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Abstract: The term “ovarian carcinoma” encompasses at least five different malignant neoplasms:
high-grade serous carcinoma, low-grade serous carcinoma, endometrioid carcinoma, mucinous
carcinoma, and clear cell carcinoma. These five histotypes demonstrated distinctive histological,
molecular, and clinical features. The rise of novel target therapies and of a tailored oncological
approach has demanded an integrated multidisciplinary approach in the setting of ovarian carcinoma.
The need to implement a molecular-based classification in the worldwide diagnostic and therapeutic
setting of ovarian cancer demanded a search for easy-to-use and cost-effective molecular-surrogate
biomarkers, relying particularly on immunohistochemical analysis. The present review focuses on
the role of immunohistochemistry as a surrogate of molecular analysis in the everyday diagnostic
approach to ovarian carcinomas.
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1. Introduction

Ovarian epithelial cancer (OC) is the eighth most common malignant neoplasm in
female patients and the seventh greatest cause of cancer death worldwide [1–7]. Although
several questions regarding the molecular heterogeneity and the pathogenesis of OC still
remain open, in the past century great efforts have been devoted to understand the complex
landscape of OC. In 2010, Kurman and Shih proposed the first attempt at a molecular classi-
fication of OCs, which were divided in two main groups: (1) Type I carcinomas, comprising
low-grade serous carcinoma (LGSC), low-grade endometrioid ovarian carcinomas (ENOC),
clear cell carcinomas (CCC), mucinous carcinomas (MC) and malignant Brenner tumors; (2)
Type II carcinomas, including high-grade serous carcinomas (HGSC), high-grade ENOCs,
undifferentiated carcinomas, and carcinosarcomas. Type I carcinomas were generally as-
sociated with a good prognosis, while Type II carcinomas, typically TP53-mutated, were
characterized by aggressive clinical behavior and poor outcomes [8,9]. From this dualistic
classification, the introduction of new molecular technologies expanded our knowledge
of OCs and demonstrated at least five main entities with independent histological, clin-
icopathological, and molecular features: HGSCs, LGSCs, ENOCs, MCs, and CCCs. The
Cancer Genome Atlas Network (TCGA) studies on HGSC and endometrial carcinomas
pushed our knowledge even further [10,11]. Although still in an early phase of develop-
ment, the need for a molecular-based classification is growing, in order to better stratify
and develop target tailored therapies for OC patients. This molecular-based approach has
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notable limitations, in particular regarding cost-effectiveness; therefore the search for an
easily available and cost-effective surrogate for molecular analysis shifted to alternative
methods such as immunohistochemistry (IHC) and traditional targeted DNA sequencing.
The aim of the present study is to review recent evidence on the molecular biology of
OCs, focusing on the development of immunohistochemical biomarkers as surrogates for
molecular classification.

2. High-Grade Serous Carcinoma

HGSC is the most common epithelial malignancy of the tubo-ovarian district, respon-
sible for almost 70% of OCs [2]. The majority of HGSCs present at advanced clinical stage
and the overall five-year survival is poor, ranging from 10 to 40% [1]. Currently, two main
subtypes of HGSC are recognized on histologic examination:

• Classic histotype: characterized by a papillary, micropapillary, and/or solid architec-
ture, marked nuclear pleomorphism and high mitotic index (Figure 1a).

• “SET” variant (solid-pseudoendometrioid and transitional): characterized by an ad-
mixture of solid, glandular/endometrioid-like, and transitional/malignant Brenner-
like growth patterns), higher mitotic index compared to the classic histotype, and a
high number of tumor-infiltrating lymphocytes (TILs) (Figure 1b). In 2012, a study
from Soslow et al. demonstrated a statistical association between BRCA1/2 mutation
and SET morphology [12]
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Figure 1. (a) High-grade serous carcinoma, classic histology. Papillary and micropapillary architecture with marked
cytological atypia, atypical mitoses, and tumor necrosis (hematoxylin-eosin; ×100); (b) high-grade serous carcinoma, SET
variant, with pseudoglandular (red arrow) and solid (blue arrow) architectural patterns (hematoxylin-eosin; ×100).

The TCGA project revealed a surprisingly simple spectrum of mutations in HGSC [10].
TP53 mutation has been observed in almost all tubo-ovarian HGSCs (96%), followed by
alteration of homologous recombination repair-related genes such as BRCA1/2.

