
Published online 4 September 2016 Nucleic Acids Research, 2016, Vol. 44, No. 22 e164
doi: 10.1093/nar/gkw772

Personalized characterization of diseases using
sample-specific networks
Xiaoping Liu1,2,†, Yuetong Wang1,3,†, Hongbin Ji1,4,*, Kazuyuki Aihara2,* and
Luonan Chen1,2,4,*

1Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell
Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences, Shanghai 200031, China, 2Institute of Industrial Science, University of Tokyo, Tokyo 153-8505,
Japan, 3University of Chinese Academy of Sciences, Beijing 100049, China and 4School of Life Science and
Technology, ShanghaiTech University, Shanghai 200031, China

Received May 15, 2016; Revised August 17, 2016; Accepted August 23, 2016

ABSTRACT

A complex disease generally results not from mal-
function of individual molecules but from dysfunc-
tion of the relevant system or network, which dy-
namically changes with time and conditions. Thus,
estimating a condition-specific network from a single
sample is crucial to elucidating the molecular mecha-
nisms of complex diseases at the system level. How-
ever, there is currently no effective way to construct
such an individual-specific network by expression
profiling of a single sample because of the require-
ment of multiple samples for computing correlations.
We developed here with a statistical method, i.e. a
sample-specific network (SSN) method, which allows
us to construct individual-specific networks based
on molecular expressions of a single sample. Using
this method, we can characterize various human dis-
eases at a network level. In particular, such SSNs
can lead to the identification of individual-specific
disease modules as well as driver genes, even with-
out gene sequencing information. Extensive analy-
sis by using the Cancer Genome Atlas data not only
demonstrated the effectiveness of the method, but
also found new individual-specific driver genes and
network patterns for various types of cancer. Biolog-
ical experiments on drug resistance further validated
one important advantage of our method over the tra-
ditional methods, i.e. we can even identify such drug
resistance genes that actually have no clear differ-
ential expression between samples with and without

the resistance, due to the additional network infor-
mation.

INTRODUCTION

One key to achieving personalized medicine is to eluci-
date molecular mechanisms of individual-specific diseases,
which generally result from the dysfunction of individual-
specific networks/systems rather than the malfunction of
single molecules (1–4). In fact, it has been recognized that
the phenotypic change of a living organism can seldom be
fully understood by merely analyzing single molecules, and
it is the relevant system or specific network that is ultimately
responsible for such a phenomenon (3,4). With rapid ad-
vances in high-throughput technologies, applying molecu-
lar networks to the analysis of human diseases is attract-
ing increasingly wide attention (2). A molecular network,
e.g. a gene regulatory network, or a co-expression network,
can be generally estimated by correlation coefficients of
molecule pairs from expression or sequence data of multi-
ple samples. Based on biological and clinical data, a num-
ber of network-based methods were proposed not only to
identify disease modules and pathways but also to elucidate
molecular mechanisms of disease development at the net-
work level (5–7). To determine a person’s state of health,
many studies have shown that network-based biomarkers,
e.g. subnetwork markers (5,6), network biomarkers (8) and
edge biomarkers (9,10), are superior to traditional single-
molecule biomarkers for accurately characterizing disease
states due to their additional information on interactions
and networks. In particular, an individual-specific network
is considered to be reliable for accurately characterizing the
specific disease state of an individual. It can be directly
used to identify the biomarkers and disordered pathways,
and further elucidate the molecular mechanisms of a dis-
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ease for individual patients. However, it is generally dif-
ficult to obtain individual-specific networks (i.e. networks
on an individual basis) because constructing an individual-
specific network from expression data by traditional ap-
proaches requires multiple samples so as to evaluate cor-
relations or other quantitative measures (6,11–13) between
molecules for each individual, which are usually not avail-
able in clinical practice, and thus this requirement seri-
ously limits their application in personalized medicine. In
other words, although we can now obtain information of
individual-specific differentially expressed genes or somatic
mutations from expression or sequence data (14–16) of a
single sample, there is still no effective methodology to con-
struct the individual-specific network from such data of the
single sample, which is the key personalized feature of each
individual at a system level.

In this study, we developed a statistical method to con-
struct an individual-specific network solely based on expres-
sion data of a single sample, i.e. a single-sample network or
sample-specific network (SSN), rather than the aggregated
network for a group of samples, based on statistical pertur-
bation analysis of a single sample against a group of given
control samples. In particular, we derived the SSN method
to quantify the individual-specific network of each sample
in terms of statistical significance in an accurate manner,
which is the theoretical foundation of this method. Anal-
yses of the Cancer Genome Atlas (TCGA) data with nine
different cancers not only validated the effectiveness of our
method, but also led to the following discoveries: (i) we
found that there are several common network patterns in
the same types of cancer, which, however, are not shared
by other types of cancer; (ii) personalized features of vari-
ous types of cancer were characterized by SSNs, which in
turn also revealed important regulatory patterns of driver
genes in the cancer; (iii) individual somatic mutations for a
sample were strongly correlated with its SSN on a single-
sample basis, which was also validated by the pathway en-
richment and functional analysis; and (iv) in contrast to the
mutational driver genes, the functional driver genes, which
functionally affect the occurrence and development of can-
cer, can be predicted from the hub genes of an SSN for an
individual sample. As further applications of TCGA to big
data, SSNs were used to predict individual driver mutations
for various types of cancer solely based on gene expressions
without DNA sequence information, classify cancer phe-
notypes and identify cancer subtypes by network biomark-
ers for accurate diagnosis and prediction of diseases in in-
dividuals, which all agrees well with the experimental data.
Although some previous methods can do the personalized
analysis of single samples based on networks or pathways
(17,18), there is no reported method to construct an SSN
and predict driver genes only based on the expression pro-
file of a single sample as far as the authors know.

Moreover, knockdown experiments validated our predic-
tion of drug-resistant genes in the lung cancer cell line PC9.
In contrast to traditional methods that are based on the
differential gene expression between the samples with and
without drug resistance, we further identified such drug-
resistant genes that actually have no differential expression
and thus are generally missed by traditional methods.

MATERIALS AND METHODS

In this paper, an SSN also implies an individual-specific net-
work.

Constructing an SSN from a single sample

The SSN for each sample or individual is constructed based
on statistical perturbation analysis of this sample against a
group of given control samples. For this, we need to have
expression data for a group of samples, which serve as the
control or reference samples. As shown in Figure 1, by us-
ing this group of samples, we can construct the reference
network by Pearson correlation coefficients (PCCs) (Figure
1A), i.e. compute the PCC of each pair of molecules as an
edge with or without a template or background network.
Generally, the reference network would have the common
attributes of these reference samples. We then add the single
test sample d to this group and construct another network
by PCCs; this new network is called the perturbed network
(Figure 1B). Thus, we can obtain the differential network
between the reference and perturbed networks, which can
clearly characterize the specific features of the additional
sample d against this group. This differential network is re-
ferred to as the SSN of this new sample (Figure 1C). The dif-
ference between the reference and perturbed networks is due
to sample d. If the single sample d is similar to the reference
samples in terms of the gene expression pattern, even after
adding the sample d to the reference samples, the change
or perturbation of the PCC on any edge would be insignifi-
cant. In contrast, if there were obvious differences between
the single sample d and the reference samples in terms of
expression patterns, adding the single sample to the refer-
ence samples would cause significant changes of the PCC
on some edges in the perturbed network. Thus, if the dif-
ferential PCC (�PCC) of an edge is statistically significant
based on the evaluation of our SSN method, the edge would
be kept on the SSN for the individual sample d (Figure 1C).
After the �PCC is calculated on every edge of the STRING
network (http://string-db.org) and filtered by a significant
value of �PCC, the SSN for sample d is constructed from
this single sample’s expression data against the reference
network. The key is how to quantify the statistical signifi-
cance of each differential edge (i.e. �PCC) in the differen-
tial network. Based on the analysis of perturbation statis-
tics, we derived SSN theory (see section ‘Theoretical foun-
dation of SSN’ and Figure 2A) to accurately quantify each
differential edge in the network for a single sample in terms
of statistical significance, which is the theoretical founda-
tion for this method (Figure 1C). All of the edges with sig-
nificant differential correlations were used to constitute the
SSN for the single sample d (Figure 1B and C). In this
study, the functional association network with high confi-
dence (confidence score ≥ 0.9) was used as the template or
background network from the STRING database version
9.1 (http://string-db.org) that includes physical interactions,
regulatory interactions and the co-expression network of
molecules, and all edges in the template network were mea-
sured by the PCC, which was calculated by the ‘SciPy’ ex-
tension module (http://www.scipy.org/) of the Python pro-
gramming language.

http://string-db.org
http://string-db.org
http://www.scipy.org/
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Figure 1. Flowchart for constructing an individual-specific network. (A) For a group of reference samples (n samples), a reference network can be con-
structed by the correlations between molecules based on expression data of this group of samples (multisamples), i.e. computing the PCCn (the Pearson
correlation coefficient (PCC) of an edge in the reference network with n samples) of each pair of molecules as an edge in the network. Generally, the
reference network has the common attributes of these reference samples. (B) A new sample d is added to the group, and the perturbed network with this
additional sample is constructed in the same way by the correlation PCCn + 1 of the combined data. The difference between the reference and perturbed
networks is due to sample d. (C) The differential network is constructed by the difference of the corresponding edge between the reference and perturbed
networks in terms of PCC, i.e. �PCCn = PCCn + 1–PCCn for each edge. Based on sample-specific network (SSN) theory, we can quantify the significance
of each edge, i.e. �PCCn in the network. The SSN for sample d is constituted by those edges with significant �PCCn.

