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1. INTRODUCTION

Primary tumors of the central nervous system (CNS) are among 
the top 10 leading causes of death worldwide. It is estimated 
that 18 020 deaths occurred from these tumors in 2020.1 The 
common types of primary CNS tumors in adults are gliomas 
and meningiomas.2

Gliomas are the most common intra-axial brain tumors, orig-
inating from glial cells, and comprise of three main types: astro-
cytomas, oligodendrogliomas, and ependymomas. According to 
the World Health Organization (WHO), these gliomas are fur-
ther classified into four classes, more specifically, into low-grade 
gliomas (grades WHO I and II) and high-grade gliomas (grades 
WHO III and IV), based on histopathological and molecular fea-
tures.3,4 Low-grade gliomas (LGGs) are relatively slow-growing 
and benign histopathological characteristics, while high-grade 

gliomas (HGGs) are highly malignant and aggressive tumors 
including anaplastic astrocytoma (WHO III) and glioblastoma 
multiforme (GBM) (WHO IV).3,4

On the other hand, meningiomas are the most common extra-
axial tumors of the meninges in the intracranial space, originat-
ing from arachnoid cap cells.5 They are usually benign and slow 
growing. These tumors are present in approximately 37% of all 
primary CNS tumors, and according to the WHO, they are clas-
sified into three grades (grade WHO I or benign, grade WHO II 
or atypical, and grade WHO III or malignant).4

Gliomas and meningiomas exhibit multiple complex interac-
tions, with a variety of alterations in the genetic and epigenetic 
composition of the CNS that influence the patient prognosis.6,7 
To date, research on the genesis and development of these 
tumors has intensively focused on the alteration of the gene 
in the nucleus. Because of the complexity of genomic changes 
within these tumor cells, some researchers have shifted their 
focus to another genome. In addition to the nuclear genome, it 
is worth considering that there is another genome that needs to 
be investigated.

Mitochondria, which are remarkable organelles, are the ulti-
mate energy power plants for producing ATP via an oxidative 
phosphorylation (OXPHOS) system and for retaining various 
cellular functions in cells.8 Mitochondria contain our second 
genome, called mitochondrial DNA (mtDNA), which has a 
circular shape with an approximate size of 16 569 base pairs, 
encoding 13 proteins that are part of respiratory complexes I, 
III, IV, and V, 22 transfer RNAs (tRNAs) and two ribosomal 
RNAs (rRNAs).9
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In 1956, Otto Warburg10 was the pioneer biochemistry 
researcher that proposed the relevance of mitochondria with 
the origin of cancer cells. Warburg’s view believed that mito-
chondrial alterations in function might enhance tumor growth 
or promote cancer progression. From then on, different types of 
mtDNA aberrations have been characterized in human cancers 
such as point mutations, deletions, rearrangements, and changes 
in mtDNA content.11

Mitochondria are also the major source of cellular reactive 
oxygen species (ROS) and the preferred target of oxidative 
stress.12,13 Relatively, ROS are well known to be toxic by-prod-
ucts during mitochondrial electron transport.14 Excessive ROS 
exposure can trigger mtDNA damage and initiate a vicious cycle 
of damage within the mitochondria as well as the injuries impli-
cated in carcinogenesis.15 Furthermore, oxidative damage to 
mtDNA can also result in mtDNA deletions by causing double-
strand breaks in the DNA.15

Historically, mitochondrial molecular medicine research 
has risen dramatically since the 1980s, when the discoveries 
of point mutations16 and deletions17 in mtDNA were believed 
to be linked to the diseases. In fact, large-scale mtDNA dele-
tions were among the first mtDNA alterations to be discovered 
to cause human diseases.17–19 To date, >180 mtDNA deletions 
that have been reported to be associated with various diseases 
have been stored in the Mitomap (http://www.mitomap.org), 
a mitochondrial genome database. One of the most essential 
large-scale mtDNA deletions that leads to a huge loss of the 
mitochondrial genome fragment is the 4977-bp mtDNA dele-
tion (mtDNA4977).

