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We combine methodology from history and genetics to reconstruct the biosocial history of antimicrobial resistance (AMR) in the 
bacterium Salmonella enterica serovar Typhi (S. Typhi). We show how evolutionary divergence in S. Typhi was driven by rising 
global antibiotic use and by the neglect of typhoid outside of high-income countries. Although high-income countries pioneered 
1960s precautionary antibiotic regulations to prevent selection for multidrug resistance, new antibiotic classes, typhoid’s cultural 
status as a supposedly ancient disease of “undeveloped” countries, limited international funding, and narrow biosecurity agendas 
helped fragment effective global collective action for typhoid control. Antibiotic-intensive compensation for weak water and health-
care systems subsequently fueled AMR selection in low- and middle-income countries but often remained invisible due to lacking 
surveillance capabilities. The recent rise of extensively drug-resistant typhoid bears the biosocial footprint of more than half a cen-
tury of antibiotic-intensive international neglect.
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The past 2 decades have seen a technological revolution provide 
deeper insight into human and infectious disease history. The 
rapid evolution of DNA sampling and sequencing has yielded 
a clearer understanding of the evolutionary trajectory of patho-
gens ranging from Yersinia pestis (plague) to Vibrio cholerae 
(cholera) [1–4]. The interpretation of data yielded by this rev-
olution has not been uncontested. Historians, archaeologists, 
microbiologists, and other disciplines have debated the impact 
of selective sampling, phylogenetic theories, rapid turnover, 
small sample sizes, “historical cherry-picking” [5], and retro-
spective diagnoses [6–10]. However, the debate is also forcing 
biologists to critically engage historical sources and historians 
to familiarize themselves with a new world of sequences and 
phylogenies [1, 11–14].

Co-written by a historian, a microbiologist, and a 
bioinformatician, this article uses the example of antimicrobial 
resistance (AMR) in the bacterium Salmonella enterica serovar 
Typhi (S. Typhi), the cause of human typhoid, to explore an 
interdisciplinary sociomaterial approach to infectious disease 
history [15]. An integrated approach is necessary; knowing the 
complete details of a bacteria’s genome tells us relatively little 
about the historical impact of a disease but to neglect microbial 
materiality is to ignore important data [16]. Building on work 

by the anthropologist Hannah Landecker [17], our fusion of 
methodologies reveals a story of evolutionary diversification in 
S. Typhi driven by antimicrobial selection pressure, fragmented 
international policy, and narrow biosecurity agendas. We sug-
gest that from the 1960s onward, growing concerns about re-
sistant typhoid did not result in coordinated global collective 
action to curb drivers of typhoid outside of resource-rich set-
tings. Despite receiving high-income country (HIC) support 
during acute outbreaks and after natural disasters, the lack of 
effective surveillance, preventative sanitary infrastructures, 
and vaccine programs in many low- and middle-income coun-
tries (LMICs) likely encouraged reliance on antimicrobials and 
resulting AMR selection. The recent rise of extensively drug-
resistant (XDR) typhoid is a result of these fragmentary global 
control efforts.

BIOGRAPHY OF A DISEASE

The invention of scalable DNA sequencing by Fred Sanger and 
colleagues in the 1980s stimulated the use of forensic DNA 
analysis for both humans and bacteria. Over the past decade, 
Sanger sequencing and subsequent technologies have yielded 
unprecedented insight into the biological history of typhoid. As 
bacteria replicate, they accumulate mutations, for example in 
the form of single-base pair nucleotide polymorphisms (SNPs), 
that provide a traceable footprint of their ancestry. The family 
histories or phylogeny of clades of bacteria can be established 
by SNP typing or sequencing of historical collections [18–21]. 
During the 2000s, next-generation sequencing techniques took 
forensic DNA analysis to a new level, allowing the rapid defini-
tion of phylogeny based upon the complete genome sequences 
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of hundreds or thousands of bacteria [22, 23]. These approaches 
can also be used to define the emergence of AMR in bacteria 
and trace the origins of outbreaks over time and geography 
[24–27].

For individual diseases, sequence-based analysis can pro-
vide estimates of the age of the pathogen and insight into its 
origin. For human typhoid, we can estimate that the disease is 
no more than a few thousand years old, although this still has 
to be properly calculated using the large datasets now avail-
able. Phylogenetic analysis shows that all current S. Typhi 
originated from one bacterium that moved into the human 
population, perhaps from a primate, and lost the ability to in-
fect and transmit within other animal populations. Figure 1 
shows a simplified family tree of S. Typhi based on SNPs de-
tected in previously sequenced strains (Supplementary Table 
1 and Supplementary Methods) [21, 28–33]. This tree can be 
used as a template to genetically type any S. Typhi (see Figure 1 
legend) and it clearly illustrates the ancestral origin and selected 
antibiotic-resistant lineages. For convenience, related bacteria 
are clustered into genotypes (also known as haplotypes) that 
can represent particular lineages descended from a common 
ancestor within the tree.