Topological distance between genes in the SSN and somatic
mutation genes (SMGs) in the same sample

Let the genes in the SSN be a set S, and the somatic mu-
tation genes (SMGs) in this single sample be a set D. The
topological distance is based on the shortest distance be-
tween these two sets S and D in the background network.
Specifically, for a single sample, the average shortest dis-
tance was calculated by averaging the shortest distances be-
tween each gene on the SSN and each SMG of this sample
based on the connection of the background network, where
the ‘igraph’ extension module (http://igraph.sourceforge.
net/) of the Python programming language was used to ob-
tain the shortest distance between two genes in the network.
If two genes cannot be linked based on the background net-
work, then the shortest distance between the two genes is as-
signed 100, which is a sufficiently large value for the shortest
distance in the network. Then, the same number of genes of

the SSN were randomly chosen from a background network
for this single sample, and the average shortest distance be-
tween these randomly chosen genes and the SMGs of this
sample were again computed by the ‘igraph’ and the aver-
age shortest distance for the random genes was compared
with the average shortest distance for the genes in the SSN.
This permutation was repeated 100 times. The proportion,
in which the average shortest distance for random genes is
less than the average shortest distance for the genes in the
SSN, is defined as the topological distance between the SSN
and the SMGs for this single sample. If the proportion is
<0.05, we consider the topological distance to be signifi-
cant for this sample. Otherwise, the topological distance is
not significant. The significant samples of the topological
distance were identified by testing the topological distance
between SSN and mutation genes (SMGs and driver mu-
tation genes (DMGs)) for every sample in various cancers
against the background network.

http://igraph.sourceforge.net/
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Figure 2. The significance of a differential �PCC or an edge. (A) The theoretical result to evaluate the significance of �PCCn by Equation 2, (B) the
distribution of �PCCn numerically obtained by random simulation (n = 100), (C) the significant value of �PCCn evaluated by the numerical simulation
(i.e. from the distribution of the random simulation) and the theoretical result (i.e. from Equation (2)). �PCCn in the area above the curve is statistically
significant with a P-value of < 0.05. Clearly, the simulated curve (the red color) and theoretical curve (the blue color), i.e. the values of �PCCn for the
random simulation and the theoretical calculation of Equation 2 with a P-value of 0.05 are almost identical with little difference, which well validates
Equation 2 of the SSN method.

Functional distance between the SSN and the SMGs in the
same sample

For a single sample, the pathway or functional enrichment
of the genes in the SSN based on the KEGG (Kyoto Ency-
clopedia of Genes and Genomes) pathways or GO (Gene
Ontology) items was calculated by the hypergeometric test
(19) as follows:

P(X = k) =

(
K
k

) (
N − K
n − k

)
(

N
n

) ,

where, N is the number of genes on the whole background
network, K is the number of genes sharing a pathway or
a GO term on the background network, n is the number
of genes in the SSN of a single sample and k is the num-
ber of genes sharing the same pathway or GO term in the
SSN, P(X = k) is the probability observing exactly k shared
genes in the hypergeometric distribution. The P-value of
the hypergeometric distribution is calculated by the cumu-

lative probability P(X ≥ k) (http://en.wikipedia.org/wiki/
Hypergeometric distribution). If the P-value of the enrich-
ment for a pathway or a GO term is <0.05, then we regard
that this pathway or GO function is significantly enriched in
the SSN of this single sample. Otherwise, we regard that the
pathway or GO function is not enriched in the SSN. Subse-
quently, the functional association of the SSN and somatic
mutations in the same sample can be defined as the num-
ber of shared pathways in KEGG or functions of the GO
terms between the enriched pathways or GO terms of the
SSN and each SMG. The genes with the same number as
that of the SSN were then randomly chosen from this single
sample, and the enriched pathways or GO terms were again
identified by the hypergeometric test. The functional associ-
ation between these randomly chosen genes and the SMGs
of this sample was separately obtained based on KEGG and
GO, and the random functional association was compared
with the actual functional association between the SSN and
somatic mutations of this sample. This permutation was re-
peated 1000 times. The proportion, in which the random
functional association is more than the actual functional

http://en.wikipedia.org/wiki/Hypergeometric_distribution
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association, is defined as the functional distance between
the SSN and SMGs for this single sample. If the proportion
is <0.05, we consider the functional distance to be signif-
icant for this sample; otherwise, the functional distance is
not significant for this sample. The significant samples of
the functional distance were identified by testing the func-
tional distance between SSN and mutation genes (SMGs
and DMGs) on KEGG pathways and GO terms for every
sample in various types of cancer.

Classification of phenotypes and subtypes of cancer

A 5-fold cross-validation was conducted for the classifica-
tion of phenotypes by the ‘ksvm’ package in Bioconductor
(http://www.bioconductor.org/) for the R language to im-
plement the function of SVM (supporting vector machine),
and the ROC (receiver operating characteristic) curve is
drawn by the ‘ROCR’ package in Bioconductor for the R
language. The hierarchical clustering was also used to clas-
sify the phenotype in the R language.

For the subtype of cancer, the top 100 nodes (differen-
tially expressed genes) or edges (�PCCs) with standard de-
viations were chosen for the consensus clustering and the
‘ConsensusClusterPlus’ package in Bioconductor for the R
language was used to perform the consensus clustering. The
‘survival’ package in Bioconductor was used to calculate the
log-rank value of the survival curve.

Cell culture and siRNA transfection

The NSCLC (non-small cell lung cancer) cell line PC9
expressing the EGFR (epidermal growth factor receptor)
exon 19 deletion mutation was purchased from ATCC
(Manassas, VA, USA) and was grown in RPMI 1640
medium Supplementary with 10% fetal bovine serum. The
gefitinib-resistant cell line derived from PC9 (PC9-DR) was
established by treating PC9 cells with gefitinib continuously
for 3 months. siRNA (small interfering RNA) transfection
was performed using RNAimax (Life Technologies, Carls-
bad, CA, USA) following the manufacturer’s protocol. Two
siRNAs were used for each gene.

Constructing SSNs for PC9 and PC9-DR

The expression profiles of PC9 and PC9-DR were de-
tected by a Human Genome U219 Array (Affymetrix, Santa
Clara, CA, USA) and two repeats for both PC9 and PC9-
DR were performed in this study. Sixty normal samples
were chosen from the GSE19804 dataset (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE19804) as the ref-
erence samples for constructing the reference network. Two
PC9 SSNs and two PC9-DR SSNs were then separately
constructed based on the reference network and the ex-
pression profiles of PC9 and PC9-DR. We only chose the
correlation-gained edges (Supplementary Data Note S9)
from these SSNs for the functional validation experiments
(due to gene knockdown experiments). After filtering the
correlation-lost edges (Supplementary Data Note S9), the
overlapped network of two PC9 SSNs was taken as the SSN
of PC9 and the overlapped network of two PC9-DR SSNs
was taken as the SSN of PC9-DR. Subsequently, the differ-
ential network (6) between the SSNs of PC9 and PC9-DR

was constructed by subtracting the SSN of PC9 from that
of PC9-DR (i.e. removing the common SSN edges of PC9
and PC9-DR from the SSN of PC9-DR). The high-degree
(>10) genes in the differential network were then selected as
potential genes for drug resistance. Clearly, all edges in this
differential network are the upregulated edges (correlation-
gained edges) from PC9 to PC9-DR.

