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Abstract: Phylogenetic analysis based on multi-loci data sets is performed by means of supermatrix (SM) or supertree (ST) approaches. 
Recently, methods that rely on species tree (SppT) inference by the multi-species coalescence have also been implemented to tackle 
this problem. Generally, the relative performance of these three major strategies has been calculated using simulation of biological 
sequences. However, sequence simulation may not entirely replicate the complexity of the evolutionary process. Thus, issues regarding 
the usefulness of in silico sequences in studying the performance of phylogenetic methods have been raised. Here, we used both clas-
sical simulation and empirical data to investigate the relative performance of ST, SM, and the SppT methods. SM analyses performed 
better than the ST and SppTs in simulations, but not in empirical analyses where some ST methods significantly outperformed the 
others. Additionally, SM was the only method that was robust under evolutionary model violations in simulations. These results show 
that conventional biological sequence simulation cannot adequately resolve which method is most efficient to recover the SppT. In 
such simulations, the SM approach recovers the established phylogeny in most instances, whereas the performance of the ST and SppT 
methods is downgraded in simpler cases. When compared, the analyses based on empirical and simulated sequences yielded largely 
inconsistent results, with the latter showing a bias towards a seemingly superiority of SM approaches.
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Introduction
Biological sequence simulation is typically used 
to investigate the performance of phylogenetic 
methods.1,2 In the absence of known phylogenies, this 
strategy is the only approach available to measure 
statistical consistency, efficiency, robustness, and 
accuracy. The simulation of biological sequences has 
indeed played a central role in understanding the lim-
itations and scope of the classical algorithms includ-
ing distance matrix, parsimony, maximum likelihood 
(ML), and Bayesian inference.1,3–5

The accurate replication of the evolutionary pro-
cess that generates real nucleotide and amino acid 
sequences is, however, a challenging task. In silico 
sequence evolution, as implemented in the main 
simulation programs,6,7 relies on established evolu-
tionary models that are known to be incapable of cap-
turing the full intricacy of the evolutionary process.8 
Issues such as heterotachy or rate variation among 
branches are not fully addressed by these simula-
tion algorithms. Indels, another common biological 
feature of sequence alignments, are also frequently 
ignored.9

Furthermore, conventional simulation approaches 
equate gene trees and species tree (SppT), even 
though the processes which generate gene trees have 
been shown to be biologically different from those 
applied to SppTs.10,11 For example, if population-
level phenomena within the SppT, ie, the multispe-
cies coalescent,12 is not considered, the possibility of 
incomplete lineage sorting on the simulated data set 
is disregarded.

In this context, one might inquire about the conse-
quences of such simplistic model assumptions for the 
evaluation of phylogenetic methods. The supermatrix/
supertree debate exemplifies this problem. The 
increasing availability of molecular data led 
researchers to consider potential approaches to mul-
tiple-sequence alignments.13 One approach, the super-
matrix (SM) or total-evidence approach, addresses 
multiple-sequence data by concatenating individual 
genes in a superalignment.14 Such alignments are then 
analyzed by allowing the gene partition to possess 
independent evolutionary parameters. However, the 
phylogenetic tree is shared by all partitions. Another 
strategy is dubbed the supertree (ST). In contrast to the 
SM approach, the ST approach uses individual genes 
to estimate independent gene trees. The phylogeny is 

obtained by summarizing the information from the 
gene trees using a particular algorithm.15,16

It has been suggested that by concatenating sev-
eral gene sequences, the SM approach reduces the 
stochastic error inherent in phylogenetic inference 
because the number of sites analyzed is substantially 
increased.17 However, the issue of systematic error 
becomes a concern as the number of sites increases. 
As stated above, existing models of sequence evolu-
tion cannot fully capture all aspects of the evolution-
ary process. Therefore, the estimates obtained from 
large datasets using incorrect models will be biased, 
ie, inconsistent.13 Moreover, because individual gene 
trees may differ from the SppT, concatenation seems 
to represent a counterintuitive approach.

