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Abstract: Background: Our purpose was to establish a noninvasive quantitative method for assessing
intracranial pressure (ICP) levels in patients with traumatic brain injury (TBI) through investigat-
ing the Hounsfield unit (HU) features of computed tomography (CT) images. Methods: In this
retrospective study, 47 patients with a closed TBI were recruited. Hounsfield unit features from the
last cranial CT and the initial ICP value were collected. Three models were established to predict
intracranial hypertension with Hounsfield unit (HU model), midline shift (MLS model), and clinical
expertise (CE model) features. Results: The HU model had the highest ability to predict intracranial
hypertension. In 34 patients with unilateral injury, the HU model displayed the highest performance.
In three classifications of intracranial hypertension (ICP ≤ 22, 23–29, and ≥30 mmHg), the HU
model achieved the highest F1 score. Conclusions: This radiological feature-based noninvasive
quantitative approach showed better performance compared with conventional methods, such as the
degree of midline shift and clinical expertise. The results show its potential in clinical practice and
further research.

Keywords: traumatic brain injury; computed tomography; intracranial pressure; noninvasive
intracranial pressure evaluation

1. Introduction

Traumatic brain injury (TBI) is a major public health problem around the world. It is
estimated that 69 million individuals worldwide suffer a TBI each year, leading to death or
life-long disability [1]. Clinically, the intracranial pressure (ICP) level is the major intuitive
indicator in neural functional evaluation, and the monitoring of ICP has a great significance
both in identifying surgical indication and in critical care management [2]. Invasive
techniques, for example, the placement of an ICP probe into the cranium, are the main
methods of ICP monitoring. Despite being precise and accurate, this invasive treatment
not only requires costly equipment but also leads to complications including intracranial
hemorrhage, intracranial infection, and brain parenchymal injury, which in rare cases
can cause severe danger to the patients [3,4]. It is reasonable that noninvasive methods,
including acoustic elasticity, optic nerve sheath diameter, and transcranial Doppler, exhibit
potential in ICP evaluation with fewer complications [5]. Meanwhile, as a noninvasive
examination for craniocerebral trauma, computed tomography (CT) scans play a vital role
in the disease diagnosis, severity evaluation, and outcome prediction [6,7]. Until now, the
information acquired from CT images has been restricted empirically. The implementation
of CT images to assess ICP still relies mostly on the experience of clinicians [8], and
a quantitative and accurate method is lacking [9]. The purpose of this study was to
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noninvasively evaluate the ICP of patients in an early phase before surgery using the
Hounsfield unit (HU) method. This method was used to establish a model by extracting
the HU value and its related features, which can reflect the symmetry, uniformity, and local
intensity distribution changes of CT images, so as to evaluate intracranial pressure. In
addition, two traditional methods, using midline shift and clinical expertise, were included
in this study, and the ability of these three methods to predict intracranial hypertension
was compared.

2. Materials and Methods
2.1. Study Design and Setting

In this retrospective study, the clinical data of patients with TBI admitted to the De-
partment of Neurosurgery, Shanghai General Hospital from January 2018 to December
2019 were collected and analyzed. Inclusion criteria were as follows: (1) patients with
an acute closed TBI; (2) received invasive ICP monitoring according to the guidelines for
the management of severe traumatic brain injury; (3) received emergency cranial CT scan
within 60 min of ICP monitoring; (4) 18–65 years old. Exclusion criteria were as follows: pa-
tients with a history of TBI, cerebral infarction, brain tumors, or other neurological diseases
or cranial surgical interventions that might result in an abnormal anatomical structure
or CT density. The study protocol conformed to the ethical guidelines of the Declaration
of Helsinki, and this study was approved by the Ethics Committee of Shanghai General
Hospital, Shanghai Jiao Tong University School of Medicine (RA-2019-180). Participants’
right to know was fully guaranteed and indicated in the ethical approval document.