Drug treatment and cell growth assay

Cells were plated in triplicate at a density of 3000 cells/well
in 96-well plates. The cells were then treated with 1 �M gefi-
tinib for 72 hours before 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2-H-tetrazolium bromide (MTT) staining. And
the cell growth assay was performed as previously described
(20).

shRNA experiments

The shRNAs (short hairpin RNA) against the genes were
subcloned into the pLKO.1 vector (Addgene, Cambridge,
MA, USA). The shRNA against the luciferase gene was
used as the control. The shRNAs were packaged in lentivi-
ral particles by co-transfecting with packaging plasmids
into 293T cells and the filtered cell culture supernatant was
further used to infect PC9-DR cells as previously reported
(21). 293T cells were cultured in DMEM with 8% FBS. The
shRNA sequences used are listed in Supplementary Table
S8.

Reverse transcription PCR and quantitative real-time PCR
(qPCR)

RNA was extracted using Trizol reagent (Invitrogen, Carls-
bad, CA, USA) and phenol/chloroform methods and then
reverse-transcribed into first-strand complementary DNA
with a RevertAid First Strand cDNA Synthesis Kit (Fer-
mentas, Waltham, MA, USA). Gene overexpression and
knockdown efficiency were detected by qPCR with gene-
specific primers using a 7500 Fast Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA) and SYBR
Green Master PCR Mix (Invitrogen). Glyceraldehyde 3-
phosphate dehydrogenase (human) served as an internal
control. The primers used for PCR are listed in Supplemen-
tary Table S8.

Statistical analysis

Statistical analysis was performed using a two-tailed Stu-
dent’s t-test.

RESULTS

Theoretical foundation of SSN

For the differential network, each edge is a �PCC and we
provide a quantitative measure to evaluate its statistical sig-
nificance. Assuming that there are n samples for the group
of the given reference samples, we refer to the PCCs of an
edge in the reference network with n samples and the per-
turbed network with n + 1 samples (due to one additional
test sample) as PCCn and PCCn + 1, respectively. Then, the

http://www.bioconductor.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19804
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�PCC of the edge between the reference and perturbed net-
works is �PCCn = PCCn + 1–PCCn. We can show that the
mean and standard deviation of �PCCn for the population
are μ�PCC = O(1/n2) ≈ 0 and σ�PCC = (1 − PCC2

n )/(n −
1) + O(1/n3/2) ≈ (1 − PCC2

n )/(n − 1) with a large n, where
O(1/n) implies the term with the order of 1/n. It is well
known that the p value of PCCn can be evaluated by Stu-
dent’s t test with n − 2 degrees of freedom (Supplementary
Data Note S2), i.e.,

t = PCCn√
1−PCC2

n
n−2

. (1)

In this work, we can theoretically further show that the
P-value of such �PCC follows a new type of symmetrical
distribution defined as ‘volcano distribution’ in this paper
(Supplementary Data Note S3), whose tail regions are sim-
ilar to those of the normal distribution. Hence, the statisti-
cal hypothesis test Z-test (or U-test) can be used to evaluate
the significance level of each �PCC because of the central
limit theorem (22). The null hypothesis is that the �PCCn is
equal to the population mean of �PCCn, and thus we have,

Z = �PCCn − μ�PCC

σ�PCC
= �PCCn

1−PCC2
n

n−1

. (2)

From Equation 2, the P-value for the edge can be ob-
tained from the statistical Z-value (Figure 2A). If the P-
value of the Z-test is <0.05, then the �PCC or this edge
is significant and there is such an edge in the SSN. Clearly,
different numbers of control samples and the correlation of
the reference edge will yield a different significance of the
edge in the SSN, even with the same value of the �PCCn.

For validation of Equation 2, we randomly generated
two series of reference numbers (i.e. the expression of two
molecules) to estimate their correlation as an edge based on
multivariate normal distribution with the different correla-
tion PCCn = 0, 0.1 to 0.9 of the two series of numbers by the
‘Numpy’ package (http://www.numpy.org/). The number or
length n of the two series was changed from 5 to 200 (i.e. the
number of the reference samples). For every pair of n and
PCCn, the random digital simulation was repeated 2 000 000
times, where the value of �PCCn with a P-value of 0.05 in
the two-tails area was selected from every distribution of
simulation, i.e. the significant value (Figure 2C, the red line
and Supplementary Figure S2). As shown in Figure 2B (n =
100), the distribution of �PCCn follows a new type of distri-
bution defined as volcano distribution, whose tail areas are
similar to those of a normal distribution in a random condi-
tion. At the same time, the significant value of �PCCn with
the P-value of 0.05 can also be obtained from the theoreti-
cal calculation (Figure 2C, the blue line and Supplementary
Figure S3), i.e. Equation 2, where �PCCn in the area above
the curve is statistically significant with a P-value of < 0.05
(Figure 2C). The simulated and theoretical curves, i.e. the
values of �PCCn for the random simulation and the theo-
retical calculation of Equation 2 with the P-value of 0.05 are
almost identical (Figure 2C, and in particular, Supplemen-
tary Figures S2 and 3 for all n and PCCn) with little differ-
ence, which well validates Equation 2 of the SSN method.

Note that we can also directly use the volcano distribution
for the significance test in an accurate manner.

Theoretical relations between differential correlations and
differential expression

We first define three types of edges in a network when
there is a sample in addition to the reference samples; (i)
the correlation-gained edge is the edge whose correlation
or PCC in the absolute value is increased from the refer-
ence samples to the single sample, (ii) the correlation-lost
edge is the edge whose correlation or PCC in the absolute
value is decreased from the reference network to the single
sample and (iii) the correlation-invariant edge is the edge
whose correlation or PCC in the absolute value exhibits lit-
tle change from the reference network to the single sample.

We assume that there are two genes X and Y; the expres-
sions of X and Y in the reference samples are Xr and Yr with
r = 1,. . . , n; the expressions of X and Y in the single sample
is XS and YS; the differential expression of X is ΔX = XS
−X̄R and the differential expression of Y is ΔY = YS −ȲR ,
where X̄R and ȲR are average values of X and Y in the refer-
ence samples, respectively. Based on the analysis in Supple-
mentary Data Note S9, when the number of the reference
samples, i.e. n, is sufficiently large, we can theoretically de-
rive the following relations between differential correlation
ΔPCCn and differential expression of X and Y:

�PCCn

�x2 + �y2
≈ 1

n − 1

[
�x�y

�x2 + �y2
− PCCn

2

]
, (3)

or

�PCCn ≈ 1
n − 1

[�x�y − PCCn

2
(�x2 + �y2)], (4)

where �x and �y are �X and �Y normalized by the refer-
ence samples, defined as follows:

�x = �X√
n∑

r=1
(Xr −X̄R)

2

n−1

,�y = �Y√
n∑

r=1
(Yr −ȲR)

2

n−1

.

From the above Equations 3 and 4, we can obtain Supple-
mentary Tables S6 and 7, which describe the various cases
between �PCC and differential expression of X and Y, and
a graphical explanation is also given in Supplementary Fig-
ure S14. The details of the different gene expression levels
for a single sample affecting the correlation are given in Sup-
plementary Data Notes S9 and 10 with Supplementary Ta-
bles S6 and 7.

SSNs reveal common network patterns for cancers at molec-
ular level

We chose the datasets of nine different types of cancer
from the TCGA (http://cancergenome.nih.gov/) database
(Supplementary Table S1 and Supplementary Data Note
S1) with gene expression profiling and matched clinic in-
formation. For each type of cancer, 8–17 normal samples
were selected as the reference samples (Supplementary Ta-
ble S1) and every single cancer sample was used to con-
struct its SSN (Figure 1 and Supplementary Table S2). We

http://www.numpy.org/
http://cancergenome.nih.gov/
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collected the expression data and clinic information of the
nine types of cancer, and detailed information for the num-
bers of control and cancer samples is given in Supplemen-
tary Table S1. The SSN for each sample was constructed
for all cancer datasets, and only the correlation-lost edges
(see Supplementary Data Note S9), whose correlations in
absolute values decrease from the reference to this sample,
were chosen to perform the following analysis. We focused
here on the analysis of the sample-specific subnetworks with
correlation-lost edges related to tumor protein p53 (TP53),
which is a crucial gene in cancer, to demonstrate the power
of this analysis for characterizing the personalized features
(Figure 3). The subnetwork of TP53 is composed of genes
directly connected with TP53, or its first-order neighboring
genes. Figure 3A shows the subnetworks of TP53 from four
breast invasive carcinoma (BRCA) samples, which clearly
characterize their individual features at the network level.
Although most edges in the four subnetworks of TP53 are
different from each other, the associations between TP53
and both MUC1 and CCNB1 exist in all four subnetworks
(Figure 3A). In fact, by analyzing subnetworks of TP53
for all 761 samples in breast cancer, we found that there
is an association between TP53 and MUC1 in 65.18% of
breast cancer samples, and an association between TP53
and CCNB1 in 64.52% of breast cancer samples (Supple-
mentary File S1). In other words, for 65.18% of individu-
als with breast cancer, the correlation between TP53 and
MUC1 has a significant loss in the cancer status and the
correlation between TP53 and CCNB1 has been lost in the
cancer status for 64.52% of individuals with breast cancer.
MUC1 is a known marker for breast cancer (23), and it
associates with TP53 (24,25) and plays an important role
in breast cancer (26,27). CCNB1 is an important known
marker for breast cancer, and it was reported to be related
with TP53 (28,29) and have important implications for can-
cer prognosis (30,31).