Several studies were conducted to compare the per-
formance of these alternative approaches on real and 
simulated data sets.18,19 Although many studies have 
demonstrated the superiority of the SM approach to 
the ST method,20 other works have shown that the two 
methodologies are complementary.21 Furthermore, the 
recent development of methods that model gene tree 
variation to estimate the SppT has raised questions 
about the power of the analyses performed on single, 
concatenated data sets.11,22,23

In this study, we show that conventional biologi-
cal sequence simulation cannot adequately resolve 
which method is most efficient to recover the spe-
cies phylogeny. When using simulated data, the 
SM approach recovered the true phylogeny in most 
instances, whereas the performances of the ST and 
SppT methods were downgraded. On the empiri-
cal data set, however, SM was not the most efficient 
strategy to deal with multi-loci data. When com-
pared, the analyses based on empirical and simulated 
sequences yielded largely inconsistent results, with 
the latter showing a bias towards a seeming superi-
ority of SM approaches. We therefore propose that, 
generally, the conventional simulation of biological 
sequences is overly conservative and that alternative 
strategies should be adopted to evaluate phylogenetic 
methodologies.

Materials and Methods
We have studied the performance of the SM, ST, and 
SppT approaches using both classical simulation and 
empirical data. Traditionally, simulation studies have 
been used in phylogenetics because they allow the 
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evaluation of statistical measures, such as the accu-
racy and precision of an estimate. In theory, empirical 
data are not suitable for the analysis of such features 
because the true phylogeny is rarely known. If the 
accumulated empirical evidence for a phylogenetic 
hypothesis is very high, however, one can confidently 
assume that the true phylogeny of a lineage is known. 
This assumption is valid for the phylogenetic affini-
ties of certain mammalian lineages. Accordingly, we 
have used the abundant information available from 
mammal genome studies to furnish the empirical data 
for our analysis.

Simulation
To verify the behavior of the different approaches, 
we have simulated data under biological scenarios 
in which phylogenetic inference is difficult. First, 
cladogenetic events in our topologies were forced to 
occur over a time span ranging from the Cambrian 
period (500 Ma) to the late Miocene epoch (7 Ma). 
Ultrametric tree topologies, with branch lengths 
measured in millions of years, were then multiplied 
by the evolutionary rates to yield the trees, with 
branch lengths measured in average number of sub-
stitutions/site, which were then used to simulate the 
artificial alignments. All evolutionary parameters 
used in the simulation were sampled from prob-
ability distributions inferred from real data. Tree 
topologies, substitution rates, gene lengths, and 

evolutionary model parameters used in the simula-
tion listed below.

Tree topologies
Three different topologies were created to inves-
tigate the influence of tree shape on phylogenetic 
inference using the SM, ST, and SppT approaches 
(Fig. 1). All three topologies contained 64 terminals. 
The first was completely symmetric (Fig.  1A) and 
the second, completely pectinate (Fig. 1B). The third 
topology (Fig. 1C) was adapted from the phylogeny 
of Dunn et al.24 In all topologies, root age was set at 
500 Ma and the time duration of each branch was set 
proportionally along the tree (Fig. 1).

Substitution rates
The empirical distribution of evolutionary rates 
(Fig. 2A) was obtained from alignments of ortholo-
gous gene pairs from Homo and Gallus downloaded 
from the OrthoMCL database.25 We used only orthol-
ogous groups without inparalogous gene copies. In 
all, 7,771 groups were analyzed. To estimate absolute 
evolutionary rates, we calculated the pairwise dis-
tance in PHYLIP26 using the F84 model and set the 
Gallus/Homo split at 310 Ma.27

Sequence lengths
Sequence pairs collected in OrthoMCL were also 
used to obtain the empirical distribution of nucleotide 

500

Time (Ma)

250

7.5

A B C

Figure 1. Tree topologies used in this study. Branch lengths are proportional to time in million years. (A) Symmetrical tree, (B) asymmetrical tree and 
(C) biological tree topology.
Adapted from Dunn et al.24
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sequence lengths used in the simulation analyses 
(Fig. 2B).