2.2. Data Sources and Measurements

In addition to demographic and baseline injury characteristics, we collected and ana-
lyzed the last cranial CT before ICP monitoring, as well as the initial ICP value immediately
after ICP sensor insertion, before performing a craniotomy for hematoma removal. Due to
transportation and the anesthetic preparation of patients, the duration between the last
cranial CT and ICP monitoring was about 30–60 min. In this study, the ICP sensor was
inserted into the ventricle, and the location of the sensor was verified by cranial CT after
surgery. The initial ICP was recorded during operation immediately after the insertion
of the ICP sensor (Integra, Plainsboro, NJ, USA). The Hounsfield unit (HU) values were
acquired from the Digital Imaging and Communications in Medicine (DICOM) file of the
last cranial CT before ICP monitoring using a 64-slice spiral CT machine (General Electric
Medical Systems, Fairfield, CT, USA). As per the routine protocol of a CT scan, the CT
slices were parallel to the orbitomeatal plane from the foramen magnum to the vertex.
The scanning slice thickness was 5 mm. The slice with the body of the lateral ventricle
(50 mm above the basal plane) was selected for the examination of Hounsfield unit (HU)
and midline shift. Brain tissue was divided into lines perpendicular to the cranial midline
after removing the interference of the skull, and the HU value on the line across the anterior
pole of the lateral ventricle was collected. HU-related features extracted included (1) the
mean of HU on each side of the cranial midline and their ratio, (2) the standard deviation of
HU on each side and their ratio, (3) the Shannon entropy of HU on each side and their ratio,
(4) and total Shannon entropy, which included both sides in the calculation. All ratios were
defined as the division of the larger value and smaller value to ensure values ≥1. Midline
shift was measured in millimeters, as the perpendicular distance between the maximum
displacement of the septum pellucidum and cranial midline (median ridge of the fronto-
parietal bone). In addition, three experienced neurosurgeons (unaware of the initial ICP)
were asked to read the CT slide and evaluate whether there was intracranial hypertension
(ICP > 22 mmHg), and the judgement was made after discussion and agreement.

Then, three models were established on the basis of HU features (HU model), the
midline shift (MLS model), and clinical expertise (CE model). The establishment and anal-
ysis process of these three models is shown in Figure 1. In the HU model, the HU-related
features introduced previously were included in multivariate logistic regression to predict
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intracranial hypertension (ICP > 22 mmHg). Considering the relatively small sample size,
L2 regularization (ridge regression) was used to regularize the logistic regression model
of HU-related features to reduce overfitting [10]. Briefly, after scaling, the L2 norm of the
weight vector was added to the cost function, and regularization parameter lambda was
chosen to minimize the mean cross-validated error. The performance of the regularized
version of the model was also evaluated. The MLS model was established on the basis of
midline shift data, using univariate logistic regression. The CE model was established as
an analysis of the correlation between clinical judgment and the actual ICP value.
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clinical expertise.

In consideration of the heterogeneity of TBI, patients’ data with focal lesions restricted
in the unilateral hemisphere were extracted. Likewise, HU, MLS, and CE models were
fitted in the same way to discriminate intracranial hypertension (ICP > 22 mmHg) in this
subgroup. Then, the performance of each model was compared.

To achieve a more precise prediction, in addition to the binary classification of intracra-
nial hypertension, these three models were used to classify ICP into three groups (≤22,
23–29, and ≥30 mmHg), and their respective performance was compared.

2.3. Statistical Analysis

Statistical analysis was performed on the data using R statistical software (ver-
sion 3.5.0). Continuous variables subject to normal distribution were expressed as the
mean ±SD, continuous variables not subject to normal distribution were expressed as
the median (M) and interquartile range (IQR), and categorical variables were expressed
as the frequency and percentage. The logistic regression was modeled using the “glm”
function of the “stats” package (version 3.6.1). The regularized logistic regression model
was established using the “glmnet” function of the “glmnet” package (version 3.0). The
ordered logistic regression was modeled using the “plor” function of the “MASS” package
(version 7.3). The area under the ROC curve was calculated using the “roc” function of the
“pROC” package. A p-value < 0.05 was considered statistically significant.

Accuracy, precision, recall, and F1 score were used to evaluate the performance of
each model. The area under the receiver operator characteristic (ROC) curve was used
in all three models to assess discrimination. Lastly, the performance of the three models
was compared.
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3. Results
Comparative Results of the Three Models

From January 2018 to December 2019, 47 patients were enrolled in this study, among
which 30 were male (63.83%) and 17 were female (36.17%). Participants were between
36 and 65 years old, and the median age was 50 (IQR: 46–59) years old. The causes of
injuries included traffic accidents (24, 51.06%), falls from heights (8, 17.02%), and falling
(15, 31.91%). The median Glasgow Coma Score (GCS) was 7 (IQR: 5–8) at the time of
emergency admission; 26 patients (55.32%) had an abnormal light reflex in one or both
pupils upon arrival. The average duration between the last cranial CT and ICP monitoring
was (40.55 ± 9.25) min. In these cases, 34 patients with focal lesions were listed as having
a unilateral injury, whereas 13 patients were listed as having a bilateral injury. Further-
more, 21 of the enrolled patients (61.76%) suffered from a unilateral subdural hemorrhage,
10 patients (29.41%) suffered from a unilateral contusion, three patients (8.82%) suffered
from a unilateral epidural hemorrhage, seven patients (53.85%) suffered from a bilateral
contusion, four patients (30.77%) suffered from a subdural hemorrhage with contrecoup
contusion, and two patients (15.38%) suffered from diffuse brain swelling.