Known as the “common deletion”, this alteration involves the 
elimination of nucleotides from the 8470 to the 13 447 posi-
tion of the human mitochondrial genome. mtDNA4977 eliminates 
all five tRNA genes (tRNAGly, tRNAArg, tRNAHis, tRNASer, and 
tRNALeu) and seven genes encoding four Complex I subunits 
(ND3, ND4, ND4L, partial ND5), one Complex IV subunit 
(COX III), and two Complex V subunits (ATP6 and partial 
ATP8), that are vital for sustaining a normal mitochondrial 
OXPHOS function.20

mtDNA4977 has been studied in various other tumor types, but 
there is little information about in the primary CNS tumors.21,22 
The present study is the first prospective study to determine 
the prevalence of mtDNA4977 and its accumulation in patients 
with common primary CNS tumors, namely, gliomas and 
meningiomas.

2. METHODS

2.1. Patients and samples collection
This study was conducted on a Malay population of patients 
who referred to Hospital Universiti Sains Malaysia (HUSM) 
and the Department of Neurosciences during 2015-2018, 
with a brain tumor diagnosis, either with a glioma or a men-
ingioma. A total of 50 patients were enrolled in the study 
after providing their written informed consent. Patients who 
had a previous history of receiving radiotherapy procedures 
to the brain or chemotherapy for any reason were excluded 
from the study. All patients underwent the neurological sur-
gery. The histopathological diagnosis of the tumors was per-
formed by a consultant neuropathologist following WHO 
criteria. This study was approved by the Research Ethics 
Committee of Universiti Sains Malaysia (USM) adhered to 
the tenets of the Declaration of Helsinki. The control group 
used in this study consisted of 20 archival paraffin-embed-
ded tissues obtained from the autopsies of traffic accident 
victims, which were confirmed to be normal human brain 
tissues.

2.2. DNA extraction
All total DNA extraction was performed using the QIAamp 
DNA Mini Kit (Qiagen, Hilden, Germany) guided by the manu-
facturer’s protocol. The concentration and quality of extracted 
DNA were measured using the NanoDrop ND1000 spectropho-
tometer and 1% gel agarose electrophoresis. All qualified DNAs 
were stored at −80°C until analysis.

2.3. PCR amplification of mtDNA4977

The multiplex PCR assay was performed to detect mtDNA4977 
using two sets of primers (P1/P2 and P3/P4). The primer sequences 
used were as follows: P1, 5′-CTGAGCCTTTTACCACTCCAG-3′; 
P2, 5′-GGTGATTGATACTCCTGATGCGA-3′; P3, 
5′-CCCACTGTAAAGCTAACTTAGCATTAACCT-3′; P4, 
5′-GGTTTCGATGAT GTGGTCTTTGG-3′. Samples were 
denatured at 94°C for 30 s, followed by 30 cycles of denatura-
tion (94°C for 30 s), annealing (59°C for 30 s), extension (72°C 
for 1 min), and ultimately, a final extension at 72°C for 10 min. 
PCR products were visualized using SYBR Green staining, fol-
lowing electrophoresis on 1.5 % agarose gels.

In the case of mtDNA4977 detection, another single PCR 
assay was performed with the second pair of primers for fur-
ther confirmation of mtDNA4977. Primer pairs used to ana-
lyze 4977-bp deletion were as follows: L8150, Forward 
5′-CCGGGGGTATACTACGGTCA-3′ and H13650, reverse 
5′-GGGGAAGCGAGGTTGACCTG-3′. The PCR conditions 
were as follows: 35 cycles of 30 s at 94°C for denaturation, 30 s 
at 58°C for annealing, and 1 min at 72°C for the extension. The 
final extension was performed at 72°C for 5 min.

