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The E2F family of transcription factors consists of nine members with both distinct and overlapping functions. These factors are
situated downstream of growth factor signaling cascades, where they play a central role in cell growth and proliferation
through their ability to regulate genes involved in cell cycle progression. For this reason, it is likely that the members of the
E2F family play a critical role during oncogenesis. Consistent with this idea is the observation that some tumors exhibit
deregulated expression of E2F proteins. In order to systematically compare the oncogenic capacity of these family members,
we stably over-expressed E2F1 through 6 in non-transformed 3T3 fibroblasts and assessed the ability of these transgenic cell
lines to grow under conditions of low serum, as well as to form colonies in soft agar. Our results show that these six E2F family
members can be divided into three groups that exhibit differential oncogenic capacity. The first group consists of E2F2 and
E2F3a, both of which have strong oncogenic capacity. The second group consists of E2F1 and E2F6, which were neutral in our
assays when compared to control cells transduced with vector alone. The third group consists of E2F4 and E2F5, which
generally act to repress E2F-responsive genes, and in our assays demonstrated a strong capacity to inhibit transformation. Our
results imply that the pattern of expression of these six E2F family members in a cell could exert a strong influence over its
susceptibility to oncogenic transformation.
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INTRODUCTION
The E2F family of transcription factors consists of nine members

(E2F1, E2F2, E2F3a, E2F3b, E2F4, E2F5, E2F6, E2F7 and E2F8)

with both distinct and overlapping functions (reviewed in [1–3]).

E2F1–6 form heterodimers with DP proteins to achieve high-

affinity DNA binding, while E2F7 and 8 do not require these co-

factors to bind to E2F target genes. E2F proteins are situated at the

‘bottom’ of the growth factor signaling cascade where they

regulate genes involved in cell cycle progression [4,5], and can act

either as transcriptional activators or repressors depending upon

their association with pocket proteins such as pRB [1]. For this

reason, it is likely that the members of the E2F family are

important regulators of oncogenic transformation.

The transforming potential of E2F1–3 has been reported in

various models and cell types, however, a systematic comparison

of E2F1–6 members has not been performed. To make a direct

comparison of oncogenic function among these first six E2F family

members, we have utilized a retroviral approach to generate stable

lines of 3T3 fibroblasts specifically over-expressing E2F1, E2F2,

E2F3a, E2F4, E2F5 or E2F6, and have assessed the ability of these

transgenic cell lines to grow under conditions of low serum, as well

as to form colonies when suspended in soft agar. Our data

demonstrates that E2F2 and E2F3 have strong pro-oncogenic

capacity, whereas E2F4 and E2F5 are anti-oncogenic.

RESULTS

Generation of 3T3 fibroblast lines over-expressing

individual E2F family members
To achieve stable, forced expression of E2F family members 1

through 6 in cells, we constructed bicistronic retroviral vectors

encoding E2F1, E2F2, E2F3a, E2F4, E2F5 and E2F6 (Figure 1 A).

These constructs were able to drive high-level expression of the

NGFR reporter protein (data not shown), as well as specific over-

expression of E2F3a, E2F4, E2F5 and E2F6 protein, respectively,

upon transient transfection of Pheonix/293T cells (Figure 1 B).

E2F1 over-expression was only variably achieved under these

conditions, potentially due to high basal expression of endogenous

E2F1 by Pheonix cells (Figure 1 B, top panel). We also had

difficulty demonstrating E2F2 over-expression in these transient

transfections, either due to low level expression of E2F2 protein, or

relatively low sensitivity of the E2F2-specific antiserum (Figure 1

B, second panel).