As shown in Table 1, the median initial ICP of all participants was 25 mmHg (IQR: 20–30).
The median midline shift was 4.17 mm (IQR: 1.17–6.02). The mean HU in each hemisphere
ranged from 25.24 to 52.27, with an average of 34.78 ± 4.76, and the median ratio of both
sides was 1.10 (IQR: 1.04–1.24). The standard deviation of HU on each side ranged from
4.43 to 21.17, with an average of 10.51 ± 2.96, and the median ratio of both sides was 1.25
(IQR: 1.09–1.55). The Shannon entropy of HU on each side ranged from 1.28 to 2.34, with a
median of 1.78 (IQR: 1.64–1.98), and the median ratio of both sides was 1.11 (IQR: 1.05–1.21).
The total Shannon entropy for each patient had a median value of 1.11 (IQR: 1.05–2.21).

Table 1. Initial ICP- and CT-related characteristics of participants.

All Patients with TBI (n = 47) Patients with Unilateral TBI (n = 34)

Initial ICP (mmHg) a 25 (20–30) 25 (19–30)
>22 mmHg 29 (62.07%) 20 (58.73%)

Midline shift (mm) a 4.17 (1.17–6.02) 3.75 (1.15–6.06)

Mean HU
Higher-value side b 37.25 (4.87) 37.72 (5.20)
Lower-value side b 32.31 (3.11) 32.77 (3.18)

Ratio a 1.10 (1.04–1.24) 1.10 (1.03–1.25)

Standard deviation of HU
Higher-value side b 12.09 (3.06) 12.33 (3.43)
Lower-value side b 8.93 (1.82) 8.77 (1.80)

Ratio a 1.25 (1.09–1.55) 1.31 (1.12–1.65)

Shannon entropy of HU
Total on both sides a 1.94 (1.76–2.07) 1.94 (1.73–2.04)
Higher-value side a 1.93 (1.78–2.05) 1.92 (1.75–2.04)
Lower-value side a 1.69 (1.57–1.80) 1.66 (1.57–1.78)

Ratio a 1.11 (1.05–1.21) 1.13 (1.05–1.19)
a Variables presented as median (M) and interquartile range (IQR); b variables presented as mean and standard deviation.

The performance of the HU, MLS, and CE models in predicting intracranial hyper-
tension is shown in Table 2 and Figure 2. The HU model had the highest ability to predict
intracranial hypertension, with a threshold value of 22 mmHg. Although its performance
decreased after regularization, the HU model still showed reasonable discrimination power.
Both the original and the regularized model showed good calibration (χ2 = 2.83, df = 4,
p = 0.59 and χ2 = 7.25, df = 4, p = 0.12, respectively), the plot of which is shown in Figure 3.
The MLS model had limited power to discriminate intracranial hypertension. The CE
model could help evaluate high ICP compared with the MLS model, but it was still inferior
to the HU model. Subsequently, we evaluated the performance of the HU, MLS, and CE
models in 34 patients with unilateral TBI (Table 3). The performance of both the HU and
the MLS models improved. The original and regularized HU models had a high ability to
predict intracranial hypertension (Figure 4), and both showed good calibration (χ2 = 2.13,
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df = 4, p = 0.71 and χ2 = 6.09, df = 4, p = 0.19, respectively; Figure 5). However, the
MLS model still achieved the lowest discrimination ability. The CE model showed similar
discrimination power in the analysis of the total patient population.
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Figure 2. Performance of models based on HU features (original and regularized), midline shift, and
clinical expertise in discriminating intracranial hypertension; the AUCs for these models were 0.81,
0.73, 0.49, and 0.59, respectively.

Table 2. Performance of models based on HU features (original and regularized), midline shift, and clinical expertise in
predicting intracranial hypertension.

HU Features HU Features (Regularized) Midline Shift Expertise

Accuracy 80.85% 65.96% 61.70% 63.83%
Precision 83.33% 84.21% 61.70% 67.65%

Recall 86.21% 55.17% 100.00% 79.31%
F1 Score 0.85 0.79 0.76 0.78

AUC (95% CI) 0.81 (0.68–0.94) 0.73 (0.58–0.88) 0.49 (0.32–0.66) 0.59 (0.45–0.73)

Table 3. Performance of models based on HU features (original and regularized), midline shift, and clinical expertise in
unilateral TBI patients.