2.4. Sanger DNA sequencing
All mtDNA4977 were independently reassessed using Sanger 
DNA sequencing. Purified PCR products were sequenced using 
the same primers as that described in the PCR amplification. 
Sequencing was performed using a Big Dye Terminator cycle 
sequencing kit (Applied Biosystems Inc., Foster City, CA, USA), 
according to the manufacturer’s protocol, and sequence reac-
tions were analyzed on an ABI Prism 3700 DNA Analyzer auto-
mated sequencer (Applied Biosystems Inc.).

2.5. Statistical analysis
Statistical analyses were performed using GraphPad Prism soft-
ware version 8.4.1 (GraphPad Software, Inc., San Diego, CA, 
USA). Demographic parameters of patients were summarized 
by descriptive statistics, including mean, SD, and range for 
continuous variables. For categorical variables, frequencies are 
described as absolute numbers and percentages. The association 
between mtDNA4977 status and clinicopathological parameters 
was analyzed using either the chi-square test or Fisher’s exact 
test. A p-value of <0.05 was considered statistically significant.

3. RESULTS

3.1. Characteristic profile of the study subjects
The main clinicopathological features of the patients are sum-
marized in Table 1. There were 21 males (42%) and 29 females 
(58%) among 50 CNS tumor patients included in this study, 
with their age at diagnosis ranging from 15 to 70 years (mean: 
51.2 ± 1.90) years.

The tumor groups were divided into three groups: 13 patients 
were included in the LGG group (2 patients with grade I and 
11 patients with grade II gliomas), 20 patients were included 
in the HGG group (4 patients with grade III and 16 patients 
with grade IV gliomas), and 17 patients were included in the 
meningioma group, and all these patients were diagnosed with 
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meningioma grade I. Overall, there were 26% of LGG, 40% of 
HGG, and 34% of meningioma cases.

3.2. Detection of mtDNA4977 in glioma and meningioma 
patients
To detect mtDNA4977 in glioma and meningioma tissues of 
patients, mtDNA fragments were amplified using a multiplex 
PCR assay consisting of two pairs of primers (P1/P2 and P3/
P4) (Fig. 1A). One primer pair, P1/P2, was designed to give a 
142-bp product at mtDNA nucleotides 9500 to 9641 that are 
localized inside the mtDNA4977 region. This 142-bp amplicon, 
corresponding to wild-type mtDNA, was used as an amplifica-
tion control. Meanwhile, the other pair, P3/P4, that flanked the 
detected deletion region, allowed only a 262-bp DNA product, 
in case mtDNA4977 was present. The existence of both amplicons 
(142 and 262 bp) indicates the presence of heteroplasmy.

In the case of mtDNA4977 detection, the second set of PCR 
primers was used in a single PCR assay, to verify mtDNA4977. 
In the presence of mtDNA4977, the PCR amplification product 
was 524 bp in size (Fig. 1B). In the absence of the deletion or 
for the wild-type mtDNA amplification, there was no product 
yield because the fragment was too large (>5 kb) to be gener-
ated under the conditions used for PCR. mtDNA4977 was identi-
fied in the patient tumor tissue, whereas this deletion was not 
observed in the normal control tissues. The deletion was verified 
by repeated analyses, which were finally confirmed using Sanger 
DNA sequencing (Fig. 2).

3.3. Prevalence of mtDNA4977 and its clinicopathologic 
correlation
We determined a total of 16 mtDNA4977 present in 50 enrolled 
patients by performing PCR, followed by sequencing, for valida-
tion. mtDNA4977 was discovered in 32% (16/50) of the cases. All 
paired peripheral blood samples and brain tissue controls were 
mtDNA4977-negative. The most common mtDNA4977 detected 
in 55.0% (11/20) of HGG cases, followed by 17.6% (3/17) of 
meningioma cases, and 15.4% (2/13) of LGG cases.

The clinicopathological information of the patients with and 
without mtDNA4977 is summarized in Table 2. We further assessed 
the association of mtDNA4977 with the clinicopathological 

parameters of CNS tumor patients. Regarding tumor grading, 
we divided the patients into three groups: LGG, HGG, and 
meningioma.