By analyzing the gene expression of the four breast can-
cer samples, we found that TP53 is significantly upregulated
only in two (BRCA A0B0 and BRCA A25A) of the four
samples, as compared with its expression in the reference
samples and the gene expression of TP53 was not signif-
icantly changed in the other two samples (BRCA A0HO
and BCRA A0DP) compared with the reference samples,
but MUC1 was significantly upregulated in all four sam-
ples. The correlation between TP53 and MUC1 takes a pos-
itive value relative to the reference samples, and the correla-
tion coefficient is significantly decreased in the four samples.
Thus, we called the relationship between TP53 and MUC1
in breast cancer ±UU (Positive Correlation Decreases due
to X Upregulation and Y Upregulation, TP53 as Y, see
Class-5 in Supplementary Data Note S10 and Supplemen-
tary Table S6) for sample BRCA A0B0 and BRCA A25A
and ±*N (Positive Correlation Decreases due to X Upregu-
lation and Y No change, TP53 as Y, see Supplementary Ta-
ble S6) for sample BRCA A0HO and BRCA A0DP (Sup-
plementary Data Note S10). The gene CCNB1 is also sig-
nificantly upregulated in all four samples. The correlation
between TP53 and CCNB1 takes a positive value based on
the reference samples, and the correlation coefficient is sig-
nificantly decreased in the four samples. Thus, we called
the relationship between TP53 and CCNB1 ±UU for sam-

ples BRCA A0B0 and BRCA A25A, and ±*N for samples
BRCA A0HO and BRCA A0DP (TP53 as Y, Supplemen-
tary Data Note S10 and Supplementary Table S6).

On the other hand, in the subnetworks of TP53 for kid-
ney renal clear cell carcinoma (KIRC), the network patterns
or targets of TP53 are also diverse and individual dependent
(Figure 3B), but there are three consistent edges connected
with VEGFA, IGFBP3 and MUC1 in all four subnetworks
of TP53. By analyzing all individual-specific subnetworks
of TP53 for 418 kidney cancer samples, we found the edge
with VEGFA in 94.74% of SSNs, the edge with IGFBP3 in
92.34% of SSNs and the edge with MUC1 in 87.32% of
SSNs (Supplementary File S1). This means that the edge
between TP53 and VEGFA among 94.74% of samples, the
edge between TP53 and IGFBP3 among 92.34% of samples
and the edge between TP53 and MUC1 among 87.32% of
samples have significant loss of correlation, or these asso-
ciations in most kidney cancer samples suffer from signif-
icant loss compared with normal samples, i.e. they are the
common network patterns related to TP53 in kidney can-
cer. The VEGFA gene is an important growth factor acting
in kidney cancer (32,33), the IGFBP3 gene is a cell growth
factor and an important marker in kidney cancer (34,35),
and the MUC1 gene affects invasive and migratory proper-
ties of kidney cancer cells and is a potential therapeutic tar-
get (36). From the above analysis, the abnormal interactions
of TP53 with VEGFA, IGFBP3 and MUC1 are considered
to be potential factors contributing to kidney cancer.

By analyzing the gene expression of the four kid-
ney cancer samples, we found that in three (KIRC 2444,
KIRC 3362 and KIRC 5457) of the four samples TP53
is significantly upregulated relative to the reference sam-
ples and the gene expression of TP53 did not significantly
change only in sample KIRC 4807, and the VEGFA gene
is significantly upregulated in all four samples. The corre-
lation between TP53 and VEGFA takes a negative value
based on the reference samples, and the correlation coef-
ficient is increased (loss of negative correlation) in the four
samples. Thus, we called the relationship between TP53 and
VEGFA ±UU (Negative Correlation Increases due to X
Upregulation and Y Upregulation, TP53 as Y) for samples
KIRC 2444, KIRC 3362 and KIRC 5457, and ±*N (Nega-
tive Correlation Increases due to X Upregulation and Y No
change, TP53 as Y) for sample KIRC 4807. The IGFBP3
gene is significantly upregulated in all four samples, the cor-
relation between TP53 and IGFBP3 takes a positive value
based on the reference samples, and the correlation coeffi-
cient is decreased (loss of a positive correlation) in all four
samples. Thus, we called the relationship between TP53 and
IGFBP3 ±UU for samples KIRC 2444, KIRC 3362 and
KIRC 5457 and ±*N for sample KIRC 4807. The gene
MUC1 is downregulated in all four samples, the correla-
tion between TP53 and MUC1 takes a positive value based
on the reference samples, and the correlation coefficient is
decreased (loss of positive correlation) in all four samples.
Thus, we called the relationship between TP53 and MUC1
in kidney cancer ±DU (Positive Correlation Decreases due
to X Downregulation and Y Upregulation, TP53 as Y)
for samples KIRC 2444, KIRC 3362 and KIRC 5457 and
±*N (Positive Correlation Decreases due to X Downregu-
lation and Y No change, TP53 as Y) for sample KIRC 4807
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Figure 3. Individual-specific networks characterize personalized features and also reveal common network patterns for cancer. (A) The four individual-
specific subnetworks of tumor protein p53 (TP53) from four samples for breast invasive carcinoma (BRCA). The numbers of the connections with TP53
for the four samples are respectively 8, 7, 6 and 7, and the genes linked to TP53 are also different in the four samples, i.e. DDB2 for BRCA A0B0, CHEK1
for BRCA A25A, IGF1R for BRCA A0HO and ESR1 for BRCA A0DP are unique genes for the respective subnetworks of the four samples. However,
MUC1 and CCNB1 (the yellow color) are common genes appearing in the four subnetworks. Actually, we found that 65.18% of BRCA samples include a
significant connection (the bold lines) between TP53 and MUC1, and 64.52% of BRCA samples include a significant connection (the bold lines) between
TP53 and CCNB1. i.e. these connections have a significant loss of correlation between BRCA and normal samples, and are the common network pattern
related to TP53. (B) The individual-specific subnetworks of TP53 from four samples for kidney renal clear cell carcinoma (KIRC). There are different
targets and numbers connected with TP53 in the four samples of KIRC. Three genes, VEGFA, IGFBP3 and MUC1 (the yellow color) appeared in all four
samples (the bold lines). Actually, we found that 94.74% of KIRC samples have a significant loss of correlation for connection between VEGFA and TP53,
92.34% of KIRC samples have a significant loss of correlation for connection between IGFBP3 and TP53, and 87.32% of KIRC samples have a significant
loss of correlation for connection between MUC1 and TP53, which are the common network patterns related to TP53.

(Supplementary Data Notes S9 and 10 and Supplementary
Table S6).

Here, the loss of correlation means that the correlation
in terms of the absolute value decreases from the reference
samples.

SSNs characterize personalized features and also reveal dif-
ferent regulatory patterns of driver genes in cancer

Each cancer sample has its own individual-specific patho-
genesis. We used the individual-specific subnetworks related
to the DMG TP53 as an example to show the personalized
features and regulatory patterns for various types of cancer.