The use of an optimized p53 IHC staining as a molecular surrogate for TP53 mutations
was investigated by Köbel et al., 2016 [13,14]. An almost perfect correlation between p53
IHC and TP53 mutation was obtained when a binary p53 IHC scoring system was adopted:

• p53 intense nuclear positivity in >80% tumor cells (overexpression pattern), com-
plete absence of expression (null pattern) or cytoplasmic expression without nuclear
staining were scored as p53 “abnormal” (p53abn) and correlated with TP53 mutation
(Figure 2a,b).

• heterogeneous p53 expression was scored as “wild-type” (p53wt) and correlated with
a TP53-wildtype gene (Figure 2c).
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×400); (b) p53 complete absence of expression (null pattern) (DO7 clone; ×400); (c) p53 wild-type pattern (DO7 clone; ×400).

Though p53 mutational pattern is now considered a reliable marker for a diagnosis
of HGSC, two important caveats have to be considered: (1) 4% of HGSCs are p53 wild-
type; (2) almost 20% of ovarian endometrioid grade 3 carcinomas (morphologically similar
to HGSC) and a minor subset of CCC are p53abn [15,16]. TP53-wildtype HGSC, albeit
rarely encountered, can represent a potential diagnostic pitfall, as grade 3 endometrioid
carcinoma, often TP53-wildtype, can mimic a SET variant of HGSC. The following criteria
could help in the differential diagnosis:

• Association with serous tubal intraepithelial carcinoma (STIC), low-grade serous-like
areas, WT1 IHC positivity, mutation of CCNE1, BRCA1/2, and MDM2 amplification
support the diagnosis of TP53-wildtype HGSC [17].

• Association with endometriosis, endometrioid cystadenofibroma, and borderline
endometrioid tumor, as well as WT1 IHC negativity, support the diagnosis of p53abn
grade 3 ENOC [18].

The adoption of prophylactic salpingo-oophorectomy in patients with BRCA mutation
and extensive adnexal sampling via the so-called SEE-Fim protocol (sectioning and exten-
sively examining the FIMbriated end) provided a basis to identify potential early lesions in
the tubo-ovarian district [19]. This resulted in the discovery of the distal fimbria epithelium
as a putative precursor for HGSC development via early TP53 mutation [20–23]. A com-
bined morphologic-immunohistochemical analysis, based on the degree of nuclear atypia,
p53 expression, and Ki-67 index, was proposed to identify a spectrum of tubal lesions
named p53 signature, serous tubal intraepithelial lesion (STIL) and STIC (Figure 3) [23,24].
Though reporting p53 signature and STIL is not considered of clinical interest, the last
WHO classification of the Tumours of the Female Genital Tract and the AJCC Cancer Staging
Manual encouraged thorough examination of the fimbria to search for STIC [1,25]. Albeit
STIC is an intraepithelial lesion, it demonstrated a peritoneal metastatic potential; thus,
STIC should not be considered a precancerous lesion, but a de facto early-stage HGSC.
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p53-overexpression, DO7 clone, x400). 
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intraepithelial carcinoma; STIL: serous tubal intraepithelial lesion; wt: wild type. (b) An example of STIC (top: marked
nuclear atypia, hematoxylin-eosin, ×400; bottom: p53-overexpression, DO7 clone, ×400).

BRCA1 and BRCA2 are tumor suppressor genes involved in the so-called homologous
recombination repair system (HR). In the event of DNA double-strand breaks or DNA
damage at a replication fork, the cells undergo a repair via HR, recruiting the sister chro-
matid as a template for DNA replication [26]. In particular, BRCA1 together with BARD1
and BRIP1 recruit the so-called MRN complex (MRE11, RAD50, and NBS1) at the site of
the damage. The MRN complex then resects the 5′ strand, while BRCA2 is responsible
for loading RAD51 protein at the site of the single-strand DNA stretch to initiate the ho-
mologous DNA invasion [27]. In the event of HR deficiency, the damaged cell undergoes
DNA repair via non-homologous end joining, a more error-prone DNA repair system,
leading to genetic instability. BRCA1/2 germinal loss of function is the driver mutation of
the so-called hereditary breast and ovarian carcinoma syndrome (HBOC). HGSCs are the
most commonly found ovarian histotype in HBOC patients.

Considering germline BRCA1 and BRCA2 pathogenic variants (8% and 9% of the cases
respectively), BRCA1 and BRCA2 somatic mutations (3% overall), and other alterations such
as hypermethylation of BRCA1 promoter and mutations in other HR-related genes such as
RAD51C, ATM, PALB2, CDK12, CHEK2, etc., almost 50% of HGSCs could be classified as
homologous recombination deficient (HRD) [28–31].

