from Ifc and Irc. This can be seen in Table 7. Figures 
6 and 7 show that the approaches presented achieved relatively 
low training errors for each tissue while Figure 8 shows a 
relatively higher error for inner bone (Gammex insert) for 
the case of Ifc and Irc while all others remains relatively low. 
Figure 9 shows that the method still achieved low testing errors 
for each tissue in H-S method.

Mean excitation energy I
Table 8 shows that I1,0 has the least training RMSE in BVM 
for bone tissues which is 0.27%, it also has same for H-S 
method and total least RMSE of 1.94%. Although Irc has 
the lowest training error of 1.85% for BVM, it has a very 
high total RMSE of 15.15% and 22.68 for bone. I1,0 has 
the least testing error for BVM with a value of 7.19%. All 
the estimations of I using BVM achieved the same level of 
biasedness with ME of −0.01% on training data while I1,0 
achieved the least ME for both BVM and H-S method which 
are −1.08% and −1.09% on testing data, and it has the least 
training ME for H-S method as well which is −0.02%, as can 
be seen in Table 9. Figure 10 shows that I1,0 performs better 
in bone tissues while the performance of all the presented 
methods is similar in most of the soft tissues in training data. 
Inner bone has an off-high testing error on Ifc and Irc, as can 
be seen in Figure 11.

Discussion

The method presented estimates SPR with high accuracy, as 
can be seen from Figures 12-14 and Tables 1 and 2 on training 
and testing errors. Figures 12 and 13 show that we do not need 
to group the tissues to get good estimates of SPR. Increasing 
the fitting degrees can improve the accuracy but we have to be 
conscious of overfitting. Grouping the tissues also improves 
the accuracy. The method presented performs better than 
Kinematsu method which is the study we found on estimating 
SPR using re. The absolute relative error for Kinematsu method 
is increasing with re which suggests that some corrections 
might be possible. SPR1,1 gave the least modeling error though 
not the least testing error, but we chose it for application 
because current studies normally divide the tissues into 

Figure 3: Stopping power ratio training errors for individual tissues used 
for model training. SPR: Stopping power ratio

Figure 4: Stopping power ratio testing errors for individual tissues used 
for testing. SPR: Stopping power ratio

Figure 5: re training and testing errors for individual tissues used (this 
is for both H-S and basis vector method methods as presented in the 
figure, it’s comparing true relative electron density with the relative electron 
density estimated by these two methods). BVM: Basis vector method, 
H-S: Hunemohr and Saito
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Table 3: I training and testing root mean square errors (%)

I training 
RMSE

Total Lung Soft Bone Testing 
RMSE

Total Soft Bone

I1,0 2.12 0.00 2.65 0.29 6.62 7.49 5.16
I1,2 2.63 1.02 3.26 0.61 6.25 6.94 5.14
RMSE: Root mean square error

Table 4: I training and testing mean errors (%)

I Training 
ME

Total Lung Soft Bone Testing 
RMSE

Total Soft Bone

I1,0 0.11 0.00 0.16 0.00 −1.58 −1.70 −1.41
I1,2 −0.02 1.02 0.10 −0.35 −2.51 −3.13 −1.65
ME: Mean error, RMSE: Root mean square error

3 groups. On application, we see that the model performance 
was good on both BVM and H-S method. This performance 
may also be a result of these two methods predicting re with 
a high accuracy. This aligns with the aim of this study which 
is applying this method to projection domain methods which 
already have high accuracy estimation of re. SPRr,n will be a 
good option in terms of accuracy and computation time savings 
since the use of Bethe equation will be skipped.

Figures 15 and 16 show that the proposed model Ir,n can give 
a good fit to re data whether the tissues are grouped or not. 