A GOLDEN AGE OF CONTROL

For the longest part of its natural history, S. Typhi was both op-
tically and culturally invisible. Pathologists only began to dif-
ferentiate between typhoid and other fevers from the mid-19th 
century onward and the organism S. Typhi was isolated and 
linked to typhoid fever between 1880 and 1884. New know-
ledge of typhoid informed targeted control measures. Over the 
next decades, sanitary interventions, new vaccines, gall bladder 
removals (cholecystectomy), and carrier identification signifi-
cantly reduced disease incidence in HICs (Vanderslott et al in 
this supplement [paper 2]). However, it was only from around 
1940 onward that researchers considered systematic typhoid 
eradication schemes. Two then-new technologies inspired erad-
ication plans: epidemiologically driven bacteriophage typing 
(using bacteria infecting viruses to identify individual bacteria 
strains) and effective chemotherapy in the form of antibiotics 
[34].

In the case of bacteriophage typing, the reduced overall ty-
phoid incidence and centralized bacteriological capabilities al-
lowed researchers to identify and control outbreaks and then 
systematically seek and register asymptomatic (healthy) carriers. 
The aim was to dry out endemic reservoirs by educating—and 

Figure 1. Maximum likelihood phylogeny based on single-nucleotide polymorphism data from a global collection of 3748 Salmonella Typhi strains. Branches are colored 
by genotype/lineage (clade level) according to the inset legend and labels. These span out from the ancestral origin. Haplotypes are indicated in the inset legend, with NT 
indicating nontypeable strains under the Roumagnac scheme [18]. Arrows indicate fluoroquinolone-resistant triple mutant clade, Pakistan extensively drug-resistant (XDR) 
clade, West African 3.1.1 multidrug-resistant (MDR) clade, as well as CT18 (MDR reference strain originally in Vietnam in 1993) and strain Ty2 (classical old Typhi from 1912). 
Pink shading indicates H58 (4.3.1) strains that have undergone clonal expansion. Open circles indicate that a strain harboring an IncHI1 MDR plasmid carrying antimicrobial 
resistance genes has been observed in a member or members of the clade (colored by lineage according to the inset legend). The closed circle indicates the ancestral root, 
and the dashed line represents the Salmonella lineage. Branch lengths are indicative of the estimated substitution rate per variable site as per the inset scale bar. Note 
expansion of H58.
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occasionally isolating—carriers. After 1945, global phage typing 
surveys facilitated outbreak monitoring and the identification 
of unknown carriers among civilian populations, food hand-
lers, travelers, and military personnel returning from abroad 
[35]. Parallel to the typing and mapping of typhoid strains, 
clinicians experimented with new mass-produced antibiotics 
to treat outbreaks and stop carrier-mediated shedding. Initial 
trials with sulphonamides, penicillin, and tetracyclines proved 
disappointing [36–39]. However, in 1948, US Army researchers 
in Malaya reported that Parke-Davis’ Chloromycetin (chlo-
ramphenicol) cured patients during typhoid outbreaks [40]. In 
1961, ampicillin emerged as a second-line treatment, which was 
also partially effective in curing carriers [41].

TYPHOID AND ANTIBIOTIC STEWARDSHIP

Hopes of typhoid eradication were quickly threatened by the 
emergence of antibiotic-resistant S. Typhi. Following reports 
describing typhoid resistance against individual antibiotics 
during the 1950s, a growing number of S. Typhi isolates from 
around the world proved resistant to multiple antibiotics 
(MDR) from the 1960s onward.

In HICs, typhoid’s cultural status as a newly defeated scourge 
meant that fears of reemerging untreatable strains played a 
significant role in structuring the first wave of environmental 
antibiotic stewardship regulations. During the 1950s, med-
ical concerns about resistance against sulphonamides and 
other antibiotics in organisms like S.  aureus had already led 
to campaigns for rational antibiotic use [42, 43]. In the case of 
S. Typhi, rising chloramphenicol resistance in individual pa-
tients was reported within 2 years of the first trials in 1950 [44]. 
However, it was only between 1958 and 1965 that the Japanese 
discovery of AMR transfer in Shigella and British data on ag-
ricultural resistance transfer led to popular concerns about a 
return to the “pre-antibiotic Middle Ages” [45]. Public health 
experts warned that AMR was “infectious” and could move 
between bacterial species by mechanisms such as plasmid-
mediated conjugation.