E2F-encoding retroviral supernatants produced from these

Pheonix cell transfections were used to transduce non-transformed

NIH 3T3 fibroblasts, and transductants were identified and

purified by the expression of NGFR (Figure 2 A). Transduced 3T3

lines were expanded without selection, and stable NGFR

expression was observed over several weeks in culture (data not

shown). We were able to detect specific over-expression of E2F2

through E2F6 in each respective 3T3 line under conditions of

asynchronous growth, as compared to endogenous expression of

these family members in an empty vector-transduced line (Figure 2

B). However, we were unable to detect over-expression of E2F1 in

actively growing, E2F1-transduced 3T3 cells above that of the

endogenous protein (Figure 2 B).
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Effect of deregulated E2F expression on

asynchronous cell growth
To determine the effect of stable over-expression of individual E2F

family members on asynchronous cell growth, we plated each E2F-

transduced line at low density in high (10%) serum medium, and

enumerated the cells at 24 hour intervals over a four day culture

period. The empty vector-transduced 3T3 line exhibited a consistent

doubling rate of approximately 24 hours until reaching confluency

between 72 and 96 hours (Figure 2 C, gray diamonds). This pattern

of growth closely resembled that of the parental, non-transduced

3T3 cells (data not shown). The E2F1-, E2F2-, and E2F3-transduced

lines exhibited a normal growth rate during the first 48 hours of

culture, but then proliferated at twice the rate of the control cells

until reaching confluency after only 72 hours (Figure 2 C, filled

symbols). Over the next 24 hours, the E2F1- and E2F2-transduced

lines underwent growth arrest (Figure 2 C, filled squares and

triangles), suggesting that these lines are still susceptible to contact

inhibition. However, the E2F3-transduced line continued to grow at

the same rate 24 hours after reaching confluency (Figure 2 C, filled

circles), suggesting that forced expression of E2F3 can overcome

contact inhibition. Unlike the E2F1–3 lines, cells transduced with

E2F4, E2F5 and E2F6 lagged behind the control MINR1 3T3 line,

exhibiting little or no cell growth over the first 48 hours of culture

(Figure 2 C, open symbols). These lines underwent approximately

two doublings during the next 24 hours, but arrested at roughly

72 hours, before reaching 100% confluence. These data suggest that

deregulated expression of E2F4, E2F5 and E2F6 can slow cell cycle

progression and render cells more susceptible to contact inhibition.

Effect of deregulated E2F expression on

serum-independent cell growth
E2F gene expression is normally regulated by signals from growth

factor receptors, and is tightly coordinated with the cell cycle. To

determine the effect of forced expression of individual E2F family

members on cell growth in the relative absence of growth factors,

we plated each E2F-transduced line at medium density in low

(0.1%) serum medium, and monitored E2F family member

expression and cell number over a two day culture period. The

MINR1 empty vector line exhibited very low expression of

endogenous E2F family members following serum withdrawal

(Figure 3 A), while the E2F3–6 transductants exhibited efficient,

serum-independent expression of E2F3, E2F4, E2F5 and E2F6,

respectively (Figure 3 A). Serum deprivation actually induced

accumulation of transgenic E2F1 and E2F2 protein in the E2F1-

and E2F2-transduced lines (Figure 3 A), suggesting that growth

factor-coupled mechanisms that limit E2F1 and E2F2 protein

expression at a post-translational level may be operative during

growth in high serum in our system [6,7].

During the first 16 hours of serum deprivation, control-trans-

duced 3T3 cultures increased in cell number by approximately

50%, but fell precipitously by 30 hours (Figure 3 B, gray

diamonds). These results, along with the initial drop in cell

number at 8 hours, suggest a relatively rapid conversion from cell

growth to cell death in these cultures upon serum withdrawal.

Conversely, 3T3 cells with forced expression of E2F1, E2F2 and

E2F3 continued to grow following serum deprivation (Figure 3 B,

filled symbols). E2F2- and E2F3-transduced cultures continued to

double after 16 hours of serum withdrawal, and maintained at

least two-fold greater cell numbers than control cultures

throughout the 48 hour culture period (Figure 3 B, filled squares

and circles). E2F1-transduced cultures showed a more modest rate

of growth, however, these cultures were also able to maintain

significantly increased cell numbers throughout serum deprivation

as compared to empty vector-transduced cultures (Figure 3 B,

filled triangles). Unlike the lines with forced expression of E2F1, 2

or 3, cell lines transduced with E2F4, E2F5 and E2F6 did not

continue to grow following serum withdrawal, and maintained cell

numbers equal to or less than the control-transduced cultures

throughout the entire response (Figure 3 B, open symbols). These

data show that uncoupling of E2F1, E2F2 and E2F3 expression

from their normal growth factor-mediated regulation is sufficient

to drive a significant degree of growth factor-independent cell

cycle progression, but that E2F4, 5 and 6 cannot mediate this

effect under the same conditions.