Substitution model parameters
The HKY + G4 model of sequence evolution was used 
to simulate the in silico alignments. The parameters 
of the model were the transition/transversion ratio (κ), 
the alpha parameter of the gamma distribution (α), 
and the equilibrium nucleotide frequencies (πA, πT, 
πC and πG). We obtained the probability distribution 
of these parameters by analyzing 6,673 alignments of 
ten species of Mammalia (Homo, Pan, Macaca, Mus, 
Rattus, Equus, Canis, Bos, Dasypus, and Echinops). 
We also estimated the mean evolutionary rate of the 
alignments studied. This analysis was calibrated with 
the Homo/Canis and Homo/Pan splits that, according 
to Benton and Donoghue,27 occurred at approximately 
104.2 and 8.3 Ma, respectively. Therefore, the 6,673 
alignments were grouped according to their respec-
tive evolutionary rates. The alignments were down-
loaded from the OrthoMam database.28

Sampling strategy
To incorporate the correlation between parameters, 
we adopted the following sampling procedure. To 
make an artificial gene, we first sampled an evolu-
tionary rate from the empirical distribution. We then 
independently sampled a gene length. The evolution-
ary rate and gene length were not correlated in the 
empirical data, so this independent sampling proce-
dure is justified. To avoid complicated correlations 
between evolutionary rate and each model parameter, 

we accessed empirical values for κ, α, πA, πT, πC 
and πG from all genes and sampled them together 
according to the rate estimated for the corresponding 
alignment.

Finally, biological sequence simulation requires 
trees with branch lengths measured in substitutions/
site. Therefore, each branch of the ultrametric trees 
displayed in Figure 1 (measured in Ma) was multi-
plied by an evolutionary rate determined by the mean 
rate sampled. The evolutionary rate used in this cal-
culation was obtained by sampling from a uniform 
distribution with a mean equal to the mean rate and 
a standard deviation set to 0.001 and 0.0001, as 
described below.

Simulation software
We simulated 30 sets of genes for each topology with 
each standard deviation in the rate distribution. In 
each set, we performed the previous sampling strat-
egy 50 times to simulate 50  genes for each of the 
three tree topologies. Simulations were conducted in 
the EVOLVER program of the PAML 4.4 package.7

Phylogenetic analysis  
and comparison of topologies
Maximum likelihood (ML) phylogenetic infer-
ence was implemented in PhyML 3.0 using the 
HKY85 + G4 model of sequence evolution. The ML 
topologies were estimated for each gene individu-
ally and for the SM composed of the concatenated 
alignments of the 50  genes in each set. Individual 
gene topologies were submitted to MRP29–31 using 
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Figure 2. Empirical distribution of (A) evolutionary rates and (B) gene length.
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Clann32 to construct matrices that were later submit-
ted to Paup.33 For SppT, the PHYBASE package34 of 
the R programming environment (www.r-project.org) 
was used to implement STAR and STEAC analyses, 
both using the Neighbor-Joining method. We also 
evaluated the robustness of the phylogenetic tree 
inferences derived from the SM, ST, and SppT meth-
ods to violations of the evolutionary model. To this 
end, we conducted all analyses using the JC69 model 
of sequence evolution.

Comparisons between inferred tree topologies and 
true phylogenies were performed in the ape pack-
age35 of the R programming environment with the 
Penny and Hendy36 distance (HP distance) and by 
the TreeCMP method.37 The algorithm also imple-
ments the Rzhetsky and Nei correction38 to consider 
polytomies. This method disregards branch lengths.

Empirical data set
To construct the empirical data sets, we have 
selected 16  mammal species with genomes cur-
rently under assembly (www.ensembl.org) and with 
well-supported phylogenetic affinities. The species 
selected were Bos taurus, Canis familiaris, Dasypus 
novemcinctus, Felis catus, Gorilla gorilla, Homo 
sapiens, Loxodonta africana, Macaca mulatta, 
Microcebus murinus, Monodelphis domestica, 
Mus musculus, Ornithorhynchus anatinus, Oryctolagus 
cuniculus, Pan troglodytes, Pongo abelii, and Rattus 
norvegicus. The alignments of 2,712 orthologous genes 
for these species were downloaded from OrthoMam.28 
Next, 13 of these alignments were eliminated from 
sampling due to the large amount of indels which inter-
fered with model selection. The mammal phylogeny 
used assumed the separation of placental mammals 
in Boreoeutheria (Euarchontoglires + Laurasiatheria) 
and Atlantogenata (Xenarthra + Afrotheria) (Fig. 3).39 
We eliminated problematic taxa within Euarchontog-
lires because recent evidence suggests that the evolu-
tion of this lineage is complex and that a reticulate 
pattern is possible.40

Using the empirical data, we constructed 100 sets 
of genes selected from the 2,699 orthologous 
alignments. In each set, sampling was performed to 
construct an alignment with at least 80,000 nucle-
otide sites. The genes were sampled until this minimal 
number of sites was reached. The phylogenetic analy-
sis was conducted as described for the simulated data. 