During the 1960s and 1970s, the European campaign for 
precautionary antibiotic restrictions was led by Ephraim Saul 
(E. S.) Anderson, director of Britain’s Public Health Laboratory 
Service enteric reference laboratory. Having only recently dealt 
with a 400-case typhoid outbreak in Aberdeen in 1964 [46], 
Anderson used evidence of transferable multiple resistance in 
human and animal Salmonella Typhimurium isolates to high-
light the dangers of mass-environmental AMR selection in 1965 
[47–52]. The specter of transferable ampicillin and chloram-
phenicol resistance leading to untreatable typhoid encouraged 
Anderson to advocate precautionary bans of growth promoter 
feeds containing medically relevant antibiotics in livestock pro-
duction. Targeted growth promoter bans were subsequently 

approved across Western Europe (1969 & 1970) but failed to 
gain congressional approval in the United States (1972 & 1977) 
[53].

TRANSFORMING INTO A FOREIGN DISEASE

The enactment of precautionary antibiotic restrictions in 
Europe marked an early high-point of popular awareness for 
AMR in typhoid. However, over the next decades, S. Typhi’s ef-
fective disappearance from many HICs inadvertently divided 
international perceptions of the disease. While increasingly 
resistant typhoid variants remained endemic in many LMICs, 
public commentators in HICs reemphasized historic connota-
tions of typhoid as an “ancient” disease associated with alleg-
edly “primitive” conditions in less developed foreign countries 
whose main threat to HICs consisted in carriage by travelers 
and immigrants [54–57]. In line with an increasing shift of in-
ternational health policies away from sociomedical (horizontal) 
to allegedly more cost-effective biotechnological interventions 
(vertical) [58, 59], typhoid was increasingly framed in HICs not 
as a collective global challenge of LMIC system strengthening 
but as a security threat that had to be stopped from crossing 
national borders.

Worryingly, shifting HIC typhoid perceptions occurred 
right at the moment when 1960s scenarios of transferable mul-
tiple resistance in typhoid were becoming a reality in LMICs. 
During the 1970s, explosive outbreaks of S. Typhi with plasmid-
mediated resistance against multiple antibiotics including chlo-
ramphenicol occurred in Central America, India, and Vietnam. 
Emerging in endemic areas with widespread antibiotic use and 
often poor health and water infrastructures [60], the outbreaks 
resembled those predicted by E.  S. Anderson. Fortunately, 
early plasmids had not acquired ampicillin resistance, although 
this did eventually appear [61]. HIC responses to these out-
breaks frequently prioritized national biosecurity measures 
over collective preventive action. Following on the heels of a 
multiresistant Shigella dysenteriae outbreak, the 1972–1974 
Mexican typhoid outbreak with >10 000 confirmed cases was 
influential in reinforcing biosecurity-focused HIC typhoid 
policies [62, 63]. In the United States, the Mexican outbreak 
occurred parallel to a significant epidemiological transition 
whereby nearly half of new typhoid cases were being imported 
from abroad. 1970s publications by US public health officials 
not only highlighted the contemporary doubling of cases in Los 
Angeles but also longer-term correlations of typhoid incidence 
with alleged “Hispanic” surnames, traveling and hygiene habits, 
as well as with rising licit and illicit border traffic and immigra-
tion [60, 64, 65]. Although they supported Mexican colleagues 
to phage type and analyze outbreaks [63, 66, 67], a significant 
part of US officials’ subsequent work focused on upgrading do-
mestic epidemiological surveillance and promoting hygiene 
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and vaccination among travelers to stop foreign strains from 
entering the United States [68–72]. European authorities also 
closely monitored travelers while media reports chided Latin 
Americans and former colonies for failing to implement antibi-
otic restrictions and growth promoter bans [73–75].