In a study by Meisel et al., immunohistochemistry for BRCA1/2 as a surrogate
biomarker for BRCA mutation showed high sensitivity (86.2%) and negative predictive
value (95.4%). However, it demonstrated poor specificity (78.3%) and positive predictive
value (52.1%), therefore IHC-only testing should not be considered sufficient for the de-
tection of BRCA genes status [32,33]. Homologous recombination repair functionality has
been tested in breast and endometrial carcinoma via immunofluorescence with excellent
results, making it a promising alternative tool to identify HRD tumors. However, no im-
munofluorescence HRD-test has been carried on OCs to date: further studies are therefore
needed to routinely implement HRD testing on OC [34–37].

The adoption of a routine workflow to identify BRCA1/2 mutations has been high-
lighted with the introduction of poly(ADP-ribose) polymerase inhibitors (PARPi) as main-
tenance therapy in platinum-sensitive OCs [38,39]. PARPi selectively inhibit the enzyme
poly(ADP-ribose) polymerase (PARP), involved in DNA single-strand break repair. In
the event of BRCA1/2 loss, tumor cells are unable to undergo DNA repair via HR and
single-strand break repair, causing irreparable damage and, ultimately, cell death. Several
clinical trials, after the milestone SOLO1 trial, demonstrated a statistically significant bet-
ter outcome in BRCA germline-mutated patients [40]. However, to expand the potential
number of patients that could benefit from a PARPi treatment, several ongoing studies are
focusing on the outcome of BRCA somatic tumors and/or HRD non-BRCA patients [41–45].
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Thus a pathology-based, BRCA-reflex testing seems to be particularly useful to:

1. identify patients with BRCA germline mutations eligible for PARPi therapy, prophy-
lactic surgery, and genetic counseling;

2. identify patients with BRCA somatic mutations potentially eligible for PARPi therapy;
3. exclude unnecessary germline testing for somatic BRCA-negative tumors, in order to

be cost-effective and reduce patients’ psychological distress.

The role of immunotherapy in OC is still controversial as the response rate to check-
point inhibitors in unselected OCs is modest as demonstrated by the KEYNOTE-100
trial [45]. In HGSCs, DNA damage, induced by platinum and PARPi therapy, has been
suggested to increase the production of tumor cell neoantigens, highlighting a potential role
of checkpoint inhibitors in combination with PARPi [46]. Furthermore, higher expression
of PD-1/PD-L1 by immune tumor environment, and a higher number of CD3+ and CD8+
lymphocytes have been associated with better prognosis in HGSCs [47–49]. According to
Chen et al., PD-L1 expression among different histotypes was highest in HGSCs: almost
50% of HGSCs demonstrated a >1% combined positive score (CPS) (evaluated in tumor
and immune cells) compared to 21% of HGSCs revealing a >1% tumor proportion score
(TPS) (evaluated only in tumor cells) [49,50]. Noteworthy PD-L1 positivity was not associ-
ated with BRCA status, but demonstrated a statistically significant correlation with better
survival in late-stage HGSCs (Table 1) [50].

Table 1. Molecular markers of high-grade serous carcinoma.

Molecular Markers Clinical Significance Immunohistochemistry Available/
Currently Used in Clinical Practice

TP53 Found in >95% HGSCs Yes/Yes *
BRCA1/2 Better prognosis, eligible for PARPi therapy Yes/No

PD1/PD-L1 Better prognosis in late-stage HGSCs Yes/No

* only used for diagnostic purpose; HGSC: high-grade serous carcinoma; PARPi: poly(ADP-ribose) polymerase inhibtors.

3. Low-Grade Serous Carcinoma

Ovarian LGSC represents an uncommon epithelial neoplasm (5% of all OCs) [1,2,51].
LGSC is commonly associated with serous cystoadenofibromas and/or serous borderline
tumors. Tumor histology is characterized by micropapillary or cribriform architecture with
bland nuclear atypia and low-mitotic count (Figure 4). The IHC profile is typically PAX8+,
WT1+, and p53wt: the latter phenotype is particularly helpful in the differential diagnosis
between LGSC and classic HGSC. Early-stage LGSCs have an excellent prognosis, while
stage III-IV tumors have poor prognosis, mainly due to poor response to conventional
chemotherapy.
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×100).
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Despite their similar pathological denomination, LGSCs share little in common with
HGSCs. HGSCs are thought to arise from the surface epithelium of the distal fimbria via
TP53 and HR-related gene mutations, while LGSC is thought to be the result of a neoplastic
transformation of cortical inclusion cysts into serous cystadenomas/adenofibromas and
serous borderline tumors [2]. Furthermore, the evidence of an evolution from LGSC to
HGSC is extremely rare.