Interestingly, in this study, it was revealed that there was a 
significant association between mtDNA4977 status and tumor 
groups (p = 0.0172). mtDNA4977 was significantly more fre-
quently detected in the HGG group (55.0%) than in the LGG 
(15.4%) and meningioma (17.6%) groups. Our data also 
showed that, mtDNA4977 frequency in male patients was 52.4% 
(n = 11/21), which was significantly higher than that in female 
patients (17.2%; n = 5/29) (p = 0.0137). Moreover, mtDNA4977 
frequency in the >50 years age group was 35.7% (n = 10/28), 
which was higher than that in the <50 years age group (27.3%; 
n = 6/22), but with no statistical significance between them  
(p = 0.5589). It was concluded that there were significant corre-
lations between mtDNA4977 status with gender and tumor group. 
However, no significant association was identified between 
mtDNA4977 status and age.

4. DISCUSSION
Gliomas and meningiomas are the most common types of adult 
brain tumors in Malaysia (accounting for approximately 28% 
and 36%, respectively, of brain tumors), with a poor prognosis.23 
The accumulation of genetic alterations is believed to be a direct 
reflection of the multiple steps involved in brain tumorigenesis. 
Some reports suggest that mtDNA may be altered in patients 
with brain tumors.21,22 The deletion between nucleotides 8470 
and 13 447 of the human mitochondrial genome (established 
known as mtDNA4977), which may lead to OXPHOS system fail-
ure, seems to be particularly crucial because of the elimination 
of some tRNAs and coding region genes, which are essential 
for the entire normal mitochondrial function and biogenesis 
process.24

Also considered as a pathogenic mutation, mtDNA4977 is 
believed to play a physiological role in energy production catas-
trophes and aberrant ROS production of human diseases.25,26 
In humans, the brain is the most energy-demanding organ and 
tends to have a greater number of mitochondria. mtDNA dele-
tions accumulate more rapidly in tissues with greater metabolic 
activity and a lower cell turnover, such as brain tissues, which 
leads to an enhanced oxidative stress that may contribute to dra-
matically accelerate deletions in brain tissues.

Mitochondrial OXPHOS is the predominant source of energy 
in cells, in which the energy transferred by electrons passing 
through the electron transport chain (ETC). The essential sub-
units of ETC complexes are encoded by mtDNA. As a conse-
quence of alterations/deletions of mtDNA in cells, in particular 
mtDNA-encoded core subunits, cells exhibit increased oxidative 
stress and a defective OXPHOS function, which leads to pro-
tumorigenic effects.27 Complex 1 represents about 40% of the 
proton-motive energy driving OXPHOS, making it, by far, the 
largest ETC complex. Complex 1 failure (due to heteroplasmic 
ND5 mutations) has been demonstrated to induce apoptosis 
resistance and activation of the PI3K/Akt pathway, which can 
potentially result in higher tumorigenicity.28 In addition, the 
loss or disruption of some mitochondrial tRNA genes, particu-
larly in mtDNA4977, is believed to trigger the impairment of the 
mtDNA-encoded proteins translation, consequently resulting in 
an enhanced ROS production and disease.24,29

mtDNA4977 has been previously reported to accumulate in var-
ious disorders, including mitochondrial diseases and many types 
of cancer.21,30 The initial finding of mtDNA4977 was described in 
1989 by Wallace’s group in a patient with Kearns-Sayre/chronic 
external ophthalmoplegia plus syndrome,19 and later it was often 
reported to accumulate in diverse human tissues with aging.31,32 
mtDNA4977 has been reported in patients with cancer since the 

Table 1

Clinicopathological information of patients with glioma and 
meningioma

Patients’ parameters n %

Age, y   
 <50 22 44
 >50 28 56
 Mean ± SD 51.2 ± 1.90  
 Range 15-70 y  
Gender   
 Male 21 42
 Female 29 58
Tumour type (grade)   
 LGG 13 26
  Pilocytic astrocytoma I 2 4
  Astrocytoma II 5 10
  Ependymoma II 4 8
  Oligodendroglioma II 2 4
 HGG 20 40
  Anaplastic astrocytoma III 4 8
  Glioblastoma multiforme IV 16 32
 Meningioma 17 34

