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Research and discovery in the most disparate areas of knowledge are constantly being pushed

y continuous technological revolutions. The permanent waves of advances changed how scientific

ork is planned, produced, and communicated within the scientific community and made available to

he general public. The "big-data revolution" impacted practically all scientific disciplines, increasingly

mposing data-driven methodologies [1] . A significant outcome of this process is a shift towards open

ata initiatives (Budapest OS initiative, Plan S, EOSC, etc.). These initiatives have contributed to greater

vailability and accessibility of publicly funded scientific research, accompanied by the creation of

reely available data repositories for large volumes of information. 

Soon after these initiatives started, the necessity to improve data organization, and storage

fficiency and effectiveness became evident. As a result, FAIR (findable, accessible, interoperable,

eusable) guiding principles for scientific data management and stewardship were outlined [ 2 , 3 ]. 

The large-scale data accessibility powered a plethora of new analytical tools such as those

ommonly bundled under the generic denomination of artificial intelligence [4–8] . 

Obviously, the capacity to sort, analyze and integrate this overwhelming amount of information is

xtremely challenging and demands particular computational skills. Indeed, a minimal computational

ackground is no longer an asset in science; it has become a must. However, achieving simultaneously

 comprehensive knowledge of the fundamentals of a particular scientific discipline and highly

pecific computational skills is unlikely to become a standard. Modern science is carried out by

nterdisciplinary and complementary working teams that, at their time, thrive from knowledge

chieved by larger scientific communities. These organizational dynamics require a second level of

penness, the sharing of methods and computational analysis tools. Sharing software for data analysis

aves the precious time needed for coding, testing, debugging, and documenting, obviating the need

or highly specialized computational skills. 

Just like the raw data, the nature of the software needed to process it may be of different nature

nd produced in many formats, languages, and operative systems. It may sometimes be a single

oftware package or pipelines (namely, an array of processing elements organized so that the output

f the previous step becomes the input of the next). Clearly, the interoperability of the software
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and well-documented instructions for compiling and running the software in suitable hardware 

architectures are mandatory in all these cases. 

MethodsX aims to boost science openness at various levels by improving reproducibility, making 

methods, protocols, and the associated research more discoverable, opening doors for collaboration, 

and enhancing the research cycle. In line with these aims, MethodsX recently published a number

of software packages and pipelines for data analysis to aid research at different levels and in various

disciplines. The following paragraphs will briefly overview some specific examples and how they may 

help within and beyond the scientific community. 

Software utilities for molecular simulations 

The increasing computer power and consistently faster algorithms have taken molecular 

simulations to the level of computational microscopes that enable the study of molecular systems at

an unprecedented level [9] . However, applications in material sciences and biology are still critically

dependent on stating conditions, e.g., the initial 3D coordinates of the atoms that compose the

molecular systems. Recently a couple of exciting applications published in our journal addressed 

this issue. The software Nanosculpt [10] provides a simple method to generate atomic coordinates 

of complex objects incorporating topological information taken directly from experimental data (as 

Cryoelectron microscopy/tomography) or user-created arbitrary shapes. In another publication, Gupta 

et al. [11] analyzed current problems associated with the initial thermalization of the molecular 

systems and provide an optimized procedure in which nanocrystalline materials are thermalized 

by coupling specific regions of the simulation box to separated thermostats at different target

temperatures. 

Although tested only for nanomaterials, both methods also harbor great potential for biological 

applications. 

Bioinformatics and molecular biology 

The wide availability of different sequencing techniques made advanced bioinformatic methods a 

pressing necessity to get the most out of the data. 

The reconstruction of gene phylogenies is based on large sequence alignments. However, 

homologous sequences are often difficult to align unambiguously, or alignments may contain 

insufficient information to accurately model gene evolution, leading to incorrect gene trees and 

erroneous predictions of events of duplications and losses [12] . A workaround for this problem is

the construction of longer "supergenes" that comprise sets of loci with putatively similar genealogical

stories. However, validating the concatenation of several genes in one single supertree remains a 

difficult task. Adams and Castoe recently published a model-based protocol for assessing the accuracy 

of supergenes construction based on phylogenetic congruency that may validate supergene hypotheses 

[13] . 

The combination of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) constitutes 

a powerful method for identifying genome-wide DNA binding sites. The technique is conceptually 

simple: DNA-bound proteins are co-immunoprecipitated, purified, and sequenced. However, 

identifying contiguous specific sequences that act as super-enhancers by binding different 

transcription factors is computationally highly demanding. Orlova et al. devised a cost-efficient 

strategy based on distributed computing in virtual machine cloud environments [14] . This method

is particularly well suited for research centers with modest access to computational resources and, in

principle, independent of the operative system used, making it robust and interoperable. 