LGSCs are characterized by a completely different mutational spectrum compared
to HGSCs: mutations in KRAS, NRAS, BRAFV600E, BRAFnon-V600E, and ERBB2 were found
in almost 50% of LGSCs, while TP53 was wild-type in all reported cases [52–56]. KRAS
p.Gly12Val (KRASG12V) mutation has been particularly associated with worse progno-
sis and higher recurrence rate, while BRAFV600E demonstrated a statistically significant
correlation with better prognosis [55].

To further complicate the landscape of serous carcinomas, Zarei et al. recently pub-
lished a case series of serous carcinomas with mixed low-grade and high-grade features [56].
This evidence is particularly of interest as this entity seems to question the apparent du-
alistic nature of serous carcinomas. These tumors showed a relative rarity of mutations
typical of HGSC and LGSC and a particularly aggressive clinical behavior. This suggests
a potential alternative oncogenic pathway, although further studies are needed to better
characterize these rarely encountered entities.

Hormonal replacement therapy is currently included in the National Comprehensive
Cancer Network (NCCN) guidelines in advanced-stage LGSC with expression of estrogen
receptor (ER) and progesterone receptor (PGR) [57]. Some studies focused on LGSCs’ re-
sponse to BRAF inhibitors, with promising results: this evidence is particularly noteworthy
as LGSC is a stage-dependent disease, poorly responding to conventional chemotherapy in
advanced stages [58–61]. Currently, Trametinib is contemplated as a treatment of advanced-
stage LGSC in the NCCN guidelines [57]. In a study by Turashvili et al., IHC for BRAFV600E

demonstrated 96% sensitivity, 96% specificity, 93% positive predictive value, and 98%
negative predictive value for BRAFV600E mutation [60]. Thus, IHC evaluation of BRAFV600E

is particularly helpful and relatively cost-effective for the identification of patients eligible
for target therapy, especially in advanced-stage LGSC.

To the authors’ knowledge, no studies have been reported to date on a potential
therapeutic role of anti-HER2 targeted drugs in ERBB2-mutated LGSCs (Table 2).

Table 2. Molecular markers in low-grade serous carcinomas.

Molecular Markers Clinical Significance Immunohistochemistry Available/
Currently Used in Clinical Practice

BRAFV600E Good prognosis, candidate for Trametinib therapy Yes/Yes

Hormone receptors Candidate for HRT (only advanced-stage LGSC) Yes/Yes

KRAS Poor prognosis No/No

ERBB2 Unknown Yes/No

LGSC: low-grade serous carcinoma; HRT: hormonal replacement therapy.

3.1. Ovarian Endometrioid Carcinoma

Ovarian endometrioid carcinomas (ENOCs) represent a heterogeneous group of neo-
plasms regarding morphological and molecular features. ENOCs typically exhibit crib-
riform, maze-like or glandular architecture with frequent squamous differentiation [1,2].
Tumor histological grade is based on the percentage of the solid non-squamous component
of the tumor, as for its endometrial counterpart, according to the FIGO grading. In particu-
lar, FIGO grade 1, 2, and 3 tumors have ≤5%, 6–50% and >50% of solid, non-squamous,
growth pattern: marked nuclear atypia in >50% of tumor cells may upgrade the tumor of 1
grade (Figure 5a,b). ENOCs may arise in association with endometrioid cystadenofibroma
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and endometrioid borderline tumor and/or in the context of pelvic endometriosis [1]. The
typical immunoprofile is PAX8+, WT1−, ER+, PGR+. Prognosis is stage-dependent, with
excellent outcomes in stage I-II tumors and poor outcomes in advanced stages [61].
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The 2013 TCGA analysis of endometrial carcinomas (ECs) identified four main molec-
ular subgroups: DNA polymerase ε (POLE) ultramutated, microsatellite instable (MSI-H),
carcinomas with high somatic copy number alterations (CN), and carcinomas with low
CN [11]. These four subgroups demonstrated different mutational spectra and biological
behavior. POLE is a gene involved in DNA repair and replication. The exonuclease proof-
reading activity replaces erroneously incorporated nucleotides during DNA replication.
Mutations in its exonuclease domain lead to proofreading errors, with increase in mutation
rates during DNA replications by about 100-fold, and, ultimately, neoplastic transforma-
tion [62–64]. Mismatch repair (MMR) proteins (MLH1, PMS2, MSH2, and MSH6) are
nuclear enzymes involved in repair of base–base mismatch during DNA replication in
proliferating cells: these proteins form heterodimers binding to areas of abnormal DNA
and initiating its removal. Loss of MMR proteins leads to accumulated errors during
DNA replication, especially in short repetitive nucleotide sequences (“microsatellite in-
stability”). Mutation of MMR-genes and hypermethilation of MLH1 promoter has been
associated with the so-called MSI-H group and, for germline mutations, with Lynch Syn-
drome (LS) [65–67]. CNhigh ECs exhibited frequent mutation in TP53. CNlow ECs were
characterized by an heterogeneous spectrum of mutated genes such as PTEN, ARID1A,
CTNNB1, and PIK3CA [68].

