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Abstract
Background: Iron homeostasis is a key metabolism for most organisms. In many bacterial species,
coordinate regulation of iron homeostasis depends on the protein product of a Fur gene. Fur also
plays roles in virulence, acid tolerance, redox-stress responses, flagella chemotaxis and metabolic
pathways.

Results: We conducted physiological and transcriptomic studies to characterize Fur in Shewanella
oneidensis, with regard to its roles in iron and acid tolerance response. A S. oneidensisfur deletion
mutant was defective in growth under iron-abundant or acidic environment. However, it coped
with iron depletion better than the wild-type strain MR-1. Further gene expression studies by
microarray of the fur mutant confirmed previous findings that iron uptake genes were highly de-
repressed in the mutant. Intriguingly, a large number of genes involved in energy metabolism were
iron-responsive but Fur-independent, suggesting an intimate relationship of energy metabolism to
iron response, but not to Fur. Further characterization of these genes in energy metabolism
suggested that they might be controlled by transcriptional factor Crp, as shown by an enriched
motif searching algorithm in the corresponding cluster of a gene co-expression network.

Conclusion: This work demonstrates that S. oneidensis Fur is involved in iron acquisition and acid
tolerance response. In addition, analyzing genome-wide transcriptional profiles provides useful
information for the characterization of Fur and iron response in S. oneidensis.
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Background
Iron is the second most abundant element in the earth's
crust and an essential micronutrient for virtually all organ-
isms. The redox features of iron make it a useful cofactor
for many proteins functioning in respiration, photo-
synthesis, nitrogen fixation and DNA biosynthesis, to
name a few. However, iron also forms highly reactive oxy-
gen species that can impose severe cellular damage [1,2].
Hence, intracellular iron concentration must be tightly
controlled. In E. coli, iron-binding transporters located in
the outer and inner membranes are induced to actively
import iron under iron-limited conditions [3]. To facili-
tate the capture of iron, E. coli produces and releases the
iron-chelating siderophores to the surrounding environ-
ment. Also, the iron storage proteins (ferritin and bacteri-
oferritin) and non-essential iron-using proteins are
repressed to release their sequestered iron [4]. When iron
is sufficient, the iron uptake and homeostatic systems are
coordinately regulated by a global transcriptional factor
Fur (the ferric uptake regulator), which complexes with
Fe2+ and represses the transcription of a diverse array of
genes [5]. The DNA target recognized by Fe2+-Fur is a 19-
bp inverted repeat sequence of GATAATGATAATCAT-
TATC [6]. The binding of Fur to this motif in the promoter
regions of target genes effectively prevents the recruitment
of the RNA polymerase holoenzyme and thus represses
transcription [7,8]. Although the major role of Fur is to
regulate genes involved in iron homeostasis systems, Fur
has also been demonstrated to be a pleiotropic transcrip-
tional factor. As such, it functions in a variety of cellular
processes including redox-stress responses, flagella chem-
otaxis, metabolic pathways, acid tolerance and virulence
[9-11]. Indeed, it has been estimated that Fur directly con-
trols the expression of over ninety genes in E. coli[11].

Maintaining iron homeostasis is of particular interest for
a γ-proteobacterium Shewanella oneidensis for several rea-
sons. First, S. oneidensis is capable of respiring with a vari-
ety of electron acceptors including oxygen, glycine,
nitrate, nitrite, thiosulfate, elemental sulfur, fumarate,
dimethyl sulfoxide (DMSO), trimethylamine N-oxide
(TMAO), Fe(III), Mn(IV), Co(III), U(VI), Cr(VI) and
Tc(VII) [12-16]. Unlike most other γ-proteobacteria, S.
oneidensis is capable of respiring Fe(III). Therefore, iron
serves as not only a protein cofactor but also an important
electron acceptor for the bacterium. Second, S. oneidensis
typically possesses an extraordinarily high content of cyto-
chromes, which confers cells a characteristic pink or red
color. The high content of cytochrome is suggestive of a
high demand for iron, since iron is a co-factor of heme
groups in the cytochromes [17]. Lastly, the majority of S.
oneidensis genes are most similar to genes of Vibrio chol-
erae, the γ-proteobacterium causative of a diarrheal dis-
ease called cholera [18]. It has been established that iron
acquisition genes of V. cholerae are required for successful

colonization in animal models [19]. Since Shewanella spe-
cies are fish pathogens and infrequent opportunistic
human pathogens [20,21], it is possible that iron in
Shewanella species plays a similar role to V. cholerae and
function to signal the entry into the host.