The increasing prioritization of border protection did not 
mean that international aid for typhoid control stopped: During 
the 1970s and 1980s, states on both sides of the Iron Curtain 
provided economic, infrastructural, and expert support to allies 
while charities like Oxfam administered free typhoid vaccines 
in the wake of natural disasters like the 1973 Pakistan floods. 
However, bilateral and charitable interventions were often too 
short-term, underresourced, and statist to alleviate the sanitary 
and health gaps contributing to typhoid incidence and antibi-
otic overuse in endemic countries without already robust health 
bureaucracies [59, 76–80]. Underresourcing was mirrored at the 
international level. Between 1972 and 1978, calls by the United 
Nations (UN) Stockholm Conference (1972), the UN Mar Del 
Plata Conference (1977), and the International Conference on 
Primary Health Care at Alma-Atta (1978) increased foreign 
aid, credit provision, and investment in water and health sys-
tems. However, despite the UN’s designation of an International 
Decade of Water between 1981 and 1990, these “horizontal” 
initiatives did not generate sufficient funds to keep pace with 
global population growth and urbanization [58, 81–83].

Buoyed by the success of global smallpox eradication (1980) 
and a rising HIC focus on cost-effective interventions during 
a decade of economic instability, the 1980s instead experi-
enced renewed international emphasis on vertical biotechno-
logical control measures such as vaccines and oral rehydration 
therapy to combat enteric disease [58, 59]. In the case of ty-
phoid, inactivated bacterial vaccines (phenol, heat, or acetone 
killed) had traditionally been used to protect travelers and mil-
itary personnel [84]. Aside from outbreaks, wider public health 
use of these reactogenic vaccines had been limited. During the 
1972–1973 Mexican outbreak, >5 million doses of inactivated 
vaccines were administered alongside other hygiene measures 
and ampicillin treatment. However, it remained unclear in how 
far mass vaccination had curbed the outbreak and whether on-
going vaccination could further shrink endemic disease reser-
voirs [67, 85, 86]. Around 1980, new hopes for vaccine-based 
typhoid control centered on an oral vaccine based on a live at-
tenuated S. Typhi (Ty21a) strain. First described in 1975, mul-
tiple genes, including those involved in the expression of the 
Vi capsular polysaccharide, had been chemically mutated to 
render Ty21a harmless. The commercially developed vaccine 
was tested in Egypt (1978), Chile (1982, 1983, 1984 & 1986), 
and Indonesia (1986). Trials were closely monitored by the 
World Health Organization (WHO) and US experts and helped 
control a typhoid mass outbreak in Santiago, Chile [87–90]. In 
addition to Ty21a, new parenteral vaccines using the Vi antigen 
to induce immunity were successfully tested in South Africa and 

Nepal. While the relative value of mass vaccination as opposed 
to sanitary interventions for disease control in endemic settings 
remained subject to debate until the 1990s [91], the ease of use, 
efficacy, and low reactogenicity of the new typhoid vaccines sig-
nificantly increased human protection [92, 93].

Alongside vaccine development, new effective antibiotics 
(trimethoprim-sulfamethoxazole, 1974) further contributed to 
the feeling that the 1970s burst of MDR typhoid variants posed 
no serious hazard to global health outside of endemic areas. As 
late as 1984, participants at an international workshop on ty-
phoid—one of 4 global surveys of typhoid since 1955—noted 
that better diagnostics, new vaccines, and allegedly unstable S. 
Typhi R-factors “engendered a sense of optimism among parti-
cipants for improved, worldwide control of typhoid fever” [94].

However, in the absence of effective measures reducing the 
hazards of unclean water, inadequate healthcare, and resulting 
antibiotic overuse in many parts of the world, this optimism 
proved premature. Four years after the 1984 workshop, S. Typhi 
strains isolated during a typhoid outbreak among 230 people 
in Kashmir proved resistant to all 3 first-line drugs. MDR was 
plasmid-mediated and transferable to Escherichia coli. Strains 
with transferable resistance were also isolated in Shanghai. 
In the early 1990s, further MDR outbreaks were reported in 
Pakistan and the Mekong Delta [95].

LOSING CONTROL

In addition to typhoid’s relatively low priority in relation to other 
more lethal or fast-burning diseases [96, 97] and the rising in-
ternational cost-benefit focus on vaccines and biosecurity, poor 
surveillance capabilities in many endemic areas help explain 
why many experts initially underestimated seemingly sporadic 
MDR outbreaks. Surveillance gaps changed little over the next 
3 decades. In the absence of funds, LMIC laboratories capable 
of diagnosing typhoid by culture and testing isolates for AMR 
were relatively rare and typhoid and AMR burdens remained 
invisible.