Interestingly, endometrial endometrioid carcinomas (EECs) were represented in all
four subgroups. In particular, low-grade EECs were most frequently encountered in the
CNlow and MSI subgroups while high-grade EECs were almost equally distributed in
all four molecular subgroups [69,70]. This evidence has notable clinical implications; in
fact, POLE ultramutated carcinomas demonstrated an excellent prognosis, MSI-H and
CNlow ECs showed intermediate prognosis, while the CNhigh group was associated with
worse prognosis [11]. As to this promising prognostic stratification of EC-patients, the
2020 WHO classification of the Tumours of the Female Genital Tract tried to implement the
usual histological classification with a new molecular approach in pathologists’ routine
practice: a diagnostic algorithm (using Sanger sequencing and immunohistochemistry as
cheaper surrogates of the expensive molecular analysis) was proposed to identify molecular
EC-subgroups (Table 3).
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Table 3. Molecular classification of endometrioid ovarian carcinomas.

TCGA-EEC Class Molecular Surrogate Clinical Significance Immunohistochemistry Available/
Currently Used in Clinical Practice

Hypermutated POLE sequencing (Sanger) Excellent prognosis, candidate for
checkpoint inhibition No/Yes

Ultramutated MSI assay Intermediate prognosis, candidate
for checkpoint inhibition Yes/Yes

CN-high TP53 sequencing Poor prognosis Yes/Yes
CN-low POLE/MSI/TP53 wild-type Intermediate prognosis Yes/Yes

CN: copy number; MSI: microsatellite instability; POLE: polymerase ε; TCGA-EEC: The Cancer Genome Atlas Network classification for
Endometrial Endometrioid Carcinomas.

Immunohistochemistry for MMR proteins and p53 are excellent surrogates for MSI-H
and CNhigh tumors. No immunohistochemical marker is available for POLE, thus Sanger
sequencing is the gold standard to evaluate POLE status. Finally, the assignment to the
CNlow/no special molecular profile (NSMP) group could be made once POLE/MMR/p53
mutations are excluded.

Recently, ENOCs demonstrated the same characteristics of EECs regarding histological,
clinical, and molecular parameters [16]. The four molecular subgroups of ENOC were
classified according to the 2013 TCGA classification of EECs and using an algorithm
which prioritized POLE sequencing, with subsequent MMR and p53 immunohistochemical
evaluation of POLE-wt cases (Figure 6).
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Figure 6. (a) Diagnostic algorithm to classify endometrioid ovarian carcinomas (left) (based on P. Krämer et al.). abn:
abnormal; MMR: mismatch repair; MMRd: mismatch repair deficient; MMRp: mismatch repair proficient; mut: mutated;
NSMP: no specific molecular profile; POLE: polymerase-epsilon; wt: wild-type. (b) MMRd endometrioid carcinoma
low-grade, notable loss of MSH6 with intact PMS2 expression (×100). As internal control, tumor infiltrating lymphocytes
and intertumoral stromal cells demonstrated intact MMR expression (×100).
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POLE ultramutated ENOCs, albeit rarer than their endometrial counterpart, demon-
strated the same excellent prognosis. Mismatch repair deficient (MMRd) ENOCs were
also rarer than MMRd EECs, while NSMP ENOCs were more frequently represented than
NSMP EECs: both MMRd ENOCs and NSMP ENOCs were associated with an intermediate
prognosis. Finally, p53abn tumors, rarely encountered, were significantly correlated with
poor prognosis.

In another study by Parra-Hernan et al., MMRd ENOCs demonstrated excellent
prognosis, overlapping with POLE-mutant ENOCs [69]. These molecular subgroups
demonstrated a better correlation with tumor prognosis than the traditional morphologic
evaluation of tumor grade. As an example, low-grade p53abn ENOCs showed aggressive
clinical behavior, contrariwise high-grade POLE ENOCs were associated with an excellent
prognosis. Thus, the role of molecular classification in ENOCs appears promising as in
EECs, especially to guide neoadjuvant treatment.