We plotted re ln(I) for easy visualization. Ir,n gives a good 
result both in BVM and H-S method. Ifc  and Irc have high 
testing errors, especially for bone, and that makes them less 
robust. This might be due to difference in computed weights 
that follow from composition variation since Ifc and Irc 
depend on these weights. This may still be a similar reason 
why they have high relative error for inner bone. Estimating 
I using H-S method gives less testing error but this is not in 
line with the aim of this study since it computes I using Z, 
this does not translate into much difference when used to 
estimate SPR and it gives a higher ME (−3.14%) if compared 
with I1,0 (which has ME of −1.09%), this indicates that it can 
be more biased. This also works well only when the tissues 
are grouped into lung, soft, and bone tissues.

This model can be generalized as:

T SPR I a errore
i r

n

i e
i( / , )� �� �

��
�

where n ≥ 0, r ≥ 0 and T (SPR/I, re) is an invertible 
transformation of SPR or I and re.

Kinematsu method will belong to the class of model above 
since the one presented here can be written as:

T SPR SPR a errore
e i

i e
i( , )�

�
�� � �

�
�
0

2

Table 5: ρe training and testing errors (%)

ρe training RMSE Total Lung Soft Bone Testing RMSE Total Soft Bone
BVM RMSE 0.10 0.09 0.12 0.03 0.05 0.05 0.04
H‑S RMSE 0.04 0.01 0.04 0.04 0.11 0.13 0.08
BVM ME −0.08 −0.09 −0.12 0.00 0.01 −0.01 0.04
H‑S ME 0.02 0.01 0.02 0.02 0.10 0.11 0.07
ME: Mean error, RMSE: Root mean square error, BVM: Basis vector method, H‑S: Hunemohr and Saito

Table 7: Stopping power ratio training and testing root mean square error (%)

SPR training RMSE Total Lung Soft Bone Testing RMSE Total Soft Bone
BVM SPR from I1,0 0.26 0.14 0.32 0.06 0.86 0.99 0.63
BVM SPR1,1 0.23 0.07 0.28 0.05 0.98 1.18 0.61
BVM SPR from Ifc 0.29 −0.09 0.31 0.28 1.59 0.61 2.36
BVM SPR from Irc 0.25 0.09 0.30 0.13 1.54 0.61 2.27
H‑S SPR from I1,0 0.98 0.94 1.00 0.95 1.40 1.45 1.33
H‑S SPR1,1 0.22 0.01 0.27 0.05 0.97 1.15 0.63
H‑S 0.39 0.28 0.41 0.35 0.85 0.91 0.77
RMSE: Root mean square error, BVM: Basis vector method, H‑S: Hunemohr and Saito, SPR: Stopping power ratio

Table 6: Stopping power ratio training and testing mean error (%)

SPR training ME Total Lung Soft Bone Testing ME Total Soft Bone
BVM SPR from I1,0 −0.08 −0.14 −0.12 0.00 0.12 0.02 0.25
BVM SPR1,1 0.00 0.07 0.00 −0.01 0.08 −0.01 0.22
BVM SPR from Ifc −0.08 −0.09 −0.11 −0.01 0.75 0.37 1.28
BVM SPR from Irc −0.08 −0.09 −0.12 −0.01 0.79 0.36 1.39
H‑S SPR from I1,0 0.95 0.94 0.95 0.95 1.14 1.08 1.22
BVM: Basis vector method, H‑S: Hunemohr and Saito, SPR: Stopping power ratio, ME: Mean error
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Figure 6: Stopping power ratio (SPR) training errors for individual tissues 
by using basis vector method to estimate the relative electron density 
and applying different ways of predicting I and SPR as discussed above. 
SPR: Stopping power ratio, BVM: Basis vector method

Figure 7: Stopping power ratio (SPR) testing errors for individual tissues 
by using basis vector method to estimate the relative electron density 
and applying different ways of predicting I and SPR as discussed above. 
SPR: Stopping power ratio, BVM: Basis vector method

Figure 8: Stopping power ratio (SPR) training errors for individual tissues 
by using H-S to estimate the relative electron density and applying different 
ways of predicting I and SPR as discussed above. SPR: Stopping power 
ratio, H-S: Hunemohr and Saito