Effect of deregulated E2F expression on anchorage-

independent cell growth
The growth of most cells, including fibroblasts, requires integrin-

mediated signals provided through attachment to a solid matrix.

One characteristic of cancer cells is the loss of this requirement,

and such transformed cells gain the capacity to grow in an

anchorage-independent manner [8]. To simulate these conditions

and assess this oncogenic characteristic, we cultured stable E2F-

expressing 3T3 lines in suspension in a semi-solid agarose

medium. In this system, the non-transformed parental 3T3 cell

line exhibited an almost complete requirement for attachment, as

only a few small colonies were observed which did not show

continuous growth when cultures were extended up to two months

(Figure 4 A–C). Positive control H-Ras-transformed N57 cells

generated a high frequency of large colonies that grew pro-

gressively over a one month period (Figure 4 A–C). The empty

MINR1 vector-transduced 3T3 line showed a significant increase
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Figure 1. Generation of retroviral vectors encoding E2F family
members. A. Schematic representation of MINR1 retroviral vectors
encoding E2F genes. B. Analysis of E2F family member expression in
transiently-transfected 293T cells. 293T cells were individually trans-
fected with empty (lane 1) or E2F1–6 retroviral plasmids (lanes 2–7), and
extracts were subjected to SDS-PAGE, blotted, and probed for
individual E2F1–6 (top six panels) or actin (bottom panel).
doi:10.1371/journal.pone.0000912.g001
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in the frequency of colony formation as compared to the parental

line (Figure 4 A and B), but unlike the progressive growth of the

N57 colonies, the MINR1-3T3 colonies were small, and had

involuted by day 20 (Figure 4 C). Ectopic expression of E2F1 and

E2F6 in 3T3 cells had a relatively neutral effect on colony

formation as compared to the empty vector-transduced line

(Figure 4 A–C). In contrast, the E2F2- and E2F3-transduced 3T3

lines exhibited strong colony forming capacity. These cells

generated colonies at frequencies approaching the H-Ras-

transformed N57 cells (Figure 4 A and B), with individual colonies

exhibiting strong, exponential growth over the entire one month

culture period (Figure 4 C). Interestingly, ectopic expression of

E2F4 and E2F5 in 3T3 fibroblasts resulted in frequencies of colony

formation that were significantly lower than that of empty vector-

transduced cells, and comparable to that of the non-transformed

parental 3T3 line (Figure 4 A and B). Furthermore, the few

colonies present in these cultures did not grow over time (Figure 4

C). These data suggest that E2F2 and E2F3 have strong oncogenic

capacity, while E2F4 and E2F5 are anti-oncogenic in this system.

E2F1 and E2F6 may be weakly oncogenic, but the background

transforming capacity of the retroviral vector used in these studies

makes our results with these two family members difficult to

interpret.

DISCUSSION
A number of genetic aberrations that promote cancer lead to

deregulated E2F activity [9], including mutations in pRb, cyclinD1,

p16INK4a and CDK4. Although E2F genes are not frequent targets

of mutations in cancer [10], amplification and/or dysregulation of

E2F expression is associated with malignancy in several tumors [11–

13]. By forcing stable, homogeneous expression of individual E2F

family members in non-transformed parental cells, our approach

provides a model of dysregulated E2F expression, and allows an

unprecedented systematic comparison of the oncogenic capacity of

six different E2F family members. Our results show that these six

E2F family members have very different effects on cell growth under

conditions of limiting mitogenic signals.