HU Features HU Features (Regularized) Midline Shift Expertise

Accuracy 85.29% 70.59% 58.82% 64.71%
Precision 85.71% 67.86% 58.82% 65.38%

Recall 90.00% 95.00% 100.00% 85.00%
F1 Score 0.88 0.79 0.74 0.74

AUC (95% CI) 0.90 (0.78–1.00) 0.80 (0.65–0.95) 0.54 (0.34–0.74) 0.60 (0.45–0.76)
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In the three classifications of ICP (ICP ≤22, 23–29, and ≥30 mmHg), the CE model
failed to predict intracranial hypertension from the CT slide according to the clinicians’
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expertise. The performance of the HU and MLS models is shown in Table 4, where it can be
seen that HU-related features performed better for all three classifications of ICP compared
with the MLS model.

Table 4. Performance of models based on HU features and midline shift for the three classifications
of ICP.

HU Model Midline Shift Model

All TBI patients (n = 47)
Accuracy 61.70% 40.43%

Precision * 61.06% 32.90%
Recall * 61.70% 40.43%

F1 Score * 0.61 0.29

Unilateral TBI patients (n = 34)
Accuracy 64.71% 41.18%

Precision * 64.02% 16.96%
Recall * 64.71% 41.18%

F1 Score * 0.64 0.24
* The precision, recall, and F1 score were calculated using weighted averages of each category.

4. Discussion

This retrospective study enrolled closed TBI patients, who received a cranial CT scan
within 60 min of ICP monitoring to ensure the timeliness of CT images. It is demonstrated
that the intracranial hypertension of TBI patients could be assessed noninvasively and
quantitatively on the basis of Hounsfield unit features from a CT scan of an injured brain.
The results showed that the proposed ICP assessment approach achieved higher accuracy
in discriminating intracranial hypertension, compared with other methods estimating
intracranial pressure, such as midline shift and clinical expertise.

Currently, the research and the clinical usage of cranial CT images in TBI patients
mainly focus on CT scores, including the Marshall and Rotterdam CT score [11,12]. TBI
patients are comprehensively classified on the basis of the radiological findings on CT
images. According to those classifications, the relationship between CT and clinical severity
or prognosis is extensively analyzed [13,14]. Several studies have focused on analyzing the
relationship between CT image characteristics and ICP level [15,16]. Depending on the CT
image, these studies determined the relationship between the degree of brain parenchymal
compression or ventricle volume and ICP, in an attempt to describe the possibility of
noninvasive ICP measurement; approaches to measuring the ventricle volume using the
width of the third ventricle, perimesencephalic cistern, or sylvian fissure have also been
indicated [17]. Compared with the CT score and intracranial volume, the HU method
presented herein could better describe CT images and alleviate the subjective effects in
scaling or quantifying. Clinical prediction based on a comparison of HU values in different
regions was also reported in previous studies. For example, Kanazawa and colleagues
detected HU-related parameters (mean CT value, entropy, skewness, and kurtosis in
regions of interest (ROIs)) in the early postictal state to predict cerebral vasospasm, delayed
cerebral ischemia, and functional outcome in aneurysmal SAH [18]. Shen and colleagues
analyzed the image texture (mean gray-level intensity, variance, and uniformity of the
ROI) of head CT scans to predict early hematoma enlargement [19]. Inaba and colleagues
evaluated the brain density adjacent to the lateral ventricles on brain CT images as a
predictor of elevated ICP with a negative result [20]. In our study, the method of comparing
HU values between patients was modified. We analyzed the HU value on the line across the
anterior pole of the lateral ventricle on each side of the brain and compared the differences
between the two sides as a function of their ratio. This method allows one to magnify the
differences in CT images compared to processing the local HU values.

After traumatic brain injury, increased intracranial pressure is one of the most common
consequences of pathophysiological changes in the brain [21]. Recent evidence has indi-
cated that, in TBI patients, an ICP above 22 mmHg is associated with increased mortality
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in adult patients [22], and it is recommended by guidelines to be treated. Even moderate to
severe TBI patients with an ICP above 30 mmHg may indicate the presence of a cerebral
hernia, which needs quick decompression [23]. Evaluating the ICP level at an early phase
and, therefore, establishing treatment plans are among the most significant issues in TBI
patient management, which is commonly based on clinical judgment according to neuro-
functional evaluation and CT image interpretation or simply by referring to the degree of
midline shift.