However, model choice was implemented using the 
BioPerl Modeltest function. Again, trees were com-
pared using the same metrics applied in the analysis 
of the simulated data.

Results
Figure 4 shows the percentage of recovery of the true 
tree for empirical and simulated sequences, as based 
on the phylogenetic methods used (SM, ST, and SppT 
estimation, respectively) and simulation conditions 
(high and low between-lineages evolutionary rate 
variation). The results obtained using the HP distance 
and the TreeCmp method were in agreement, thus 
we only present the statistics for the HP distance. The 
analyses using simulated datasets and based on a sym-
metrical topology tree recovered the true tree in all 
instances, regardless of rate variation within branches 
and the model used in the reconstruction of the phy-
logeny (HKY and JC). These results are likely to be 
related to the lack of short branches on deep nodes of 
the topology, and were omitted from Figure 4.

The empirical analyses showed recovery rates of 
82% for the ST method, followed by 60% and 58% 
for the SM and STAR SppT methods, respectively. 
Only the STEAC SppT method recovered the true 
tree in less than 50% of analyses. Overall, the SM 
method leads to higher recovery rates than the ST 
and SppT approaches when the simulation is simpler. 
The latter phylogenetic methods, in turn, had a higher 
rate of success at recovering the true phylogeny 
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Figure 3. Standard mammal phylogeny assumed in this study.
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under high rate variation for both evolutionary mod-
els investigated. In the next sections we detail these 
results for each of the methods investigated.

Supermatrix
In the analyses based on the asymmetrical topology, 
the SM approach (Fig. 4) recovered the correct tree in 
all of the simulations performed under low rate varia-
tions and with the same model used in the simulation. 
Accuracy was slightly lower in those analyses using 
a simpler model proving that the method is highly 
robust and resists evolutionary model violation. The 
effect of higher rate variation was stronger and when 
the less parametric model was tested with higher rate 
variance; the true tree was recovered in less than 15% 
of analyses. This last scenario was the only one for 
this topology in which the use of SM based on simu-
lated sequences performed worse than that based on 
empirical sequences.

The SM analyses based on a biological topology 
followed a similar pattern. However, all recovery 
rates were higher for this simulated topology. SM 
analyses had over 45% recovery rate for the true tree 
in simulations under the less parametric model and 
higher rate variation, with the smaller recovery rate 
for this topology.

Supertree
The ST method (Fig. 4) was associated with the high-
est recovery rate when based on the use of empirical 
sequences. The results of the analysis with empiri-
cal data were, however, largely inconsistent with 
those based on simulated sequences. In the analysis 

assuming an asymmetrical tree topology, low rate 
variation and the correct evolutionary model recov-
ery rates were close to 64%. These rates dropped to 
10%, however, in the analyses under the less paramet-
ric model. None of the analyses conducted assuming 
higher rate variation recovered the true phylogenetic 
tree. This also shows that the ST method was not 
robust and had a drastic loss in recovery rate in cases 
with model violation.

The analyses based on the same model used in the 
simulation, and assuming a low rate variation, pro-
duced results similar to those conducted under the 
same scenario but based on an asymmetrical topology. 
As expected, the analyses assuming a less parametric 
model choice had a slight reduction in true tree recov-
ery rates. However, the analyses with higher rate vari-
ation were associated with higher recovery rates than 
those under the same model and low rate variation. 
Interestingly, analyses with the same model used in 
simulation for biological topology were associated 
with higher recovery rates than those produced using 
empirical sequences, the only case for this method.

Species tree
Two SppT methodologies were evaluated (Fig. 4). In 
both cases, the rate with which the true phylogeny 
was recovered using empirical data was lower than 
those observed using the other two approaches. The 
performance of the STAR method was only slightly 
inferior to that of the SM, whereas STEAC was asso-
ciated with a very poor performance.