HGG = high-grade glioma; LGG = low-grade glioma.
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earliest descriptions by Máximo et al,33,34 who revealed a high 
frequency of mtDNA4977 in primary sporadic gastric carcinomas. 
Furthermore, mtDNA4977 was discovered to vary between 0% 
and 100% in a variety of human cancers.20

In this study, the prevalence of mtDNA4977 in brain tumors, 
particularly in gliomas and meningiomas, and its associa-
tion with clinicopathological parameters was investigated. 
mtDNA4977 was found in 16 patients, resulting in a 32% 
prevalence among glioma and meningioma cases. To the best 
of our knowledge, to date, there have been no studies con-
ducted on the mitochondrial genetic alterations involving 
mtDNA4977 found in brain tumor cases. The present study 
is believed to be the first report of mtDNA4977 detection in 
CNS/brain tumor in Malaysia patients. Therefore, there is 
little comparable data, especially in Asia, due to the lim-
ited number of mtDNA4977 studies, mainly in gliomas and 
meningiomas.

By searching the literature published in PubMed, Scopus, 
Google Scholar, and other databases, mtDNA4977 has been 
widely studied in breast cancer. A study in Vietnam reported 
that 68.8% of breast cancer cases had the mtDNA4977,35 while 
another study in China reported a 48% mtDNA4977 percent-
age in the blood of breast carcinoma patients.36 A separate 
study conducted in China revealed the accumulation of 
mtDNA4977 in all cases of primary breast cancer and benign 
breast disease.37

Other than breast cancer, mtDNA4977 has also been reported 
in other cancer types. Perhaps the earliest study, by Lee et al38 
reported a 49% mtDNA4977 percentage in oral cancer Taiwanese 
patients. A previous study involving Chinese patients performed 
by Dai et al39 on lung cancer determined a 54.1% mtDNA4977 
frequency. In a study that involved gastric cancer also in China 
patients, Wang and Lu40 reported a higher rate (79.6%) of 
mtDNA4977 in gastric cancer tissues. In 2014, Dimberg et al41 

Fig. 1 Analysis of the mtDNA4977 by agarose gel electrophoresis. (A) Multiplex PCR was used to amplify mtDNA4977. A 142-bp band corresponds to the wild-type 
mtDNA and a 262-bp band corresponds to the deleted 4977-bp region. The appearance of both bands indicates the presence of mtDNA4977 (heteroplasmy). 
The appearance of the only 142-bp band indicates the absence of mtDNA4977. (B) Using the specific primers for validation, a 524-bp PCR product amplified from 
the mtDNA4977 in tumor patients. The disappearance of any band indicates the absence of mtDNA4977. Lane M: 100-bp DNA marker, Lane 1: Normal sample—no 
deletion, Lanes 2 to 7: tumor samples.
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revealed that 80.7% (71/88) of the colorectal cancer cases in 
Vietnamese patients were found to have mtDNA4977.

A lower percentage of the mtDNA4977 in cancerous tissues has 
also been reported in other cancers. A study in Taiwan reported 
that 5% of breast cancer cases had the mtDNA4977,42 whereas 
also in Taiwanese cases, Wu et al43 detected only a 9.7% of 
mtDNA4977 frequency in gastric carcinomas. In another study, 
Upadhyay et al44 identified a low frequency of mtDNA4977 (5.1%) 
in Indian patients with esophageal cancer. The lower incidence 
of the mtDNA4977 has also been identified in hepatocellular can-
cer in Korean (11.1%) and Chinese (9.52%) patients, in two 
previous studies by Gwak et al45 and Guo et al,46 respectively. 
Compared with the previous studies for all different types of 
cancer in Asia, the prevalence of mtDNA4977 in this study was 
comparable to that in other Asian countries.