The samples were selected from stomach adenocar-
cinoma (STAD), BRCA and glioblastoma multiforme
(GBM), and the subnetworks of TP53 are shown in Figure 4
and Supplementary Figures S4–6, where each network is the
individual-specific subnetwork for one sample. We classified
the edges into two types, i.e. one is the correlation-gained
edges (the red lines) whose PCCs are increased from the
reference network with positive correlation coefficients or
decreased from the reference network with negative corre-

lation coefficients and another is the correlation-lost edges
(the green lines) whose PCCs are decreased from the ref-
erence network with positive correlation coefficients or in-
creased from the reference network with negative correla-
tion coefficients. For STAD, there are almost equal num-
bers of the correlation-gained and correlation-lost edges in
the TP53 subnetwork (one sample in Figure 4A and four
samples in Supplementary Figure S4). Actually, on aver-
age from all 183 STAD samples, there are 28.37 increas-
ing edges and 28.89 decreasing edges, which means that
TP53 as a driver gene affects both the correlation-gained
and correlation-lost edges in STAD. For BRCA, the number
of the correlation-lost edges is obviously greater than that of
the correlation-gained edges in the TP53 subnetwork (one
sample in Figure 4B and four samples in Supplementary
Figure S5). On average from all 761 BRCA samples, there
are 2.22 correlation-gained edges and 26.34 correlation-lost
edges; this implies that the interaction partners of TP53
are significantly reduced in BRCA, which is a general fea-
ture of BRCA. In contrast, for GBM, the number of the
correlation-gained edges is much greater than that of the
correlation-lost edges for TP53 subnetworks (one sample
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Figure 4. Individual-specific networks related to driver gene tumor protein p53 (TP53) reveal the regulatory patterns in different types of cancer. (A)
The individual-specific subnetwork of TP53 in sample 4255 from stomach adenocarcinoma (STAD). (B) The individual-specific subnetwork of TP53
in sample A0CV from BRCA. (C) The individual-specific subnetwork of TP53 in sample 2574 from glioblastoma multiforme. The network analyses
related to the driver gene TP53 not only reveal the personalized features of each sample but also indicate that each cancer type has a specific regulatory
pattern. The red and green lines represent the correlation-gained and correlation-lost edges, respectively. The green node indicates an oncogene from NCBI
(http://www.ncbi.nlm.nih.gov/).

in Figure 4C and four samples in Supplementary Figure
S6). On average from 333 GBM samples, there are 120.24
correlation-gained edges and 24.02 correlation-lost edges
for the driver gene TP53, which characterizes the regula-
tory patterns of GBM and means that interaction partners
of TP53 are significantly increased. TP53 may promote tu-
mor onset by mainly inducing the correlation-gained edges
in GBM. It is consistent with the report that TP53 is gain-
of-function in GBM (37,38).

SSNs validated by literature

In addition to the descriptions in the preceding section, our
findings for many other differential associations or regula-
tions between normal and cancer samples are also consis-
tent with previous reports. ESR1 (estrogen receptor 1) is an
important factor for the pathological process of breast can-
cer. We found a significant loss of correlation between TP53
and ESR1 in 42.97% of breast cancer samples compared
with the normal reference samples. Indeed, the ESR1 gene

was found to be upregulated by TP53 in the breast cancer
cell line MCF-7 (39,40). The overexpression of ESR1 could
cause the observed loss of correlation in breast cancer sam-
ples.

TP63 (tumor protein p63) is a member of the p53 family
of transcription factors, and the correlation between TP63
and TP53 is usually low in normal lungs. A recent study
showed a high frequency of co-expression between TP53
and TP63 in lung squamous cell carcinoma, but not in lung
adenocarcinoma (LUAD) (41). Coincidentally, our analy-
sis showed that despite low or even no correlation between
TP53 and TP63 in the reference and normal samples, 74.2%
of lung squamous cell carcinoma samples showed a signif-
icant gain in correlation compared with the reference sam-
ples, whereas only 6.5% of LUAD samples showed a sig-
nificant correlation variation compared with the reference
samples.

The CDC25C (cell division cycle 25C) gene is involved in
the regulation of cell division. It is well known that CDC25C

http://www.ncbi.nlm.nih.gov/
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regulates cellular entry into mitosis in the G2/M phase (42),
and its expression is also regulated by TP53 (43). Hence, the
abnormal regulation between TP53 and CDC25C may dis-
rupt the regulation of CDC25C by TP53, and render the
cell cycle and cell division out of control. The correlation
between TP53 and CDC25C is 0.52 (the P-value of signif-
icant PCC is 0.04) in the reference samples, which is sig-
nificantly high. However, 52.04% of breast cancer samples
showed a significant loss of correlation (decreasing corre-
lation coefficient) between these two genes compared with
the reference samples. This result is consistent with those of
previous studies, i.e. it was found that CDC25C expression
is regulated by TP53 (43) in normal samples, but in breast
cancer its expression and that of its splice variants are not
dependent on TP53 (44).

SSNs validated as personalized features by disease gene en-
richment, individual somatic mutations, functional analysis
and pathway enrichment

SMGs of cancer that provide individual-specific informa-
tion for each sample (45) can be used to validate SSNs and
our method (45). Specifically, we measured the relationship
between the SSN and the SMGs (Supplementary Data Note
S4) in the same sample to validate the sample specificity of
each SSN. The topological distance (‘Materials and Meth-
ods’ section and Supplementary Data Note S5) and func-
tional distance (‘Materials and Methods’ section and Sup-
plementary Data Note S6) between an SSN and a set of
SMGs were used to measure their relationships for every
sample in various cancer datasets. As shown in Figure 5A,
the topological distance between the SSN and correspond-
ing SMGs is significantly small in more than 99% of samples
on average in each cancer, i.e. they are significantly related
to each other, which implies that the SSN is indeed sample
specific and reflects the personalized features. From a func-
tional viewpoint, there are more than 72% of samples on av-
erage in all cancers in which each SSN and the correspond-
ing somatic mutations are significantly related in terms of
the functional distance of GO annotations (Figure 5B and
Supplementary Table S3), and more than 63% of samples
on average of all cancers, in which each SSN and the cor-
responding somatic mutations are significantly related in
terms of the functional distance in KEGG pathways (Fig-
ure 5B and Supplementary Table S3). In most of the sam-
ples, the SSN and somatic mutations are also significantly
related in terms of the functional distance in the Biolog-
ical Biochemical Image Database (http://bbid.grc.nia.nih.
gov/) and BIOCARTA (http://www.biocarta.com/) path-
ways (Supplementary Table S3). In addition to the somatic
mutations, the driver mutations of cancer (Supplementary
Data Note S4) are also individual-specific mutations, and
currently, 125 DMGs have been determined for cancer (46).
Then, instead of using SMGs, we similarly performed an-
other analysis using the overlapped genes between the 125
DMGs and SMGs as a set of the driver genes in each sam-
ple for measuring the relationships. Figure 5A–C show that
the results for the driver genes are similar to those for the
SMGs, but are more significant in the functional distance
analysis (Figure 5C). In particular, comparing with 63% of
samples on average as shown in Figure 5B, there are more

than 94% of samples on average in which each SSN and
the DMGs are significantly related in terms of the KEGG
pathways (Figure 5C and Supplementary Table S3). These
results indicate that the SSN is indeed sample specific and
characterizes the personalized features of each sample at the
network level. Note that we also performed the multiple-test
correction, i.e. the Bonferroni correction, and the results
have no significant differences from the above analyses.

The known cancer genes can be downloaded from
the CGC (Cancer Gene Census, http://cancer.sanger.ac.uk/
cosmic/census) database and the GAD (Genetic Associ-
ation Database, http://geneticassociationdb.nih.gov/), and
the enrichment of an SSN relative to the known cancer
genes can be used to validate its functional specificity (Sup-
plementary Data Note S7). The result shows that the known
cancer genes in the CGC database are significantly enriched
in all of the SSNs in the cancer datasets (Figure 5D). For
genes in GAD, we chose the cancer-associated genes and
then evaluated the significance of enrichment for each SSN
(Figure 5D and Supplementary Data Note S7); our results
clearly show that the corresponding cancer genes are signif-
icantly enriched in most SSNs.