In our studies, retroviral expression of E2F2 and E2F3

promoted both serum- and contact-independent growth of normal

fibroblasts, consistent with previous in vitro studies in both transient

and stable over-expression systems [14,15]. These data are also

consistent with in vivo studies in which targeted expression of E2F2

or E2F3 in epithelial tissue led to epithelial hyperplasia, and in the

case of deregulated E2F2 expression, led to cortical thymoma

formation [16,17]. In our studies, E2F3a exhibited stronger

transformation activity than E2F2. This may result from the more

stable expression of transgenic E2F3a protein in this system as
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Figure 2. Effect of forced E2F expression on exponential growth of NIH-3T3 cells. A. NIH-3T3 cells were transduced with retroviral constructs
encoding individual E2F1–6, and stained for surface expression of human mutant NGFR. B. Serial 3-fold extracts of stable empty MINR1 (lanes 4–6) or
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6, right panel) was seeded and cultured in full medium with 10% serum. Cultures were counted every 24 hours, and are in thousands. Data are
representative of 2 separate experiments.
doi:10.1371/journal.pone.0000912.g002
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compared to E2F2 (Figures 2 and 3), and suggests that E2F3a and

E2F2 may be differentially subject to post-translation control

mechanisms [6]. Also, while E2F1, E2F2 and E2F3a can each

contribute to the initial G0-S phase progression following

stimulation of quiescent cells, E2F3a is the predominant family

member involved in subsequent G1-to-S phase transitions [18],

and has a unique role in centrosome duplication [19]. These

activities may together account for strongest proliferative capacity

of the E2F3a-transgenic fibroblasts in our studies. E2F3b, a splice

variant of E2F3 that contains coding regions unique from E2F3a

[20], was not tested in these studies. This family member might be

expected to be neutral or anti-oncogenic, as E2F3b has been

shown to preferentially bind pRb and repress S-phase genes in

fibroblasts in vitro [21], but further studies will be required to

address the oncogenic capacity of this E2F family member.

Forced expression of E2F4 and E2F5 negatively impacted

fibroblast growth in our experiments, consistent with their defined

roles in enforcing G1 arrest [22]. E2F4 and E2F5 can exhibit

oncogenic activity, but only when expressed together with other

oncogenes such an activated mutant of Ras [11,23]. The empty

MSCV retroviral vector in our studies exhibited measurable

transforming activity in 3T3 fibroblasts, and this was abrogated by

E2F4 and E2F5. These results suggest that these E2F family

members can also have anti-oncogenic or tumor suppressive

activity. Unlike E2F1–3, E2F4 and E2F5 are highly expressed in

quiescent (G0) cells, lack a cyclin A-binding domain, and associate

with p107 and p130 instead of pRB. These factors also lack

nuclear localization domains, and depend upon their association

with pocket proteins for nuclear translocation [23–26]. Conse-

quently, E2F4 and E2F5 commonly act as repressors of E2F

responsive genes [22], which may explain why forced expression of

these factors inhibits proliferation and transformation in our

studies. Two new members of an E2F subfamily, E2F7 and E2F8,

were recently identified after our studies were performed, and like

E2F4 and 5, act as repressors of E2F-induced gene expression and

mitotic progression [27–30]. For this reason we would predict that

these new factors would have anti-oncogenic properties, however,

further studies will be required to address this issue.

E2F1 and E2F6 had weak or no oncogenic capacity compared

to empty vector-transduced cells in our system. E2F6 is unique in
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Figure 3. Capacity of individual E2F family members to support serum-independent growth. 26105 asynchronous 3T3 transductants from
exponential cultures were seeded overnight with 10% serum, then cultured in 0.1% serum for the indicated periods, and E2F protein levels (A) and
live cell counts (B) were measured. The data depicted are representative of 2 separate experiments.
doi:10.1371/journal.pone.0000912.g003
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Figure 4. Capacity of individual E2F family members to support contact-independent growth. 103 E2F-3T3 transductants were seeded in soft agar
medium with 10% serum. Representative 46 fields of N54 (Ras-transformed positive control), empty vector, and E2F1–6 transductant cultures at
30 days are shown in A. The mean colony number per field (+/2 SD) from 10 random fields is plotted in B. The largest colony from each transductant
culture at days 3, 7 and 26 is depicted (206) in C. The data depicted in A–C are representative of 4 separate experiments.
doi:10.1371/journal.pone.0000912.g004
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that it retains the conserved E2F DNA binding and dimerization

domains, but lacks the C-terminal transactivation and pocket

protein binding domains characteristic of other members [31–33].