Much of iron homeostasis in S. oneidensis remains to be
elucidated. The Fur gene of S. oneidensis shares 74% iden-
tity with the E. coli homolog. Previous transcriptomic
studies of the fur mutants under anaerobic and aerobic
conditions indicate that it regulates a variety of biological
processes including iron uptake [22,23]. A highly con-
served Fur binding motif has also been predicted. These
results are consistent with a role of S. oneidensis Fur in iron
acquisition. However, responses of the fur mutant to iron
depletion have not yet been examined. It is also unclear
how disruption of the pleiotropic regulator Fur affects
other cellular processes. In addition, although Fur is
regarded as the master regulator for iron response, it has
been shown in Vibrio cholerae and Staphylococcus aureus
that a number of genes are regulated by iron independ-
ently of Fur [24,25]. It is interesting to investigate such
systems in S. oneidensis.

In the present study, we performed physiological and
transcriptomic studies to characterize the function of S.
oneidensis Fur. Our results demonstrated that Fur played a
role in iron acquisition and acid resistance response. We
also discovered that a number of genes including genes
related to anaerobic energy transport were regulated by
iron rather than Fur. This work provides useful informa-
tion in understanding the complicated complex molecu-
lar networks coordinating the bacterial response to iron.

Results and discussion
Phenotypic analyses of the fur mutant
A deletion mutant of Fur was constructed from wild-type
S. oneidensis strain MR-1. The fur mutant formed smaller
colonies than wild-type strain after two days' incubation
at 30°C (Fig. 1), suggestive of a growth deficiency caused
by Fur inactivation. Moreover, colonies of the fur mutant
appeared paler in color than MR-1 colonies. Wild-type S.
oneidensis colonies have characteristic reddish or pink pig-
ments, which is attributed to high heme content in the
cells [17]. The pale color of colonies of the fur mutant sug-
gested that there was less heme, presumably due to the
low level of intracellular iron as a heme co-factor. The low
level of intracellular iron has been documented in an E.
coli fur mutant [26].

To test the role of Fur in the response of S. oneidensis to
iron, we grew the fur mutant and the wild-type strain in LB
medium with different concentrations of the iron chelator
2, 2'-dipyridyl to create iron depletion conditions. LB
medium contains ~17 uM iron, hence it is considered as
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an iron-rich medium [26]. In LB, the fur mutant displayed
longer lag phase, slower growth rate at logarithmic phase
and lower cell density at stationary phase than MR-1 (Fig.
2). When iron was depleted from the growth medium by
addition of iron chelator, both strains clearly displayed
growth inhibition. Interestingly, when both strains were
grown with 160 uM iron chelator, no significant differ-
ence was detected between the mutant and MR-1. With
240 uM iron chelator, the fur mutant displayed a much
shorter lag phase than MR-1 and reached a higher cell
density at stationary phase, suggesting that the fur mutant
better tolerated the iron depletion stress.

Fur is a pleiotropic transcriptional factor controlling the
expression of both iron-regulated and non-iron-regulated
genes [9]. Fur has been implicated in acid tolerance
response, since E. coli and Salmonella typhimurium harbor-
ing fur mutations are acid-sensitive [27,28]. Therefore, the
acid tolerance of S. oneidensisfur mutant was examined.
Wild-type and the fur mutant were grown in LB medium
buffered at pH5.5 and 7 (Fig. 3). At pH of 5.5, the fur
mutant but not wild-type strain had severe growth defect,
demonstrating that the fur mutant was more sensitive to
acidic condition.