SSNs predict individual driver mutations for cancer solely
based on gene expression without DNA sequence information

A hub node in an SSN is a gene that is highly connected
with other genes (a gene with a high degree or with many
links). Generally, the higher the gene degree in an SSN, the
greater the variations or changes in the regulation related
to this gene from normal to tumor samples, i.e. a gene with
a high degree is a gene with large variations in interactions
on a network level. Thus, a high-degree gene in the SSN
is more likely to be a DMG for cancer. Based on this hy-
pothesis, we predicted the DMGs for the genes with differ-
ent degrees in SSNs (Supplementary Data Note S8), and
found that the higher the gene degree, the more likely this
gene is a DMG (Figure 5E). We conducted the computation
for the top 30, 20, 10 and 5 highest degree genes for every
SSN, and the rate that a gene with the high degree is also
a DMG was calculated for every cancer by further check-
ing the somatic mutation data of the genes. Clearly, from
the top 30 highest degree genes the rate is monotonically
increased (Figure 5E). For example, within the top 30 high-
est degree genes, about a half of those SMGs (51.23% rate)
are DMGs for stomach cancer (STAD) in Figure 5E. With
the top five highest degree genes, 84.44% of those SMGs are
DMGs. However, in the random condition, only 2.71% of
SMGs are DMGs in STAD (Figure 5E). Clearly, these re-
sults indicate that the hub genes in an SSN are strongly re-
lated to the driver mutations in the same sample, and thus
can be used to predict the potential driver genes (including
driver mutation and driver non-mutation genes, also called
functional driver genes) on an individual basis for each sam-
ple, even without its DNA sequence information. As shown
in Figure 5E, the accuracy of the prediction of the DMGs
increases with the degree of the hubs in SSNs. These re-
sults also imply that high-degree genes in the network are
high-risk genes that are more likely to be related to the tu-
mor onset than other genes. The potential driver genes for
each sample (Supplementary File S2) were obtained from

http://bbid.grc.nia.nih.gov/
http://www.biocarta.com/
http://cancer.sanger.ac.uk/cosmic/census
http://geneticassociationdb.nih.gov/
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Figure 5. Validating individual-specific networks and predicting driver mutation genes (DMG) in different types of cancer. (A) The proportion of significant
samples in terms of the topological distance between a sample’s SSN and its mutation genes (SMGs and DMGs). The x-axis is the nine types of cancer
and the y-axis is the percentage of significant samples in terms of the topological distance for somatic mutation genes (SMGs) (the blue color) and DMGs
(the red color) in various types of cancer. (B) The proportion of significant samples in terms of the functional distance between a sample’s SSN and its
SMGs. The x-axis is the nine types of cancer and the y-axis is the percentage of significant samples in terms of the functional distance for SMGs on GO
terms (the blue color) and KEGG pathways (the red color) in various types of cancer. (C) The proportion of significant samples in terms of the functional
distance between one sample’s SSN and its DMGs. The x-axis is the nine types of cancer and the y-axis is the percentage of significant samples in terms
of the functional distance for DMGs on GO terms (the blue color) and KEGG pathways (the red color) in various types of cancer. (D) The proportion of
significant samples in the enrichment analysis of known cancer genes for each SSN in the database of Cancer Gene Census (CGC) and Genetic Association
Database (GAD). The x-axis is the nine types of cancer and the y-axis is the percentage of significant samples in the enrichment analysis of known cancer
genes in the database of CGC (the blue color) and GAD (the red color). The results in A–D show that each SSN is significantly related to the mutations
of the same sample in terms of the topological and functional distances, and indeed characterizes the personalized features of the individual. (E) The
proportion of SMGs to be DMGs in top 30, 20, 10 and 5 highest degree genes of SSN and random genes. Predicting individual DMGs by each SSN in
various types of cancer. The rate that a SMG with a high degree is also a DMG increases in each SSN, and thus the accuracy of the prediction increases
with the degree. The x-axis is the nine types of cancer and the y-axis is the percentage of SMGs to be DMGs in top 30 (the blue color), 20 (the red color),
10 (the green color) and 5 (the purple color) highest degree genes of SSN and random genes (the cyan color) in various types of cancer.

the top 10 high-degree genes in the SSN of each sample.
The functional enrichment analysis was performed for the
potential driver genes of each sample using known DMGs
and oncogenes from NCBI (http://www.ncbi.nlm.nih.gov),
and we found that the known DMGs (46) and oncogenes
were significantly enriched (Supplementary Figure S7). The
significant enrichment of the known DMGs and oncogenes
in the potential driver genes of most samples for every can-
cer clearly indicates that the SSN method is valid for pre-

dicting driver genes of cancer solely based on gene expres-
sion without DNA sequence information. In other words,
the SSN method provides an effective strategy for person-
alized medicine, enabling the prediction of potential driver
genes or potential oncogenes for a specific patient based on
single-sample data.

http://www.ncbi.nlm.nih.gov
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SSNs classify phenotypes of cancer and identify subtypes of
cancer by network biomarkers for accurate diagnosis

Molecular networks are reliable forms to accurately charac-
terize complex diseases, in contrast to individual molecules.
Many network-based approaches have been proposed to
extract a discriminative gene set as a biomarker for the
classification of samples with distinct phenotypes by con-
sidering network information, but when diagnosing a new
sample, such a gene set is simply used in a similar way
to traditional molecular biomarkers without effectively ex-
ploiting the network information of that sample. In this
sense, those biomarkers are not network biomarkers but
essentially molecule biomarkers. In contrast, our method
can construct the SSN for each sample and therefore open
a new way for diagnosing a single sample by network
biomarkers, i.e. diagnose or classify each sample by the
SSN/subnetwork/edges.

We first used hierarchical clustering to classify the nor-
mal and tumor samples, by using the top five differentially
expressed genes (i.e. node biomarkers, by the traditional
method) and the top five differential edges or �PCCs for
SSNs (i.e. edge biomarkers, by our method) as the biomark-
ers. The edge biomarkers are clearly superior to node mark-
ers in terms of the accuracy of the classification of normal
and tumor samples (STAD) by hierarchical clustering, i.e.
there are only four samples for edge biomarkers but 29 sam-
ples for node markers, which were wrongly classified (top
five edge biomarkers with accuracy of 98.1% in Figure 6A,
and top five node biomarkers with accuracy of 86.5% in Fig-
ure 6B).

We then used the SVM model with 5-fold cross-validation
to classify the phenotypes or samples for various types of
cancer. When we chose the top five differentially expressed
genes and edges as the biomarkers to classify the normal
and tumor samples, we found that the area under the curves
(AUCs) for edge biomarkers and node biomarkers are re-
spectively 99.66 and 99.65% for LUAD, and thus the accu-
racies of both are very similar and high (Figure 6C LUAD
and Supplementary Figure S8 for the other eight types
of cancer). However, for the same data of LUAD, when
we chose the bottom five differential-expression genes and
edges as the biomarkers to classify the two phenotypes, the
AUC for edge biomarkers is still as high as 95.5% but the
AUC for node biomarkers is significantly reduced to 53.6%,
which implies that the edge biomarkers are robust and have
synergetic power in the classification, compared with the
node biomarkers (Figure 6D for LUAD and Supplementary
Figure S8 for the other eight cancers).

Subtyping cancer is an important topic in recent cancer
research, and most subtyping methods mine the informa-
tion based on expression of genes, rather than individual
networks. Here, although a sophisticated algorithm may
considerably improve the accuracy, we used a simple sub-
typing method (47) to identify the potential subtypes in dif-
ferent types of cancer separately based on gene expression
data (i.e. node biomarkers, top 100 variable genes) and SSN
data (i.e. network/edge biomarkers, top 100 variable edges)
by package ‘ConsensusClusterPlus’ in Bioconductor. The
log-rank P-value of the survival curve was then used to eval-
uate the effect of the cancer subtyping. The numbers of sub-

types for various types of cancer were referred to the follow-
ing publications for BRCA (48), KIRC (49), LUAD (50),
ovarian serous cystadenocarcinoma (50) and uterine cor-
pus endometrial carcinoma (50). As shown in Figure 6E,
the accuracy (the P-value) of subtype identification by our
edge biomarkers (i.e. differential �PCCs) is superior to the
traditional node biomarkers (i.e. differential genes), which
demonstrates that the information of associations on an in-
dividual basis is useful and powerful in subtype identifica-
tion of complex diseases.

The functional driver genes from SSN

A mutation driver is a mutation that can confer growth ad-
vantage to the cell and be positively selected on cancer oc-
currence (51). However, known DMGs are mutated in many
cancer samples and the existing driver mutations cannot ex-
plain all cancer onsets and typically have low coverage in
cancer samples. Thus, in this work, we developed the con-
cept of functional driver genes, whose dysfunction will ben-
efit the formation or maintenance of the cancer occurrence
with or without somatic mutations. The dysfunction can be
measured by the changes in associations or a network be-
tween the reference samples and the single sample, and thus
the functional driver genes can be obtained by analyzing the
SSN.

The high-degree genes in the SSN are important features
for a cancer sample, and characterize their importance in
the dysfunctional network or SSN of the single sample. Ac-
tually, they are also strongly related to the mutation driver
genes in the individual sample (Figure 5E). Thus, the high-
degree genes in the SSN can be considered as a measure-
ment of the functional driver genes from the network view-
point, and they may play an important functional role in the
SSN for cancer occurrence and have the ability to drive the
normal cell to a cancerous phenotype, similarly to mutation
driver genes.