Therefore, E2F6 can act as a competitive inhibitor of DNA

binding by other E2F proteins, and when overexpressed can

oppose the function of both the oncogenic E2F2 and 3a proteins

and the anti-oncogenic E2F4 and 5 family members. This

behavior may explain why E2F6 is neutral in our transformation

assays. E2F6 may also repress pro-mitogenic E2F-responsive

genes, as the C-terminal portion of E2F6 encompassing the

marked-box domain has been shown to inhibit gene transcription

through the recruitment of co-repressor complexes [22,34,35].

This scenario is supported by our in vitro data, in which forced

expression of E2F6 delayed serum-induced cell growth.

In our experiments, forced expression of E2F1 could support

serum-independent growth, which is consistent with previous

studies [36]. Dysregulated E2F1 expression can promote hepato-

cellular adenoma [37], spontaneous epithelial tumors [38], or in

combination with activated ras or p53 deficiency, accelerate skin

tumorigenesis [39,40]. However, this factor was significantly less

efficient in promoting in vitro growth than E2F2 or E2F3 (Figures 2

and 3), and in our soft agar culture system E2F1 exhibited very

weak colony forming activity over control-transduced 3T3

fibroblasts. This weak oncogenic activity could result from post-

translational destabilization of E2F1 through ubiquitination [7],

and indeed we found that E2F1 protein was expressed less

efficiently from the same vector as compared to E2F3 (Figure 3).

These results contrast two previous studies, which showed that

stable over-expression of E2F1 in fibroblasts could induce

measurable contact-independent cell growth [15,41]. One of these

studies generated stably-transfected rat embryonic fibroblast lines

through drug selection, and achieved very high levels of E2F1

expression [41]. The other study utilized a MoMuLV-based vector

[15], which may contribute less background transforming activity

than our MSCV-based vector in these studies, and therefore may

allow detection of weaker oncogenes. In the majority of previous

studies, however, E2F1 activity has been shown to oppose

proliferation and oncogenesis [42,43] through its strong capacity

to activate the p53/73 pathway of intrinsic cell death [44,45],

which likely acts to balance its pro-mitogenic activity in these

assays. Whether the balance of E2F1 activity in a specific tissue

leads to apoptosis and tumor suppression vs. proliferation and

oncogenesis is likely dependent upon the context of pro- vs. anti-

apoptotic signals received by cells at a given time.

In this study, we systematically compared the transforming

activity of E2F family members 1 through 6. Our results show that

these six E2F family members can be divided into three groups based

upon their oncogenic capacity in fibroblasts: 1) strong oncogenes

(E2F2 and E2F3a), 2) weak or neutral genes (E2F1 and E2F6), and 3)

anti-oncogenes (E2F4 and E2F5). The differential capacity of these

E2F factors to promote oncogenic cell growth was associated with

their protein stability, and is likely influenced by their normal

expression patterns and cooperation with other factors.

MATERIALS AND METHODS

Construction of retroviral vectors encoding E2F

proteins
The plasmids pcDNA1-mE2F1 and pBS-mE2F3a were provided

by J. Nevins (Duke Univ.), and plasmids pCMVHA-hE2F2,

pCMVHA-hE2F5, pCMVHA-hE2F6 were provided by K. Helin

(Eur. Inst. Oncology). Full-length E2F cDNA fragments were

subcloned into the EcoRV site of pST-Blue1 vector (Novagene) by

blunt-end ligation. Murine E2F4 cDNA was cloned by RT-PCR

from NIH 3T3 cell lines. Briefly, total RNA was prepared from

107 NIH 3T3 cells in RNAstat60 (Tel-test), precipitated in

isopropanol, and dissolved in DEPC-treated water. First strand

cDNA synthesis from 2 mg of total RNA was achieved using

random hexamers and super-reverse transcriptase (Invitrogen).