Histopathological and IHC analysis, blinded of the molecular status, was carried on a
series of ECs to identify morphological features associated with POLE mutations by Van
Gool et al. [70]. POLE-mutant ECs were statistically associated with a high number of
TILs, tumor giant-cells, p53wt IHC pattern, and intact MMR IHC expression. The same
morphological features were also observed in POLE ENOCs [71]. Therefore, a simple
morphological and IHC approach could identify patients with features suggesting POLE
mutation, albeit Sanger sequencing represents the gold standard assay to establish POLE
mutational status.

A large cohort of 502 early-stage ovarian carcinomas, representative of all five main
histotypes was tested for MMRd by Leskela et al. MMRd was significantly associated
with endometrioid and clear cell histotypes [72]. As for its colorectal and endometrial
counterparts, the MLH1 promoter hypermethylation was the most commonly found al-
teration (86% of the cases), but germline loss of function of MLH1, MSH2, and MSH6
(highly suspicious for LS) was observed in 35% of the cases. Furthermore, MMRd OCs
were associated with younger age at presentation and increased TILs. A two-antibody
approach with PMS2 and MSH6 is considered sufficient and more cost-effective than an
upfront four-antibody approach, due to the binding heterodimeric nature of the MMR
complexes: a loss of expression of MLH1 or MSH2 would inevitably lead to degradation of
PMS2 and MSH6, respectively [73]. Conversely, a loss of expression of PMS2 and MSH6
would not lead to a degradation of MLH1 and MSH2 [74–76]. However, in the event of a
PMS2 and MSH6 loss, confirmatory IHC for MLH1 and MSH2 should be performed [76].
An MLH1 promoter methylation test should also be carried out in all cases showing MLH1
IHC loss.

PD1/PD-L1 expression has been tested in OC with particular attention to MMRd and
POLE-mutant tumors, because of their high immunogenic characteristics [3,48,77,78]. This
evidence is of particular interest for future therapeutic implications. The current NCCN
guidelines contemplate the use of Pembrolizumab (anti-PD1) for MSI-H carcinomas [57].

Hormone receptor expression has been linked to better prognosis supporting the
possibility of hormonal therapy in ENOCs. In a large multicentric study by Sieh et al., ER
and PGR expression, scored as negative (<1% positive nuclei), weak (1–50%), or strong
(≥50%), were correlated with better disease-specific survival in ENOCs [79]. Another study
from Rambau et al. confirmed a statistically significant better outcome in hormone-positive
ENOCs [80].

IHC evaluation of PTEN and ARID1A proteins are good surrogates of loss-of-function
mutations in PTEN and ARID1A genes. PTEN loss could represent a target for PI3K/AKT
inhibitors, while ARID1A loss for EZH2 and HDAC inhibition, but further studies are
needed to clarify their potential role [81–83].

CTNNB1-mutated ENOCs, examined with surrogate IHC staining for nuclearβ-catenin,
were associated with a favorable outcome in two independent studies, while abnormal
expression of p16 in ENOCs has been associated with a worse outcome: however, these
data still need further validation (Table 4) [84–86].
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Table 4. Other molecular markers associated with endometrioid ovarian carcinomas.

Molecular Markers Clinical Significance Immunohistochemistry Available/
Currently Used in Clinical Practice

PD1/PD-L1 Candidate for checkpoint inhibition Yes/Yes (selected cases)
Hormone receptors Better prognosis, candidate for HRT Yes/Yes

PTEN Target for PI3K/AKT inhibition Yes/No *
ARID1A Target for EZH2 and HDAC inhibition Yes/No *
CTNNB1 Good prognosis Yes/No
CDKN2A Worse prognosis Yes/No

* currently used only for diagnostic purpose. HDAC: histone deacetylase; HRT: hormonal replacement therapy.

To summarize, the spectrum of mutations in ENOCs is highly variable and data are
still limited. The overall prognosis of ENOCs is good but the molecular subgrouping
via IHC surrogate biomarkers could drive the choice and refine the adjuvant treatment
guidelines shortly.