Another example of cost-efficient bioinformatic methodology but applied to pharmacology 

is provided by the work of Zidan et al. [15] . They introduced a computational pipeline for

pharmacovigilance/pharmacogenomics named PHARMIP. It combines chemical structure and database- 

reported information about specific drug candidates to anticipate the genetic factors underlying 

the drug-reported adverse reactions. The implementation is available with a user-friendly interface 

that facilitates the use by non-experts and can provide valuable hints about genetic risk factors or

propensities for specific drug candidates. 
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The use of fluorescent probes for imaging has revolutionized our understanding of countless

iological processes, as it provides non-invasive means to interrogate living organisms in real-time.

evertheless, experiments may generate a considerable amount of data that need to be processed in

ifferent manners. A nice pipeline that offers a semiautomated treatment of time-lapse fluorescence

icroscopy images, quantification of individual cell signals, and a statistical analysis of the data was

ecently provided by Lévy et al. [16] . The pipeline combines routines in the popular platforms FIJI,

, and MATLAB packages, automatizing the analysis of a large number of samples and increasing its

tatistical robustness. 

Fluorescent microscopy also grants the opportunity to follow single-molecule localization,

nraveling the subcellular organization of different molecular species. Hoboth et al. presented

 Single Molecule Localization Microscopy (SMLM) approach to follow the nuclear localization

f phosphatidylinositol 4,5- bisphosphate using indirect immunofluorescence labeling [17] . They

eveloped a tool within the free software ImageJ2, which is orthogonal but highly complementary

o the more traditional biochemical and lipidomic analyses. 

Horzum et al. devised another ImageJ application to process immunofluorescence images of

inculin, a well-characterized marker of cellular focal adhesion [18] . Their "Step-by-step quantitative

nalysis of focal adhesions" provided a practical approach to quantify a variety of fluorescent images

mproving the signal-to-noise relationship in systems with high background. 

Finally, a pipeline incorporating a macro in the Fiji environment and R scripts to measure the

ntensity of intracellular staining was reported by Zonderland et al. [19] . This pipeline allows for

imple measuring of staining intensities straightforwardly and independently of the cellular shapes

r sizes. 

iscellaneous applications 

The packages, pipelines, and methods outlined in the previous paragraphs constitute examples

elated to some specific areas of research. However, just to illustrate the wide range covered by

ur journal, we mention a few examples of software with diverse areas of application. The work

y Cornish et al. [20] presents a script in phyton language to interrogate the PubMed database for

ifferent variations and permutations of eponyms and names given to genes, proteins, and chemical

ompounds. This simple method enables a fast and unambiguous search, sorting, and characterizing

cientific citations by all PubMed’s data fields. 

A completely different example is provided by the contribution by Arenas-Castro and Gonçalves

21] . They offered a model-assisted method to forecast the suitability of crop production in different

errains as a function of climate change predictions. This machine learning approach written in the

 package is freely available on GitHub and may provide helpful information for agricultural sciences

nd decision-makers about long-term farming politics. 

The last example regards a machine learning approach for accurately estimating the mortality

roduced by pandemic or epidemic events. This is done by calculating the excess mortality from

etrospective data using linear regression approaches [22] . Although applied to estimate mortality

aused by Covid-19 in Italy in 2020, this approach can be generally applied to obtain valuable

pidemiologic insights, keeping updated information about the progress and effect of successive waves

f contagions and the effectiveness of containment or vaccination measures. 

onclusions and outlook 

As evident from the articles bundled in this editorial piece, methods-sharing initiatives from

cientists for scientists are fervent and extended to different areas. However, significant challenges

emain. They are associated with the software’s interoperability and robustness to different

nvironments and operative systems, the standardization of data formats used as input and

enerated as output of the analyzes. Using "software containers" (e.g., software packages that provide

pplications, dependencies, system libraries, settings, and other binaries, and all the configuration files
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needed to run) constitutes an effective workaround for the first problem. However, standardization 

remains a central problem in many areas and still needs to be addressed as a community effort. 

Sharing analysis software and computational protocols may create positive feedback loops to 

progressively overcome these limitations and make high-quality methods more broadly accessible. 

E-mail address: spantano@pasteur.edu.uy 
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