One-tenth of the RT product was used for PCR using the

following primers: mE2F4 forward primer; 59-CCG GAA TTC

CGG GAT GGC GGA GGC CGG GCC ACA GG-39, mE2F4

reverse primer; 59-CCG GAA TTC CGG GGG TTG CAG CTG

CAC AGG ACA TG-39. The PCR product was cloned into the

EcoRI site of pST-Blue1 vector (Novagen), and confirmed by

sequencing. All E2F cDNAs were subcloned from pST-Blue1 into

the EcoRI cloning site of the MSCV-NGFR expression vector

(MINR1, provided by W. Pear, Univ. Penn.). In this vector, each

E2F ORF is expressed as a bi-cistronic mRNA linked to

a truncated human nerve growth factor receptor (NGFR) reporter

gene by an IRES element, and transduced cells can be identified

by surface expression of NGFR [46]. The general structure of

these vectors is shown in Figure 1 A. All MINR1-E2F inserts were

sequenced using MINR1-specific forward and reverse primers (s5:

59-CCT CCG CCT CCT CTT CCT CCA TCC-39 and a6: 59-

GCC AAA AGA CGG CAA TAT GGT GG-39).

Cell lines
The 293T-based Pheonix ecotropic packaging cell line (provided

by G. Nolan, Stanford Univ.) was used for retroviral vector

production. Gag-pol and env expression was ensured by selection

in medium containing hygromycin and diptheria toxin every three

months. NIH 3T3 cells (ATCC) were maintained in DMEM

medium supplemented with 10% FBS, in 37C and 5% CO2 and

used for E2F cell line generation.

Retrovirus production
Pheonix cells were transiently transfected with MINR1-E2F

retroviral constructs using Lipofectamine 2000 reagent (Invitrogen)

as described by the manufacturer. Briefly, highly confluent Pheonix

cells were co-transfected with a mixture of X mg MINR1 and X mg

pCLeco (Invitrogen) plasmid DNA mixed with Lipofectamine 2000

for 4–6 hours. The transfection mixture was then replaced with fresh

growth medium and the cells were cultured for 48 hours. The

retroviral supernatants were passed through 0.45 mm filter,

aliquoted and stored at 270C for future use.

NIH/3T3 cell transductions
NIH 3T3 cells (36104) were seeded in 24 well plates, cultured

overnight, and incubated with 1 mL retroviral supernatant in the

presence of 8 mg/ml polybrene (Sigma) at 37C for 18 hours. The

virus-containing medium was replaced with fresh medium and

cells were cultured for an additional 48 hours.

Flow cytometry
Transfections and transductions were monitored by flow cytometry

by surface staining for the hNGFR reporter gene product. Briefly,

Pheonix cells or 3T3 cells were harvested by trypsinization, washed

in PBS with 1% horse serum, and 56105 cells were stained with anti-

NGFR-Biotin antibody (BD-Biosciences) at 4C for 30 min. Cells

were washed and stained with streptavidin-PE (BD-Biosciences) at

4C for 30 min. Cells were analyzed on Cyan flow cytometer (Dako).

Serum deprivation and serum stimulation
E2F-3T3 transductants were plated in triplicate at 26106 cells in

10 cm dishes. After 24 hours, the cells were washed twice with
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PBS and then incubated in DMEM containing 0.1% FBS for

72hr. The cells were then fed with DMEM containing 20% FBS.

At each time point, the cells were harvested by trypsin treatment

and counted using a hemocytometer.

Immunoblot analysis
E2F-3T3 cells (26105) were boiled in reducing Laemmli buffer

and subjected to SDS-PAGE. Cellular proteins were transferred to

nitrocellulose membranes and probed with specific antisera

specific for E2F1, E2F2, E2F3a/b, E2F4, E2F5 and E2F6 (Santa

Cruz). Immunoreactive proteins were detected with HRP-

conjugated secondary antibody (Jackson Immunoresearch) and

visualized using chemiluminescence (BioRad).

Semi-solid agar culture of E2F-3T3 cell lines
Actively growing 3T3 cells (16103) were mixed with pre-warmed

medium supplemented with 0.3% agarose (type VII, Sigma),

plated onto solidified medium containing 0.5% agarose in 6-well

plates, and cultured at 37C in 5% CO2. Top agarose was

replenished every two weeks. Colony formation was monitored

and enumerated by counting 10 random 106 fields.
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