Microarray experiments
For microarray experiments, mid-log phase grown fur
mutant was treated with iron chelator for one hour and
then ferrous sulfate. The concentration of 160 uM iron
chelator was used for iron depletion during the micro-
array experiments because growth was clearly inhibited,
but not completely abolished at this concentration (Fig.
2). Samples were collected at multiple time points during
iron depletion and repletion and used for global tran-
scriptomic analyses. To allow for comparison of any pairs
of samples, S. oneidensis genomic DNA was used as a com-
mon reference in each microarray experiment (see Meth-
ods and Materials for details). This strategy has been
successfully employed in several studies [29-32]. In addi-
tion, since S. oneidensisfur mutant in previous studies was
generated from a rifampin-resistant strain (DSP10)
instead of wild-type S. oneidensis MR-1, we decided to
repeat the microarray comparison between the fur mutant
and wild-type under aerobic condition, using the fur
mutant derived from MR-1. Therefore, MR-1 was grown in
LB to mid-logarithmic phase, RNA was prepared and used
for microarray experiments. This allowed for comparison
of gene expression profiles of the fur mutant and MR-1
(see below). To evaluate the reliability of microarray data,
quantitative RT-PCR was performed on a few selected
genes (Additional file 1). A high Pearson correlation coef-

Growth of the fur mutant on solid LB medium. Bacteria were streaked on LB agar and then incubated at 30°C for two days. (B) Quantitative measurement of colony sizes. The average diameter of colonies, calculated from eight colonies of either strain, is shownFigure 1
Growth of the fur mutant on solid LB medium. Bacteria were streaked on LB agar and then incubated at 30°C for two days. (B) 
Quantitative measurement of colony sizes. The average diameter of colonies, calculated from eight colonies of either strain, is 
shown.
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Growth of wild type MR-1 and the fur mutant strains at pH 5.5 and 7.0. Cells grown to mid-logarithmic phase were diluted 1/100 in fresh pH-buffered LB media. Growth was monitored every thirty minutes for two days. Three replicates were used for S. oneidensis. The average growth and error bars are shownFigure 3
Growth of wild type MR-1 and the fur mutant strains at pH 5.5 and 7.0. Cells grown to mid-logarithmic phase were diluted 1/
100 in fresh pH-buffered LB media. Growth was monitored every thirty minutes for two days. Three replicates were used for 
S. oneidensis. The average growth and error bars are shown.

Comparative growth analyses of wild-type and the fur mutant. Growth curves for strains grown in liquid LB, LB-160uM and LB-240uM iron chelator are shown. Cells grown in mid-logarithmic phase were diluted 1/100 in fresh LB media and growth was monitored every thirty minutes during consecutive five days. Three replicates were used for both strains. The average growth and error bars are shown. The down arrows and up arrows indicate the range of mid-logarithmic phase of MR-1 and the fur mutant, respectively. The doubling time of MR-1 is 1.5 hrs. The doubling time of the fur mutant is 2.5 hrsFigure 2
Comparative growth analyses of wild-type and the fur mutant. Growth curves for strains grown in liquid LB, LB-160uM and LB-
240uM iron chelator are shown. Cells grown in mid-logarithmic phase were diluted 1/100 in fresh LB media and growth was 
monitored every thirty minutes during consecutive five days. Three replicates were used for both strains. The average growth 
and error bars are shown. The down arrows and up arrows indicate the range of mid-logarithmic phase of MR-1 and the fur 
mutant, respectively. The doubling time of MR-1 is 1.5 hrs. The doubling time of the fur mutant is 2.5 hrs.
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ficient of 0.92 was observed between RT-PCR and micro-
array results.