In the analyses based on the asymmetrical topol-
ogy, STAR and STEAC true tree recovery rates were 
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Figure 4. Percentage of true tree recovery in empirical analyses compared with simulation results for different evolutionary models and rate varia-
tion between lineages (rv). (A) Supermatrix analyses (maximum likelihood on PhyML 3.0); (B) supertree analyses (MRP); and (C) both species tree 
methods—STAR and STEAC.
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lower than empirical. Also, for both methods, analy-
ses under higher rate variation and less parametric 
models showed drastic reductions in recovery rates. 
STEAC was unable to recover the true tree on any 
analysis under less parametric model or higher varia-
tion of rates. STAR analyses, conversely, had a small 
percentage when only one of these difficulties was 
applied, but was also unable to recover the true tree 
in any analyses in the most difficult scenario.

Analyses based on biological topology had a com-
pletely different result. Simulation results outper-
formed empirical in almost every case. The only case 
where simulated results were inferior to empirical 
was STAR method analyses under the same model 
used for simulation with low rates. This was also the 
only case in which analyses under the same model of 
the simulated data had worse results than its replicate 
under the less parametric model.

SppT analyses based on biological topology also 
showed an increase in performance when a higher 
variation of evolutionary rates was used in sequence 
simulation.

All analyses made under the same model used in 
the simulation performed much better than their rep-
licates analyzed under the less parametric model, as 
seen for ST analyses. This indicates that SppT meth-
ods are not as robust as SM and, therefore, are suscep-
tible to error when some parameters of evolutionary 
models are disregarded.

Discussion
We sought to evaluate the extent to which biologi-
cal sequence simulation may affect the assessment of 
the performance of SM, ST, and SppT methods under 
different assumptions regarding the topology, substi-
tution rates, and the evolutionary model. Our results 
showed that simulated sequences produce a biased 
assessment of performance of these methods. In the 
less challenging scenario, when sequences evolved 
under low between-lineage rate variations, a bias 
towards a seemingly superiority of the SM method 
was observed. Conversely, under higher rate varia-
tions, SppT methods were favored. Although SM 
analyses did not perform better than ST in empirical, 
it is important to mention that it was the only method 
that was robust to evolutionary model violations.

The ST was the method with the highest per-
formance in the analyses using empirical data. 

In simulated data, however, ST yielded lower recov-
ery percentages in nearly every scenario simulated. 
Therefore, there is a bias against ST analyses in 
simulations. This is especially true for the analyses 
based on the asymmetrical topology, in which the 
ST method had the worst performance. This poor 
performance of ST on recovering the asymmetrical 
topology may be explained by the presence of very 
short branches, which have been previously reported 
to hamper the MRP algorithm.41 In this study, the 
authors also argue that very short branches may be 
unrealistic. During the evolution of several lineages, 
however, episodes of rapid diversification frequently 
occur, resulting in short internal branches.42

Unfortunately, studies that have incorporated 
more realistic simulation strategies to evaluate phy-
logenetic methods generally considered trees with a 
reduced number of terminals.43–45 Swenson et al46 is 
an exception, since they used a large number of ter-
minals in their comparisons. As reported here, they 
also found SM approaches to outperform ST in most 
simulated scenarios. Moreover, their analysis showed 
that increasing the number of taxa also increased the 
relative advantage of SM over ST. The same pattern 
was found by Kupczok et al,21 who used datasets with 
25 and 69 taxa. Their results imply that incongruent 
gene trees, which are biologically expected in empiri-
cal data due to population-level phenomena, can have 
a negative effect on SM. This may explain the failure 
of SM in empirical data analysis. In this sense, ST 
and SppT methods are more efficient for identifying 
the true phylogenetic signal in cases where conflict 
between gene trees exists.

SppT methods, as implemented in STAR and 
STEAC, presented very different performances, with 
STAR having true tree recovery rates that were always 
higher than STEAC. Recently, Liu et al47 also showed 
that STAR outperformed STEAC in all of the simu-
lations tested. In this work, in contrast to the pres-
ent study, the authors did not conduct a comparison 
between the SppT algorithms and SM or ST methods; 
moreover, the number of terminals used was small. 
The good performance of STAR was also reported by 
Allman et al.48 In the present study, although STAR 
outperformed STEAC, its general performance was 
not superior to SM and ST.

In conclusion, in this study we have shown that 
the evaluation of the performance of phylogenetic 
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methods that deal with multi-loci data sets may 
be seriously biased if the simulation of biological 
sequences is overly simplistic. Thus, to accurately 
incorporate the complexity of empirical data sets, 
simulation software should not only consider indels, 
but also the discordance between gene trees and the 
SppT that naturally occur in real data due to the action 
of population-level phenomena.
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