3.2. Clear Cell Carcinoma

Ovarian CCCs represent 10% of ovarian malignant neoplasms and typically present at
early-stage. The strongest prognostic factor in CCCs is the clinical stage, with an overall
good prognosis in stages I-II and poor prognosis in stages III-IV [87]. Histologically,
CCCs are characterized by a mixture of tubulocystic and papillary epithelial structures
associated with a distinctive hyaline, acellular stroma (Figure 7a,b) [1]. Tumor cells are
cytologically bland, with a low mitotic count and often subtle invasion. Hobnail clear
cells are typical findings although an oxyphilic variant of CCC has been described [88–91].
The IHC profile is typically PAX8+, napsin A+, hepatocyte nuclear factor 1β+, WT1−,
ER−, PGR−. Tumors are typically associated with endometriosis and clear cell borderline
and/or adenofibroma components. Notably, tumors associated with endometriosis or
adenofibromatous component demonstrated a better prognosis than de novo CCCs.
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The mutational spectrum of CCCs is characterized by frequent mutation of SWI/SNF
chromatin remodeling complex protein ARID1A, loss of PTEN, activation of PIK3CA, TERT
promoter mutations and, rarely, TP53 mutation (5%) [83,92–95]. Notably, almost 10% of
ovarian CCCs have been linked to LS; therefore MMR testing is routinely recommended in
all CCCs [96]. This is of particular significance as Lynch-associated CCCs, even at an ad-
vanced stage, demonstrated better prognosis, possibly due to high tumor immunogenicity
and high PD-1/PD-L1 expression, similarly to ENOCs [48,97].
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3.3. Mucinous Carcinoma

Primary ovarian mucinous carcinoma is extremely rare as the vast majority of mu-
cinous malignant tumors represents metastatic localization from the cervical or gastroin-
testinal tract [98]. Commonly accepted diagnostic clues, favoring an ovarian origin, are
large unilateral localization, size >10 cm, and association with mature cystic teratoma, Bren-
ner’s tumor, mucinous cystadenoma or mucinous borderline tumor. Metastatic mucinous
carcinomas can be deceptively bland, mimicking a primary ovarian borderline mucinous
tumor [99–101]. Immunohistochemistry could aid the differential diagnosis, as ovarian
MCs are cytokeratin 7 (CK7) positive in >80% cases, only focally and weakly positive
for CK20 and CDX2, usually negative for SATB2 [102]. Conversely, tumors of colorectal
origin are usually CK7−/CK20+/CDX2+ and SATB2+. The differential diagnosis could
be particularly challenging with an upper-GI primary: careful clinical and radiological
examination is therefore mandatory. Prognosis is strictly stage-dependent with a reported
75–90% five-year survival rate for stage I/II MCs versus 17% for stage III-IV MCs [1].

Molecularly, CDKN2A and KRAS mutations are the most commonly encountered
followed by TP53 and ERBB2 mutations [103,104]. MSI was found in almost 20% of
the cases [96]. ERBB2 amplified tumors demonstrated a significantly better prognosis
when Trastuzumab was added to the conventional chemotherapy treatment, suggesting a
potential actionable target in the treatment of ovarian primary MCs [104].

3.4. Other Rare Primary Ovarian Tumors

Seromucinous carcinomas (SCs), previously considered an independent entity, are now
considered a subtype of endometrioid carcinoma due to similar pathogenic background
(endometriosis-associated) and mutational spectrum: thus, the last WHO Classification of
Female Genital Tract Tumors considers SCs as a morphologic variant of ENOCs [105,106].

A new entity introduced in the 2020 WHO classification of the Tumours of the Female
Genital Tract is the mesonephric-like adenocarcinoma (MLA). This rare tumor may arise
from a malignant transformation of mesonephric ovarian remnants or transdifferentia-
tion of Müllerian epithelium. The latter event could explain the frequent association of
MLA with endometriosis or other carcinomatous histotypes, most commonly ENOCs.
MLAs usually exhibit an admixture of glomeruloid, tubular, sieve-like, solid, and glan-
dular architectural patterns and a distinctive GATA3+/TTF1+/CD10+(luminal)/PAX8+
immunophenotype, while ERs and PGRs are typically negative [107]. Though extremely
rare, these neoplasms demonstrated distinctive molecular characteristics, such as KRAS,
NRAS, and PIK3CA mutations [108,109]. No prognostic data are available due to the rarity
of these tumors.

Dedifferentiated/undifferentiated carcinomas (DED/UCs) are uncommon ovarian
tumors with poor prognosis, thought to represent the latter stage of neoplastic transforma-
tion of endometrioid tumors. Frequent mutations in the SWI/SNF chromatin remodeling
complex have been found, in particular involving ARID1A, ARID1B, SMARCB1/INI1, and
SMARCA4 genes [1]. Notably, a subset of DED/UC is characterized by MSI and POLE EDM.
All these molecular alterations can be also easily identified via IHC and sequencing with
good reliability and can be of help in the differential diagnosis with other undifferentiated
metastatic neoplasms. This can also be helpful to identify a subset of patients potentially
eligible for immunotherapy, as demonstrated for their endometrial counterparts. In a
case series published by Espinosa et al., a neuroendocrine differentiation was encountered
in four ovarian DED/UCs, one of which, characterized by POLE EDM, demonstrated
excellent prognosis [110].