Research on mtDNA4977 from various cancer cases outside 
Asia reported higher prevalence results, compared with this 

study. Studies from Caucasian populations, such as the United 
States, Brazil, and Poland, reported a prevalence of mtDNA4977 
in breast,47 colorectal,48 and endometrial cancer,49 of 46.2%, 
52.2%, and 81%, respectively. A study in Argentina by Pavicic 
and Richard50 reported a prevalence of this deletion of 45.3% in 
breast cancer. A Swedish study by Dimberg et al41 yielded a prev-
alence of 67.6% in colorectal cancer samples, which is twice the 
value obtained in this study.

Genetic variations among racial/ethnic groups, as well as the 
difference in cancer types, may influence the wide variation of 
mtDNA4977 rates in Asian and Caucasian populations. Although 
numerous studies in different populations have been performed 
to determine associations between the mtDNA4977 and various 
types of cancer, to date, no study has been conducted in brain 
tumor cases. Due to the limitations of existing data, the exact 
role of mtDNA4977 in brain tumorigenesis is still unknown. 
However, it has been hypothesized that mtDNA deletions might 
appear either through spontaneous errors during mtDNA rep-
lication (replication slippage) or aberrancy of double-strand 
break repair (DBS).51–54 Furthermore, it has been clarified that 
mtDNA4977 is generated as a consequence of frequent fork stall-
ing, a process that is mediated by the mitochondrial replisome, 
but independent of canonical DSB repair.55 It is also believed 
that increased oxidative stress in cancer cells results in genomic 
instability in both mitochondria and the nucleus.56 Therefore, 
it is suggested that under oxidative stress conditions, excessive 
ROS production can trigger the accumulation of deletions.57–59

The mitochondrial genome with the deleted 4977 bp has been 
noted to contribute to a deficient mitochondrial bioenergetic 
state.24,25 Wei and his colleagues demonstrated that a self-accel-
erating vicious cycle of mitochondrial ROS is induced in cybrids 
harboring mtDNA4977, following a brief intense oxidative stress 
treatment.60 These outcomes suggest that mtDNA4977 plays a 
pivotal role in the pathophysiology process of the disease.60 
mtDNA deletion can result in elevated oxidative stress, which, 
in turn, creates more accumulation of the deleted mtDNA in 
cells. On the other hand, external environmental factors (includ-
ing ionizing radiation, ultraviolet radiation, and exogenous 
chemicals) are thought to have an impact on mtDNA4977 forma-
tion.61–65 The combination of endogenous and exogenous factors 
may lead to deletion accumulation of mtDNA, which in turn 
may lead to the induction of human cancer.

mtDNA4977 was detected in some tumor tissues, and this dele-
tion was absent in all peripheral blood of patients and normal 
brain tissue subjects. It has been acknowledged that post-mitotic 
highly aerobic tissues (contain large numbers of mitochondria), 

Fig. 2 Representative Sanger sequencing chromatogram demonstrating confirmation of mtDNA4977 that contains only one of the 13-bp repeat.

Table 2

Association between clinicopathological parameters and 
mtDNA4977 in patients with glioma and meningioma

Patients’ parameters 

mDNA4977 status

p mDNA4977+ mDNA4977–

No. of patients (n)
 50 16 (32.0%) 34 (68.0%) ...
Gender
 Male 11 (52.4%) 10 (47.6%) 0.0137*,a

 Female 5 (17.2%) 24 (82.8%)  
Age, y
 <50 6 (27.3%) 16 (72.7%) 0.5589a

 >50 10 (35.7%) 18 (64.3%)  
Tumour type (grade)
 LGG 2 (15.4%) 11 (84.6%) 0.0172*,b