Fur-regulated genes
Global gene expression profiles of the fur mutant and MR-
1 grown in LB medium were compared. A total number of
118 and 56 genes were significantly up- and down- regu-
lated, respectively (Fig. 4). As commonly seen in micro-
array datasets, a large portion of up- or down-regulated
genes corresponded to genes with unknown function,
indicating a much broader modulon than deduced by
gene annotation alone. Among the genes with defined
functions (Table 1), two groups of genes were most
noticeable: genes encoding iron acquisition proteins and
ribosome proteins. The high level induction of iron acqui-
sition genes agreed with the expected role of Fur in regu-
lating iron uptake and transport. It provided an
explanation for the better growth of the fur mutant under
iron-depleted condition (Fig. 2), since the up-regulation
of iron acquisition genes imposed an advantage for rapid
adaptation to the iron depletion. The induction of genes
encoding ribosomal proteins was rather unexpected, as
the fur mutant grown in LB medium displayed growth
defects. It was possible that these genes were induced to
accommodate the requirement to synthesize iron acquisi-
tion proteins induced by iron depletion. Alternatively,
their induction could be due to cellular response to over-
come the growth deficiency in LB. Notably, a conserved
Fur binding motif could be identified in the promoter
region of almost all of the iron acquisition genes in Table
1, while no ribosome subunit gene except SO0232 had a
Fur binding motif in its promoter (data not shown).
Therefore, it was likely that genes encoding ribosome pro-
teins were not the direct targets of Fur. Lastly, several acid
resistance systems have been characterized in γ-proteobac-
teria [33,34]. However, expression of components of
these systems (e.g. Crp, RpoS, glutamate-, arginine- and
lysine-decarboxylases) was not significantly altered in the
fur mutant. Since the acid tolerance of the fur mutant was
reduced, it was possible that these genes were regulated at
post-transcriptional level, or the core components of these
systems were not yet annotated in S. oneidensis, or S. onei-
densis could employ a novel and yet unidentified mecha-
nism for acid tolerance response.

Iron-responsive and Fur-independent biological processes
The microarray analyses of the fur mutant indicated that
fewer genes was significantly regulated at early time points
than later in both iron depletion and repletion, and there
were more down regulated genes than up regulated genes
during iron depletion (Fig. 5A). Few genes encoding iron
acquisition or ribosome proteins were among those up or
down regulated, suggesting that their regulation was
strictly Fur-dependent. Meanwhile, a group of genes
related to anaerobic energy transport was repressed by

iron depletion (Fig. 5B), but not identified in Fur regulon
shown above (Table 1). Therefore, this process was iron
responsive but Fur independent. These genes include for-
mate dehydrogenase and multiple c-type cytochromes
that are involved in anaerobic energy respiration. For
example, FccA is a fumarate reductase; CymA is a key pro-
tein controlling respiration with a variety of electron
acceptors, while MtrC/OmcB is an outer membrane pro-
tein required for metal reduction. A logical explanation of
the repression by iron is that under the tested condition,
these genes are non-essential, iron-using proteins. Upon
iron depletion, they are repressed to release previously
sequestrated iron to increase free intracellular iron pool.
This mechanism has been well documented in E.
coli[4,35] as mediated by Fur and a small RNA RyhB.
However, in S. oneidensis this biological process must be
controlled by iron-responsive regulator(s) other than Fur.
Another notable iron-responsive and Fur-independent
process was aerobic energy transport, including TCA cycle
enzymes malate dehydrogenase (Mdh), succinate dehy-
drogenase (SdhC), isocitrate dehydrogenase (SO1538)
and citrate synthase (GltA). Other related genes include
succinylarginine dihydrolase(AstB) and isovaleryl-CoA
dehydrogenase (Ivd). Notably, in contrast to the genes
involved in anaerobic energy transport, these genes were
induced by iron depletion (Fig. 5C), suggesting that it was
more energy-consuming for coping with iron starvation
than the energetic need for normal growth.

Gene co-expression network
Genes with the highest fold changes are not necessarily
the most important genes for a given condition, since
there usually is a dissociation between gene expression
and physiological phenotype [36]. Moreover, a large
number of significantly regulated genes are linked to
hypothetical proteins. To gain more insights into their
functions, a gene co-expression network was constructed
(Additional file 2A). Microarray data have frequently been
used for gene annotation based on the observation that
genes with similar expression patterns are more likely to
be functionally related, that is, “guilt by association”,
despite the fact that co-expression does not necessarily
indicate a causal relationship at the transcriptional level.
This fact is exploited in the “majority-rule” method of net-
work annotation in which a gene is annotated based on
the most commonly occurring functions of its co-
expressed partners.