Carcinosarcomas (CSs) are rare biphasic ovarian malignant tumors with both carci-
nomatous and sarcomatous elements [1]. The two components seem to be of epithelial
origin as the sarcomatous areas have been demonstrated to derive from an epithelial-
mesenchymal transition [111]. Typically diagnosed at a late clinical stage, CSs are resistant
to conventional chemotherapy and usually have a poor prognosis [112]. The molecu-
lar landscape of CSs is similar to their uterine counterpart with recurrent mutations in
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TP53, PIK3CA, BRCA1/2, PTEN, MLH1, MSH6, PPP2R1A, ARID1A, KRAS, CDH4, and
BCOR [113–116]. Actionable mutations are represented by BRCA1/2: these tumors can be
potentially treated with PARPi. In fact, as for HGSCs, CSs with PTEN loss could be eligible
for PI3K/AKT inhibitors and, although rarely encountered, microsatellite instable-CSs
could be eligible for anti-PD1 therapy [117].

4. Conclusions

OCs are a heterogeneous group of diseases with specific histologic, molecular, and
clinicopathologic features. Ten years after the first attempt at an OC molecular classification,
the introduction of new technologies allowed us to expand our knowledge of the complex
molecular landscape of this disease. To date, at least five main independent histotypes are
recognized: HGSCs, LGSCs, CCCs, ENOCs, and MCs [2,8]. A molecular subclassification
of each histotype demonstrated a decisive role in the prognostic stratification. BRCAmut
HGSCs show better prognosis compared to BRCAwt tumors, particularly after the intro-
duction of PARPi in maintenance treatment [39]. BRAFV600E LGSC are characterized by
better outcomes compared to KRAS-mutated LGSCs [55]. ENOCs encompass at least four
different molecular subgroups: POLE-ultramutated, MSI hypermutated, CNhigh and CNlow

tumors with different histologic and clinical features [16]. POLE-ultramutated tumors
have demonstrated an excellent prognosis, MSI and CNlow intermediate outcomes and
CNhigh tumors poor survival rates. Almost 25% of ENOCs, 20% of MCs, and 14% of CCCs
could be related to Lynch Syndrome with notable genetic and clinical implications, such
as the adoption of preventive familiar strategies and, in the event of adjuvant therapy, of
potential checkpoint inhibition [96]. The need to implement worldwide, easy-to-use and
cost-effective strategies to identify these features led to the development of the molecular
surrogate method, with IHC as the main focus with excellent results (Table 5). Although
not as reliable as molecular analysis, in order to avoid unnecessary costly and distressful
testing, IHC could represent the upfront standard approach of a pathology laboratory.

Table 5. Overview of molecular markers in ovarian epithelial cancers.

Molecular Markers Histotype Immunohistochemistry
Surrogate Available Comments

TP53 HGSC, ENOC, CCC, CS Yes Mutated in 96% HGSCs
Worse prognosis in ENOCs

BRCA1, BRCA2 HGSC, CS Yes Better prognosis, PARPi eligible

BRAF LGSC Yes Lower recurrence rate, better prognosis possibility
of targeted therapy in advanced LGSC

KRAS LGSC, MLA, CS No Higher recurrence rate, worse prognosis

ERBB2 LGSC, MC Yes Better prognosis in MC, no data available in LGSC

Hormone receptors LGSC, ENOC Yes Diffuse expression associated with better prognosis,
possibility of HRT in LGSC and low-grade ENOC

MLH1, PMS2, MSH2, MSH6 ENOC, CCC, MC, DEDC/UC Yes (MLH1 methylation analysis
required for MLH1/PMS2 loss)

Better prognosis, 80% cases due to somatic MLH1
hypermethylation, germline mutations associated

with Lynch Syndrome, high PD-L1 expression
(checkpoint inhibition candidate)

POLE ENOC, CCC, DEDC/UC No Excellent prognosis, high PD-L1 expression
(checkpoint inhibition candidate)

HGSC: high-grade serous carcinoma; LGSC: low-grade serous carcinoma; ENOC: endometrioid ovarian carcinoma; CCC: clear cell
carcinoma; MC: mucinous carcinoma; MLA: mesonephric-like adenocarcinoma; DEDC/UC: dedifferentiated/undifferentiated carcinoma;
CS: carcinosarcoma; HRT: hormonal replacement therapy.
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