  Pilocytic astrocytoma I 0 (0%) 2 (100%)  
  Astrocytoma II 1 (20.0%) 4 (80.0%)  
  Ependymoma II 1 (25.0%) 3 (75.0%)  
  Oligodendroglioma II 0 (0%) 2 (100%)  
 HGG 11 (55.0%) 9 (45.0%)  
  Anaplastic astrocytoma III 2 (50.0%) 2 (50.0%)  
  Glioblastoma multiforme IV 9 (56.3%) 7 (43.7%)  
Meningioma 3 (17.6%) 14 (82.4%)  

HGG = high-grade glioma; LGG = low-grade glioma.
ap values correspond to two-sided Fisher’s exact test.
bChi-square test was used; p value <0.05 was considered significant (*p < 0.05).
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such as the brain, skeletal muscle, kidneys, and heart, tend 
to be the most affected, but theoretically, any organ can be 
involved.66–68 Moreover, cancer cells require sufficient energy 
to support their uncontrolled rapid proliferation. Therefore, it 
is relevant that mtDNA alterations are often found at certain 
levels in post-mitotic tissues, as the clonal expansion of aberra-
tions exists within these cells over time. Wallace69 demonstrated 
high levels of clonally expanded mtDNA mutations in the brain 
and skeletal muscles. The rationale for the absence of deletions 
in other patients might be that cells undergo apoptosis when 
the mitochondrial mutation load increases to a certain threshold 
value.43 Brain tumor cells, mostly high-grade tumors, tend to 
grow and spread more rapidly, and have the ability to invade 
and destroy the surrounding normal brain tissues. Besides, 
this tumor is difficult to remove without excessive damage to 
nearby normal brain tissues. Due to these reasons, non-tumor 
tissues adjacent to the tumor tissues were not used in this study. 
Alternatively, the patient’s peripheral blood, as well as normal 
human brain tissues obtained from motor vehicle accidents, 
served as a control.

In the present study, we found a significant correlation 
between mtDNA4977 and the tumor group (LGG, HGG, and 
meningioma), which means mtDNA4977 was more common in 
HGG than in other groups (p = 0.0172). It was also revealed 
that mtDNA4977 status was significantly correlated with the 
gender group (p = 0.0137). Notably, it was identified that the 
mtDNA4977 frequency in the <50-year cases was only 27%, lower 
than that in the >50-year samples (35.7%), despite the lack of 
statistical significance between them (p = 0.5589). In colorectal 
cancer research, Dimberg et al41 observed that there was no sta-
tistically significant association between mtDNA4977 and clinical 
parameters, such as gender, age, and tumor localization. Most 
of the findings from previous studies of mtDNA4977 in human 
cancer reported no correlation with clinicopathological features.

Discrepancies in population characteristics and research meth-
ods may have also contributed to the prevalence of mtDNA4977 in 
this study. The older age cases in this study may have influenced 
the deletion prevalence, as mtDNA4977 has been found to be sig-
nificantly higher in elderly individuals.15,70,71 Corral-Debrinski et 
al70 suggested that the accumulation of mtDNA deletions might 
contribute to the neurological impairment, often associated with 
human aging. More advanced or combination methods (such as 
real-time quantitative PCR, next-generation sequencing) could 
be used for further investigation to enhance the sensitivity of 
mtDNA4977 detection.

In conclusion, we demonstrated that the overall prevalence 
of mtDNA4977 in glioma and meningioma patients was 32%, 
which is in agreement with previously published results. There 
was a significant correlation between mtDNA4977 and the tumor 
group, which shows that mtDNA4977 was higher in the HGG 
group than in the LGG, and meningioma groups. Also, a sta-
tistically significant difference was found between mtDNA4977 
and gender, which indicates that mtDNA4977 was prevalent in 
males than in females. This study provides initial insights into 
how mtDNA4977 might contribute to brain tumor, and this find-
ing can serve as new data for the global database of mtDNA 
mutations. Further studies with a larger sample sizes (with the 
extended follow-up and survival rate data) are required to inves-
tigate mtDNA4977 and its associated clinicopathological features. 
A more detailed analysis is necessary to establish the exact role 
of this mitochondrial genetic alteration in brain tumor cases in 
the Malaysian population.
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