SSNs can be used to detect the functional drivers solely
based on the expression data, even without the sequence
information (i.e. without mutation information). We col-
lected all of the top five highest degree genes, which are re-
garded as the potential functional driver genes of each sin-
gle sample, for every sample in various types of cancer. The
genes that appeared in at least five samples were chosen as
the functional driver genes of this kind of cancer (Supple-
mentary Table S4), and were further validated as the poten-
tial disease genes by their mutation ratio in the cancer ge-
nomic data of TCGA with cBioPortal (52). That is, we com-
pared the ratio of the number of samples with mutations
in these potential disease genes against the number of total
samples (the blue color, Supplementary Figure S9), and the
ratio of the number of samples with mutations in random
genes (with the same number as the potential disease genes)
against the number of total samples (the orange color, Sup-
plementary Figure S9). The result shows that there is an
obviously higher mutation ratio for these functional driver
genes than random genes in cancer samples of TCGA. This
result implies that the functional driver genes tend toward
mutation or dysfunction in cancer samples.
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Figure 6. Classifying phenotypes and cancer subtypes. (A) The classification of cancer (183 samples, the green bar) and normal (33 samples, the red bar)
samples by hierarchical clustering of the edge biomarkers (top five differential edges or differential �PCCs by our method) for STAD with 98.1% accuracy.
(B) The classification of normal and cancer samples by hierarchical clustering of the node biomarkers (top five differential genes by the traditional method)
for STAD with 86.5% accuracy. (C) The classification result of using the top five differential genes and edges for lung adenocarcinoma (LUAD). (D) The
classification using the bottom five differential genes and edges for LUAD. (E) The log-rank P-value of the survival curve for the subtyping in BRCA,
uterine corpus endometrial carcinoma (UCEC), KIRC, LUAD and ovarian serous cystadenocarcinoma (OV). We used the top 100 variable genes as
node biomarkers for subtyping cancer (the traditional method), and top 100 variable edges (or �PCCs) as edge biomarkers for subtyping cancer (our
method). All results show that individual-specific subnetworks or edge biomarkers are superior to the traditional node or molecular biomarkers in terms
of classification and subtyping.

Experiments validated that SSNs identified functional driver
genes contributing to drug resistance

Lung cancer is the leading cause of cancer-related deaths
worldwide, with NSCLC being the predominant form of
the disease (53). The EGFR signaling pathway, essential
for normal epithelial cell proliferation, is frequently deregu-
lated in lung cancer (54). EGFR kinase inhibitors, including
gefitinib and erlotinib, are clinically effective therapeutics
of NSCLCs with EGFR kinase domain mutations (55,56).
However, the clinical efficacy of gefitinib is limited by the
development of acquired drug resistance. Using the human
lung cancer cell line PC9 that harbors an EGFR kinase do-
main mutation and is sensitive to tyrosine kinase inhibitor
(TKI) treatment, and the TKI-resistant cell line (PC9-DR)
derived through long-term exposure to TKI, we performed

microarray analyses of gene expression. The expression pro-
files of PC9 and PC9-DR were obtained separately, and
then the two SSNs for PC9 and PC9-DR were both con-
structed based on the expression profiles and the reference
dataset from GSE19804 of the Gene Expression Omnibus
database (see ‘material and methods’ section), and only the
correlation-gained edges in the SSN were retained and used
for the following analysis. Their differential network (6) was
constructed by removing the common SSN edges of PC9-
DR and PC9 from the SSN of PC9-DR, and 59 candidate
genes as the potential functional driver genes were identi-
fied from the differential network based on the degree dis-
tribution (i.e. genes with degree >10 in the differential net-
work between the SSNs of PC9-DR and PC9) (Figure 7A,
Supplementary Figure S10 and Supplementary Table S5).
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Figure 7. Experimental identification of functional driver genes contributing to drug resistance in the lung cancer cell line PC9-DR. (A) The subnetwork
for the top 15 candidate genes. The node size indicates the degree of individual genes. The 15 candidate genes are highlighted as yellow, and other nodes are
the first-order neighbors (genes) with the top 15 candidate genes in the differential network between PC9 and PC9-DR. The detailed differential network is
provided in Supplementary Figure S10. (B) The basic information for the top 15 candidate genes. Gene symbols: the official symbol for each gene; Degree:
the degree of each gene in the differential network (or the number of neighbors for each gene); Fold change: the expression change of each gene from PC9
to PC9-DR; Significance to drug resistance: the significance of the result of drug resistance after gene knockdown. Clearly, none of the 15 genes exhibit
significant differential expression (0.66 < fold change < 1.5) and thus may not be identified by traditional statistical analyses, although most of them
actually show significant effects on drug resistance (11 genes among 15 candidate genes) in knockdown experiments. (C) The growth inhibition percentage
when either PC9 or PC9-DR cells with indicated gene knockdown were treated with 1 �M gefitinib for 72 h. PC9 siScramble was set as the positive control
and PC9-DR siScramble was set as the negative control. Data are shown as means ± SEM. **P < 0.01 and *P < 0.05. Note that all edges shown in (A)
are the upregulated edges (correlation-gained edges) from PC9 to PC9-DR.
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Interestingly, most of these genes did not show significant
expression changes between PC9-DR and PC9 and thus
might not be identified by classical methods that are gener-
ally based on differential gene expression (Supplementary
Table S5). To test the power of our methods, we then per-
formed individual gene knockdown of the top 15 candidates
with siRNA and analyzed their influence on cell growth
and drug response (Supplementary Figure S11). Our data
show that knockdown of these genes did not impact cell
growth in both PC9 and PC9-DR cells (Supplementary Fig-
ure S12). However, 73% of these genes (11 out of 15) were
identified as important regulators of drug resistance since
knockdown of any one of these 11 genes significantly con-
ferred the PC9-DR cells with sensitivity to gefitinib (Fig-
ure 7B and C). Among them, five genes (BRCA1, GRB2,
TGFBR1, CASP3 and CSNK2A1) showed the most signif-
icant effects when knocked down in PC9-DR cells (Fig-
ure 7B and C). Moreover, to compare with the analyti-
cal strategy that focuses on expression changes, we further
knocked down the top five upregulated genes (FAM171A1,
COL13A1, vimentin, BMP5 and CYB5R2) with shRNA
(The shRNA sequences used are listed in Supplementary
Table S8). However, none of these genes could overcome
drug resistance when knocked down (Supplementary Fig-
ure S13a). We also randomly chose 29 other genes to per-
form knockdown screening with siRNA, and PC9-DR cells
showed no significant difference in drug response after their
knockdown (Supplementary Figure S13b). Taken together,
our experimental data validate the effectiveness of the SSN
method, and demonstrated the superiority of SSNs in the
identification of genes important for drug resistance by con-
sidering individual networks. Our method is more power-
ful than the traditional differential expression methods for
identifying the functional driver genes.

DISCUSSION

The �PCC is the interferential degree of correlation of a
single sample perturbing the reference samples, and it de-
picts the changed degree of correlation by adding the sin-
gle sample to the reference samples. Thus, it describes the
difference in associations from a network viewpoint. If the
single sample can affect the correlation of two genes in the
reference samples with a significant change, the regulation
of two genes in the single sample is considered to be incon-
sistent with the regulation in the reference samples. This in-
consistency of regulation may be due to the differential gene
expression in either or both of the two genes, or caused by
a functional alteration, e.g. a mutation that cannot be iden-
tified by traditional testing of differential expression of the
genes. Therefore, �PCC testing is a more sensitive method
than the traditional differential expression testing, and can
identify the potential disease genes that even display no dif-
ferential expression from normal/control samples. In such a
sense, the SSN is complementary to the traditional methods
from the network perspective. In other words, those non-
differential expressed genes which are usually removed from
the traditional analyses may have rich information on dis-
eases, not at the gene expression level but at the network
level. Thus, similar to non-coding RNAs (or non-coding re-
gions of DNA) that are now considered as the ‘dark mat-

ter’ in sequence (57), our analysis shows that those non-
differential genes may play important roles in disease pro-
gression (or biological processes) and are actually the ‘dark
matter’ in expression (57).