During intracranial hypertension, the brain tissue is deformed by hematoma or edema,
and the stress is transmitted to the opposite side, which causes a midline shift. Then, in-
tracranial pressure can be estimated according to the degree of midline shift. HU values, in
contrast to the midline shift, provide more information about the structural and density
changes on both sides of the brain. For instance, hematomas may present as high-density
lesions while edemas or infarctions may result in low-density lesions on CT images. Clini-
cians typically make radiological diagnoses depending on the changes in HU, but its role
in evaluating ICP is rarely studied. For the reasons above, we utilized a model based on
HU-related parameters as a novel predictor of intracranial hypertension and compared it
with commonly used methods, i.e., midline shift and clinical expertise [24].

In this study, features of the HU value were extracted, including average and vari-
ability. The mean HU reflects the centralized trend on both sides. The standard deviation
reflects the variability and dispersion [25]. Furthermore, the Shannon entropy, which mea-
sures the complexity of a dataset, offers a different way to evaluate the variability of HU
values [26,27]. After TBI, various pathological changes lead to an increase in HU variability,
and the mean HU focuses more on the overall condition, which may lead to local influences
being neglected. On the one hand, deviation indices can remedy the weakening effect of
the mean HU; on the other hand, the inclusion of more indicators makes the fitting of the
regression model more adequate.

According to the results, both the original and the regularized HU models attained
relatively high F1 scores and AUCs, thus implying that features acquired from HU can
discriminate TBI patients with intracranial hypertension. The findings indicated the better
performance of the HU model compared to those based on midline shift and clinical
experience. Although routinely used in clinical work, in this study, the MLS and CE
models showed limited ability to assess ICP level. The degree of midline shift may be
associated with many other factors including age, lesion type, and other pathological
conditions, which may lead to unsatisfactory performance [28]. The intellectual judgement
of intracranial hypertension involves the complex processing of individual experience in
interpreting radiological findings. The results from this study indicated that the predictive
power of clinical experience lacks stable and objective performance.

The results of this study imply that the heterogenetic pathologies of TBI may affect
the performance of evaluation methods, especially in terms of the HU model and MLS
model. For instance, the midline shift may be attenuated in TBI patients with bilateral
lesions, which may further undermine the accuracy of ICP evaluation, thus compromising
the judgment ability of the midline shift model. After an analysis of patients with unilateral
injury, it was found that the performance of both the midline shift and the HU-related
models improved, while the HU-related model retained the highest discrimination ability.
This result serves to remind us that TBI is a disease with high heterogeneity, and the target
cohort for evaluation or treatment should be selected to optimize the effectiveness.

In addition to binary classification, this study tried to carry out a more precise evalua-
tion. The HU model also showed potential in categorizing ICP into three groups. However,
clinical experts failed to reach an agreement for most patients, and the MLS model still
showed limitations in the classification, thus rendering it incapable of more precise predic-
tion. It should be noted that the predictive ability of HU-related features also decreased
compared with its performance in binary classification. Therefore, subsequent studies
should increase the sample size, extract additional CT features, and implement various
machine learning algorithms to further improve the performance of the model.
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This study had some limitations. Firstly, the number of cases was relatively small and
from a single center, which may have led to the overfitting of the model. Secondly, the
study degree evaluated a relatively short series of patients. The hemispheres of the brain
may not be symmetrical, and the congenital anatomy is often ignored, which may lead to
intrinsic errors in acquiring data. Thirdly, this study only selected the layer featuring the
body of the lateral ventricle and only analyzed the HU extracted from the line across the
brain, which cannot reflect the features of other layers. The CT images of patients were
also affected by other factors such as the patient’s age and physical condition, which could
lower the applicability of the model. Fourthly, the HU method evaluated ICP values in a
semiquantitative way, without providing a continuous value. Fifthly, in this study, people
aged between 18 and 65 were selected in order to exclude any bias caused by immature
brain tissue in minors, as well as by age-related brain changes in the elderly; thus, the
results cannot be applied to the global population. Lastly, the monitoring of ICP is a
continuous and dynamic process. In this study, the initial ICP was assessed by the HU
method, which could not reflect the ICP level after progression or treatment. These flaws
need to be addressed in subsequent research.

5. Conclusions

In summary, this study revealed that the level of ICP can be assessed noninvasively
and quantitatively by extracting HU-related features on both sides of the midline of the
injured brain in a semiquantitative way. Compared with commonly used ICP assessment
methods (i.e., the degree of midline shift and clinical expertise), this novel method could
distinguish intracranial hypertension, allowing it to provide early warnings in clinical
practice. Subsequent investigations should further investigate the best application of
this method.
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