Functionally related genes were indeed grouped together
in all clusters of the gene network that we constructed
(Additional file 2A). For example, one cluster contains
eleven genes encoding heat shock proteins (DnaK, DnaJ,
HslV, HslU, HtpG, Lon, SecB, PrlC, ClpB, GroEL and
GroES) and three unknown genes (Fig. 6A). These heat
shock proteins function to accelerate turnovers of dena-
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tured or unfolded proteins and respond to multiple stress
conditions [37]. Their identification in this study is
expected since lack of iron as protein cofactor would
impair the functionality of a number of proteins. Further-
more, it can be predicted based on the cluster that the
unknown genes in this cluster might function in stress
response. This prediction is further supported by their
operon structures. SO4161 is immediately upstream of
heat shock HslU and HslV and might form an operon
together. Similarly, SO2017 could form another operon
with the upstream gene encoding heat shock protein
HtpG. Finally, when the Gibbs Motif Sampler [38] was
employed to search the promoter regions of genes in this
cluster for common sequence motif(s), a conserved RpoH
(σ32) binding site was identified (Fig. 6A). In E. coli, RpoH
directs the RNAP holoenzymes to specifically transcribed
genes encoding heat shock proteins. Its presence in the

promoter regions of SO2017 and SO4161 provides fur-
ther evidence that these two genes play a role in stress
response.

Another large cluster contains many c-type cytochromes
(e.g. CymA, MtrA, MtrC and OmcA) and their related
genes such as heme exporters and alcohol dehydrogenases
(Fig. 6B). Many of them were considered as iron-respon-
sive but Fur-independent, as discussed in the previous sec-
tion. When the Gibbs Motif Sampler was applied, a
palindromic sequence of “AAATGTGATCNNGNTCACA
NTT” (Fig. 6B) was identified with statistical significance.
This sequence is almost identical to the known binding
motif of an E. coli global transcriptional factor Crp (AAAT-
GTGATCTAGATCACA TTT) [39]. In S. oneidensis, crp
mutants are deficient in reducing Fe(III), Mn(IV), nitrate,
fumarate and DMSO as electron acceptors [40]. The iden-

Up-expressed (up) and down-expressed (down) genes (|log3 ratio| ≥1 with p<0.05) in the fur mutant versus MR-1. The left-most bar is the total number of up-expressed and down-expressed genes. Genes are grouped according to the function cate-gories, as indicated by textFigure 4
Up-expressed (up) and down-expressed (down) genes (|log3 ratio| ≥1 with p<0.05) in the fur mutant versus MR-1. The left-
most bar is the total number of up-expressed and down-expressed genes. Genes are grouped according to the function cate-
gories, as indicated by text.
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tification of a highly conserved Crp-binding site at the
promoters of genes in this cluster provides an explanation
for the phenotypes of crp mutants. Crp might act as a mas-
ter regulator of anaerobic energy transport; its inactivation
leads to repression of multiple branches of anaerobic
energy transport pathway. Notably, the regulation of Crp
to anaerobic energy transport is iron-responsive but Fur-
independent, since most genes in this cluster shows little
expression difference between the fur mutant and wild-
type.

Conclusion
The primary objective of the present study was to charac-
terize the function of the pleiotropic regulator Fur and the
iron response in S. oneidensis. Fur involvement in iron

acquisition was evident, as shown by our physiological
and transcriptomic studies. On the other hand, there were
iron-responsive and Fur-independent systems (e.g. a large
group of genes related to anaerobic energy transport). The
identification of Crp binding site in Fig. 6B is consistent
with the role of Crp in anaerobic energy transport and
supports the notion that Crp is the master regulator of this
bioprocess. The identification of a number of transcrip-
tional factors in this cluster is worthy of future investiga-
tion. Over 200 genes of regulatory functions have been
annotated in S. oneidensis genome (http://www.tigr.org),
yet only a small number of them have been examined
experimentally. The involvement of the identified regula-
tors in anaerobic energy transport, once verified, will con-
tribute to the understanding of the complex branched