A biological function is generally facilitated not by indi-
vidual molecules but by their regulations or molecular net-
works, which dynamically change with time and conditions.
Thus, identifying the condition-specific network or SSN is
crucial to elucidate molecular mechanisms of complex bi-
ological processes at a system level. However, although ex-
pression data or sequencing data provide information about
the profiles of molecules on a single-sample basis, there is
no effective method to construct a molecular network on
a single-sample basis. In this work we proposed a statisti-
cal method to construct the SSN for a single sample, which
opens a new way for both characterizing personalized fea-
tures and analyzing biological systems at a network level.
The analyses of TCGA data not only validated the effec-
tiveness of our method but also demonstrated that SSNs
can characterize the network patterns on a single-sample
basis. We also reported new discoveries for regulatory pat-
terns, personalized networks and edge biomarkers in several
cancer types.

Although a group of reference samples is required in our
method, it is generally available even in clinical practice and
also there is no strict condition on the reference samples.
Theoretically, the reference samples can be composed of
any type of samples, but choosing those reference samples
with distinct expression profiles from the test samples cer-
tainly increases the discriminatory power of its SSN. Actu-
ally, to check the robustness of the results against the differ-
ent choices of the reference samples, we tested breast can-
cer data from TCGA. There are 99 normal samples from
TCGA, and we randomly chose 17 normal samples from
these as a group of reference data. With these 17 randomly
chosen reference samples, we could then construct the SSN
for each cancer sample by our method and compared the
new SSNs with the old SSNs. We repeated the process 100
times, and obtained the average recurrence ratio of the edges
in the SSN from different reference samples. The compar-
ison results show that the average recurrence ratio of the
edges in the SSN from the different reference samples is as
high as 81.01%, which indicates that the method is stable
and robust with respect to the choice of the reference (or
normal) samples. Another test was also performed to check
the robustness of the SSN from different reference sample
sizes based on a breast cancer dataset. We randomly chose
15, 20, 30 and 50 normal samples from 99 normal samples
as reference samples, and calculated the SSN for all tumor
samples. The new SSNs were then compared with the old
SSNs from 17 control samples, and this test was repeated
100 times. The average recurrence rate of edges in the new
SSNs relative to the old SSNs from 17 control samples is
80.34, 82.38, 83.8 and 85.17% for reference sample sizes 15,
20, 30 and 50, respectively. As the number of reference sam-
ples increases, the standard deviation of these percentages
slowly decreases from 7.9% for 15 samples and 6.9% for 20
samples to 6.2% for 30 samples and 5.9% for 50 samples.
These results indicate that the method is robust and stable
for the different reference sample sizes. In addition, we stud-
ied the basic statistics of SSNs for BRCA with normal sam-
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ples as reference samples. The average size of the 99 SSNs
is 167.9 edges per SSN, and in contrast, that of SSNs for
761 disease samples is 2466.3 edges per SSN as shown in
Supplementary Table S2. Clearly, the sizes of the SSNs are
significantly different between normal and cancer samples.
The average number of the connected components for the
99 SSNs from normal samples is 62.11, while that for the
761 SSNs from disease samples is 209.94. Hence, the SSNs
of cancer samples have bigger network sizes and more con-
nected components than the SSNs of normal samples by
using the normal samples as reference samples.

The high-degree genes in the SSN represent important
features for a cancer sample, and are strongly related to the
DMGs in the individual sample, which may be beneficial
to personalized diagnosis and individualized treatment. We
show that the high-degree genes of an SSN can be used to
predict the DMGs for each sample, and the accuracy of the
prediction for the DMGs increases with the degree of the
gene in SSNs. This property implies that SSNs can be used
to detect the functional drivers solely based on the expres-
sion data even without the sequence information.

Generally, there are three types of perturbations for a hub
in an SSN, i.e. a hub in an SSN could be the result of (i) a
perturbation in the hub gene itself, (ii) a perturbation of its
interaction partners or (iii) a combination of both, although
there are few hub genes for the type ‘(i)’ among TCGA sam-
ples. Because a hub gene is generally connected with other
downstream and upstream genes through a feedback net-
work and it is impossible for a perturbation of the hub gene
not to affect downstream genes by regulation or upstream
genes by feedback, so there is few type ‘(i)’ in biological sys-
tems. On the other hand, types ‘(ii)’ and ‘(iii)’ are widely
observed in TCGA samples. Even for one hub gene in the
same disease, there are both types ‘(ii)’ and ‘(iii)’. For exam-
ple, TP53 has no differential expression in samples A0HO
and A0DP in breast cancer (Figure 3A), i.e. TP53 is the type
‘(ii)’ in these two samples, but in samples A0B0 and A25A,
TP53 is overexpressed relative to the control samples (Fig-
ure 3A), i.e. TP53 is the type ‘(iii)’ in these two samples. In
particular, there are 37531 hub genes with high degrees (i.e.
at least 10 neighbors) in SSNs of 761 breast cancer sam-
ples, where no sample is of type ‘(i)’, 93 of 37 531 hub genes
belong to type ‘(ii)’ and most of the hub genes are of type
‘(iii)’.

It should be noted that an SSN in this work is not a real
molecular network for each sample but a perturbation net-
work for a single sample against the reference network. It
reflects the variation between normal and disease samples
in terms of interactions, regulations or a network, similarly
to differential expression of a gene, which is not the real
gene expression level for each sample but the variation of
the gene expression between normal and disease samples.
In contrast to a molecular network inferred by traditional
methods, which is actually an aggregated network for multi-
ple samples, our method can construct an SSN on a single-
sample basis and thus can be directly applied to the data
analysis of single samples, in particular with potential ap-
plications to precision medicine and personalized medicine.

This method is based on the PCC, and thus the corre-
lation network is the desired choice to construct the SSN.
However, humans have more than 20 000 genes, which im-

plies that the full-correlation network for humans has more
than 200 000 000 edges. Hence, construction of such a net-
work is computationally intense; in addition, the correla-
tion network includes indirect associations, which are false-
positive connections in a molecular network. In this work,
we adopted the background or reference network to reduce
the false-positive connections, which also significantly alle-
viates the computational and storage requirements.

Some recent studies (58) developed a method to decom-
pose the aggregated associations of a group of samples into
those of individual samples. This method has some simi-
larities with ours but is notably different. In particular, this
method approximately decomposes the association or PCC
into a group of networks corresponding to individual sam-
ples. There are three major differences between those two
methods. First, an SSN in this work is actually a perturbed
network of an individual sample from a group of refer-
ence samples, which characterizes the individual sample at
the network level in an accurate manner. In contrast, this
method uses an approximation scheme to decompose an as-
sociation (or aggregated) network of a group of samples ap-
proximately into individual networks corresponding to in-
dividual samples in a linear manner. Second, our method
evaluates a new single sample based on a group of refer-
ence samples, whereas this method evaluates a single sample
in the group. Third, an SSN is constructed using a statistic
based on a new type of distribution, the volcano distribu-
tion, which can be proven mathematically and ensured by
statistical theory. However, this method uses no such statis-
tic, and furthermore the correlation in each individual net-
work can be >1 or <−1 due to its heuristic scheme (see
Equation 31 in (58)).

Biological experiments on drug resistance validated not
only the effectiveness of our method for constructing SSNs
by single samples, but also one advantage of our method,
i.e. identifying non-differentially expressed disease genes or
factors as functional drivers, which are generally missed by
traditional methods. As shown in Figure 7, although there
are no differentially expressed genes between PC9-DR and
PC9 in the top 15 candidate functional driver genes, the
expression of some genes was actually reduced from PC9
to PC9-DR (Figure 7B) (not significant in terms of fold
change). After knocking down these genes, i.e. BRCA1,
TGFBR1 and CASP3, the drug resistance of PC9-DR
showed very significant changes (Figures 7B and C). This
result cannot be explained by traditional analysis based on
differential expression, but in our work, we show that the
correlations of these genes with their neighbors were in-
creased from PC9 to PC9-DR, i.e. the regulation between
these genes and their neighbors increased with the drug re-
sistance, even though their gene expression decreased. Thus,
deeply knocking down those genes reduced the regulation
with their neighbors and therefore changed the drug resis-
tance. For TCGA data, we found a number of representative
or significant edges in each cancer stage, but it is an inter-
esting problem to identify the consistent network patterns
formed by those edges in different cancer stages. In addi-
tion, we used both the background network and the FDR
correction to reduce the noise and false-positive ratio, but
how to further remove the inherent noise is our future topic.
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In this work, we constructed an association network by
correlation, which includes both the effect of direct and in-
direct regulation between two genes. Actually, instead of the
correlation or PCC, we can similarly use partial correlation,
conditional mutual information or part mutual information
to construct a direct association network (13,59,60), which
will be addressed in future studies.
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