Figure 9: Stopping power ratio (SPR) testing errors for individual tissues 
by using H-S to estimate the relative electron density and applying different 
ways of predicting I and SPR as discussed above. SPR: Stopping power 
ratio, H-S: Hunemohr and Saito

Figure 10: I training errors for individual tissues by using basis vector 
method to estimate the relative electron density and applying different 
ways of predicting I as discussed above. BVM: Basis vector method

Figure 11: I testing errors for individual tissues by using basis vector 
method to estimate the relative electron density and applying different 
ways of predicting I as discussed above
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Figure 15: This is the modeling plot of reI1,2 (shows the relationship 
between the actual data and the fitted model)

Figure 16: This is the modeling plot of reI1,0 (shows the relationship 
between the actual data and the fitted model)

Figure 13: This is the modeling plot of SPR1,1 continuous (shows the 
relationship between the actual stopping power ratio data and the fitted 
model). SPR: Stopping power ratio

Figure 12: This is the modeling plot of SPR0,3 (shows the relationship 
between the actual stopping power ratio data and the proposed model). 
SPR: Stopping power ratio

Figure 14: This is the modeling plot of SPR1,1 piece-wise (shows the 
relationship between the actual stopping power ratio data and the 
proposed model). SPR: Stopping power ratio

We can write an application algorithm as follows:
●	 Given re data
●	 Formulate models
●	 Try different combination of r and n for the proposed 

model

Table 8: I training and testing root mean square error 
(%)

I training 
RMSE

Total Lung Soft Bone Testing 
RMSE

Total Soft Bone

BVM I1,0 1.92 0.39 2.40 0.27 7.19 8.40 5.04
BVM Ifc 2.16 0.00 2.23 2.11 15.97 5.12 23.99
BVM Irc 1.84 0.00 2.20 0.92 15.15 5.11 22.68
H‑S I1,0 1.94 0.00 2.42 0.27 7.21 8.43 5.03
H‑S 1.95 0.00 2.23 1.41 4.71 5.13 4.05
BVM: Basis vector method, H‑S: Hunemohr and Saito, RMSE: Root mean 
square error
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●	 Check their training and testing error
●	 Choose the optimal model for your data.

Conclusion

The presented method gave training RMSE of ≤0.32% and 
RMSE of ≤0.92% for testing with training ME of 0.02% for 
SPR. Mean excitation energy I has a training error of ≤2.63% 
and 0.11% for ME. A similar level of accuracy is achieved in 
application, especially in BVM case. The proposed method 
proved to be more robust as it performed better on testing data 
in most cases. It is also more flexible and easy to use as it can 
give a good result without grouping the tissues, i.e., you can 
get a good result with continuous model.

The presented machine learning algorithm allows us to adapt 
the model to different re data as well as improve its accuracy. 
It shows that we can improve the accuracy using tissue 
classification/grouping, increasing/reducing the model degree, 
and improvement in training data used. This method gives a 
highly accurate estimation of SPR and I as well as giving room 
for improvement and flexibility. The result will help to provide 
an accurate proton range value that will enhance more robust 
treatment planning for proton therapy treatments. Hence, we 
will carry out more detailed theoretical and empirical analysis 
on improving and implementing this method in our future work.
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Appendix

33 ICRU tissues used:

Lung(Inflated), Yellow marrow, Adipose, Breast, Red marrow, Eye lens, Skin, Pancreas, GI tract, Testis, Lymph, Kidney, Ovary, 
Muscles, Brain, Liver, Spleen, Lung(Deflated), Heart (blood filled), Blood, Cartilage, Thyroid, Spongiosa, Sacrum, Vertebral 
(D6, L3), Femur, Ribs (2nd, 6th), Vertebral C4, Humerus, Ribs (10th), Cranium, Mandible, Cortical bone.

Gammex inserts used:

Adipose (Gammex), Breast (Gammex), True water  (Gammex), Solid water  (Gammex), Muscle  (Gammex), Brain  (Gammex), 
Liver  (Gammex), Inner bone  (Gammex), B200  (Gammex), CB30  (Gammex), CB50 (Gammex), Cortical bone  (Gammex).