Table 1: Representative genes that displayed significant up- or down-expression in the fur mutant

Gene Annotation Ratio (p value)

AlcA siderophore biosynthesis proteinx 13.85 (1.4E-05)
CcmD heme exporter protein CcmD 5.32 (0.01)
ExbB1 TonB system transport protein ExbB1 15.69 (4.6E-04)
ExbD1 TonB system transport protein ExbD1 12.56 (8.5E-04)
FeoA ferrous iron transport protein A 5.96 (0.02)
HmuT hemin ABC transporter, periplasmic hemin-binding protein 4.51 (2.4E-05)
HmuU hemin ABC transporter, permease protein 5.46 (0.003)
HmuV hemin ABC transporter, ATP-binding protein 5.46 (0.002)
HugA heme transport protein 49.79 (4.7E-09)
IrgA iron-regulated outer membrane virulence protein 8.90 (6.0E-04)
SO1482 TonB-dependent receptor, putative 5.39 (1.1E-06)
SO1580 TonB-dependent heme receptor 3.99 (4.1E-04)
SO3031 siderophore biosynthesis protein, putative 3.60 (1.0E-04)
SO3032 siderophore biosynthesis protein, putative 9.14 (1.4E-04)
SO3033 ferric alcaligin siderophore receptor 10.86 (1.2E-04)
SO3063 sodium: alanine symporter family protein 4.16 (1.6E-05)
SO3914 TonB-dependent receptor, putative 3.63 (0.002)
SO4743 TonB-dependent receptor, putative 3.82 (4.7E-04)
TonB1 TonB1 protein 21.92 (1.7E-05)
ViuA ferric vibriobactin receptor 5.73 (2.9E-04)
Bfr1 bacterioferritin subunit 1 0.25 (0.04)
InfA translation initiation factor IF-1 4.32 (0.001)
RplD ribosomal protein L4 6.32 (4.5E-04)
RplK ribosomal protein L11 28.83 (0.001)
RpmA ribosomal protein L27 7.20 (0.005)
RpmF ribosomal protein L32 3.63 (0.02)
RpmH ribosomal protein L34 3.55 (0.02)
RpmI ribosomal protein L35 7.62 (8.3E-04)
SO0401 alcohol dehydrogenase, zinc-containing 6.48 (4.0E-04)
HyaB quinone-reactive Ni/Fe hydrogenase, large subunit 0.23 (0.04)
NqrD-2 NADH: ubiquinone oxidoreductase, Na translocating 0.27 (0.04)
SO1648 cold shock domain family protein 8.10 (0.02)
SO0130 putative protease 0.18 (0.05)
SO2426 DNA-binding response regulator 9.87 (4.2E-04)
SO0295 transcriptional regulator, LysR family 0.15 (0.03)
SO0577 sensory box histidine kinase/response regulator 0.18 (0.03)
SO2374 transcriptional regulator, LysR family 0.19 (0.03)
SO2498 sensory box protein 0.25 (0.04)
SO3059 formate hydrogenlyase transcriptional activator, putative 0.30 (0.05)
Rsd regulator of sigma D 0.30 (0.05)
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Numbers of genes predicted to be up-expressed or down-expressed (down) genes (|log3 ratio| ≥1 and p<0.05) of the fur mutant during the time course experiment. C1', C5', C10', C20', C40' and C60' are the time points of 1, 5, 10, 20, 40, and 60 minutes after adding iron chelator. F1', F5', F10', F20', F40' and F60' are the time points of 1, 5, 10, 20, 40, and 60 minutes after adding iron back to the iron-depleted culture. Total genes (A) and genes related to (B) anaerobic energy transport and (C) aer-obic energy transport that are up-expressed or down-expressed are shownFigure 5
Numbers of genes predicted to be up-expressed or down-expressed (down) genes (|log3 ratio| ≥1 and p<0.05) of the fur 
mutant during the time course experiment. C1', C5', C10', C20', C40' and C60' are the time points of 1, 5, 10, 20, 40, and 60 
minutes after adding iron chelator. F1', F5', F10', F20', F40' and F60' are the time points of 1, 5, 10, 20, 40, and 60 minutes after 
adding iron back to the iron-depleted culture. Total genes (A) and genes related to (B) anaerobic energy transport and (C) aer-
obic energy transport that are up-expressed or down-expressed are shown.
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Two clusters of genes revealed in gene network. (A) Cluster of heat shock proteins. (B) Cluster of genes related to anaerobic energy transport. Each node represents a gene and the width of the line represents the correlation coefficient of two linked genes. Blue and gray lines indicate positive and negative correlation coefficients, respectively. Colors were assigned to nodes according to their functional categories: red represents known heat shock proteins in (A) or anaerobic energy transport in (B), white represents unknown genes and pink represents transcriptional regulators. The sequence logo of consensus sequence in the promoter regions of genes in the clusters was generated by the Weblogo program [45]Figure 6
Two clusters of genes revealed in gene network. (A) Cluster of heat shock proteins. (B) Cluster of genes related to anaerobic 
energy transport. Each node represents a gene and the width of the line represents the correlation coefficient of two linked 
genes. Blue and gray lines indicate positive and negative correlation coefficients, respectively. Colors were assigned to nodes 
according to their functional categories: red represents known heat shock proteins in (A) or anaerobic energy transport in (B), 
white represents unknown genes and pink represents transcriptional regulators. The sequence logo of consensus sequence in 
the promoter regions of genes in the clusters was generated by the Weblogo program [45].
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respiratory systems in S. oneidensis and hence the potential
utilization of Shewanella species to remediate U.S. DOE
uranium-contaminated sites.

Material and methods
Bacterial strains and plasmids
To generate a fur deletion mutant from MR-1, a pDS3.1-
fur suicide plasmid described in [23] was used. This plas-
mid contains the 5'- and 3'-flanking regions of Fur locus,
with a 241-bp internal fragment of Fur locus removed.
The plasmid was transformed into E. coli WM3064 strain
prior to conjugal transferring into MR-1. Correct in-frame
deletion was verified by sequencing PCR products using
primers outside the DNA recombination region. The
sequences of the primers are: (5'-GCA AGT ACA GCC GTT
ATT CAC TCC-3') and (5'-GTA TCC AAA GGA TGC AAC
TGG-3').

Physiological studies
MR-1 and the fur mutant were grown to mid-log phase
and diluted 1:100 into 300 ul fresh LB or M1 liquid
medium. A Type FP-1100-C Bioscreen C machine
(Thermo Labsystems) was used to measure the growth
every thirty minutes. All physiological studies were done
in triplicates so that average and standard error could be
calculated. Different concentrations of iron chelator were
prepared by dissolving 2, 2'-dipyripyl in water. For iron
repletion, ferrous sulfate was used at the concentration of
200 uM.

RNA preparation
Four biological replicates of MR-1 and the fur mutant were
grown in LB to mid-log phase (OD600=0.6) and cells were
collected. For the fur mutant, cells were also sampled at 1,
5, 10, 20, 40, and 60 minutes after adding 2, 2'-dipyridyl
to a final concentration of 160 uM. Subsequently, ferrous
sulfate was added to a final concentration of 200 uM.
Cells were collected at 1, 5, 10, 20, 40, and 60 minutes
thereafter. Total RNA was extracted using Trizol Reagent
(Invitrogen) as described previously [23]. RNA samples
were treated with RNase-free DNase I (Ambion, Inc.) to
digest residual chromosomal DNA and then purified with
RNeasy Kit (Qiagen) prior to spectrophotometric quanti-
fication at 260 and 280 nm.

Microarray hybridization, scanning and quantification
cDNA was produced in a first-strand reverse transcription
(RT) reaction and labeled with Cy5 dUTP (Amersham
Biosciences) by direct labeling in the presence of random
hexamer primers (Invitrogen). S. oneidensis MR-1 genomic
DNA (gDNA) was amplified by Klenow (Invitrogen) and
Cy3 dUTP was incorporated into the product (Amersham
Biosciences). Fluorescein labeled probes were purified
using a PCR purification kit (Qiagen). Slides were pre-
hybridized at 50°C for about one hour to remove

unbound DNA probes in a solution containing 50% (V/
V) formamide, 9% H20, 3.33% SSC (Ambion, Inc.),
0.33% sodium dodecyl sulfate (Ambion, Inc.), and 0.8
μg/μL bovine serum albuminin (BSA, New England
Biolabs). Slides were hybridized at 50°C overnight with
Cy5- and Cy3- labeled probes in the above solution, with
0.8 μg/μL herring sperm DNA (Invitrogen) replacing BSA
to prevent random binding. Pre-hybridization and
hybridization were carried out in hybridization chambers
(Corning). Slides were then washed on a shaker at room
temperature in the following order: 7 min. in 1x SSC,
0.2% SDS; 7 min. in 0.1x SSC, 0.2% SDS; and 40 sec. in
0.1x SSC.

A ScanArray Express Microarray Scanner (PerkinElmer)
was used to scan slides. Fluorescence and background
intensity were quantified using ImaGene 6 software (Bio-
Discovery, Inc.). All spots in which signal vs. background
ratios were less than 3 were discarded.

Microarray data analysis
GeneSpring 7.2 (SiliconGenetics) was used to remove
outliers, perform LOWESS normalization and for analysis
of statistical significance via a two-way t test for two inde-
pendent conditions. To calculate the ratios over different
time points, samples during iron depletion (namely, C1',
C5', C10', C20', C40' and C60') were compared to sam-
ples without addition of chelator (C0'), and samples dur-
ing the iron repletion (F1', F5', F10', F20', F40' and F60')
were compared to C60' (1' is 1 min., 5' is 5 min., etc.).
Genes with |log3 ratio| ≥1 with p<0.05 are considered sig-
nificant. To construct a gene co-expression network from
temporal gene expression profiles, a Random Matrix The-
ory (RMT) based algorithm as described in [41,42] was
employed. Applying the RMT method to the microarray
data revealed a Pearson correlation coefficient of 0.87 as
the minimal threshold to construct gene co-expression
network. Since gene co-expression networks are known to
be hierarchical [43], higher thresholds have been used to
recognize larger functional modules. As a result, nineteen
modules were distinguished (Additional file 2A). The soft-
ware Pajek [44] was used to visualize the gene co-expres-
sion network. To identify the common motif, the Gibbs
Motif Sampler [38] was employed according to its man-
ual. The promoter regions of genes in the heat shock clus-
ter were scanned to identify RpoH-binding site. For Crp-
binding site, the recursive model of the Gibbs Motif Sam-
pler was used to scan the upstream intergenic regions.

Real-time RT-PCR analysis
Real-time quantitative reverse transcription-PCR (RT-
PCR) was performed as described previously [23], except
that iQ SYBR green supermix (Bio-Rad) was used instead
of SYBR green I.
Page 10 of 12
(page number not for citation purposes)



BMC Genomics 2008, 9(Suppl 1):S11 http://www.biomedcentral.com/1471-2164/9/S1/S11
Microarray data accession
The microarray data are available at http://www.cs.clem
son.edu/~luofeng/yang/fur.html.
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(A) Sequences of quantitative RT-PCR (qPCR) primers used in this study; 
(B) Comparison of expression measurements by microarray and qPCR 
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paring microarray data with qRCR data.
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Additional file 2
(A) The gene co-expression network derived from the microarray data of 
the fur mutant. Each node represents a gene and the width of line repre-
sents the correlation coefficient of two linked genes. Blue and gray lines 
indicate positive and negative correlation coefficients, respectively. Colors 
were assigned to nodes according to their functional categories per conven-
tions used by TIGR (http://www.tigr.org): red represents the major func-
tional category of each module, as indicated by text; pink represents 
transcriptional regulator; white represents unknown genes and black 
nodes are genes whose association to other genes are not understood. The 
italic bold numbers are the cutoffs used to isolate modules. (B) Functional 
predictions from the gene co-expression network in (A).
Click here for file
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