One exception was Vietnam where the Wellcome Trust had 
established a laboratory in Ho Chi Minh City in 1991. By the 
mid-1990s, Wellcome and Vietnamese researchers were re-
porting the isolation and characterization of MDR S. Typhi. 
Importantly, molecular epidemiological techniques, including 
pulsed-field gel electrophoresis [98], were used to subtype the 
S. Typhi and it became clear that a particular pulsed-field type 
associated with MDR had dominated the typhoid epidemiology 
since around 1990. This new type appeared to be replacing 
other S. Typhi subtypes.

A clearer epidemiological and microbiological picture 
emerged following the development of new DNA sequence–
based typing schemes in the late 1990s. When SNP typing 
was first applied to a small global collection of approximately 
80 S. Typhi (including MDR) isolates, a group of isolates fell 
into a genetically restricted clade known as haplotype H58 
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[18]. Haplotype H58 was deemed to be undergoing a rapid 
population expansion that was confirmed through whole ge-
nome–based DNA sequence analysis of >2000 S. Typhi samples 
covering approximately 60 countries [99]. Approximately 50% 
of recent S. Typhi isolates were H58 (genotype 4.3.1, see Figure 
1) and typing indicated that H58 was spreading into regions, 
including much of East Africa, where typhoid had previously 
been relatively rare or underreported.

Similar to the reemergence of other “ancient” diseases like tu-
berculosis [100–102], genetic change and geographic expansion 
in S. Typhi subpopulations were being driven by social factors like 
poverty, international neglect, regional instability following the 
collapse of the Soviet Union, and antibiotic intensive compen-
sation for lacking healthcare [91, 103, 104]. Between the 1980s 
and 1990s, rapidly increasing global antibiotic use made the ef-
ficacy of newer first- and second-generation fluoroquinolones 
(norfloxacin, 1978; ofloxacin, 1980/1985; ciprofloxacin, 1987), 
macrolides (azithromycin, 1980/1986), and third-generation 
cephalosporins (ceftriaxone, 1984)  against typhoid short lived 
[105–107]. After 1993 reports of sporadic quinolone resistance, 
>90% of strains from a 1996–1998 outbreak affecting 24  000 
people in war-torn Tajikistan were MDR and 82% resistant to 
ciprofloxacin. Despite rising international AMR warnings and 
1994 WHO proposals to use vaccines to control resistant typhoid 
[108, 109], ongoing global overuse of third-generation cephalo-
sporins and fourth-generation fluoroquinolones (gatifloxacin, 
1999)  led to further AMR selection [29, 31, 110, 111]. In the 
case of the cephalosporins, sporadic ceftriaxone resistance was 
reported during the early 2000s and Pakistan’s current out-
break is proving resistant to all first-line drugs, the quinolones, 
and ceftriaxone. Interestingly, XDR S. Typhi isolates from this 
outbreak were H58s that had been infected by a promiscuous 
multidrug resistance plasmid normally found in E. coli and other 
enteric pathogens—thus confirming Anderson’s 1960s warnings 
about environmental AMR selection. For many low-income vic-
tims, azithromycin is now the last effective and affordable antibi-
otic. Azithromycin-resistant strains already exist [61, 112].

CONCLUSIONS

XDR H58 is the most recent and worrying chapter of typhoid’s 
biosocial history. However, its rise continues to be over-
shadowed by other, more lethal or fast-burning diseases. 
According to Google’s NGram viewer, popular awareness for 
“typhoid” is far lower than during the mid-20th century. In the 
absence of effective global surveillance and media coverage, the 
high-income publics continue to view typhoid as a “foreign” di-
sease of the past [103].

This perception has contributed much to typhoid’s cur-
rent biology. Between the 1940s and 1970s, effective sanitation, 
surveillance, vaccination, and a golden age of effective che-
motherapy nearly eliminated typhoid incidence in HICs. The 
frequently invoked success story of Western typhoid control also 

enabled European public health campaigners to use the specter 
of reemerging resistant typhoid to push for precautionary bans 
of agricultural antibiotics. The irony is that these precautionary 
bans were implemented right at the time when poor sanitary 
and healthcare infrastructures as well as increasing nontargeted 
antibiotic use in the Global South fostered a drug-resistant re-
surgence of the disease. This resurgence did not trigger a sys-
tematic global collective response. Between the 1970s and 1990s, 
wealthier typhoid-free countries focused on protecting travelers 
and preventing S. Typhi from crossing borders. Meanwhile, in-
ternational underfinancing and a growing focus on vertical tech-
nological interventions stalled the spread of sanitary and health 
infrastructures that had originally helped curb typhoid in HICs 
and whose absence continues to be a significant driver of antibi-
otic overuse and AMR in LMICs [113]. International neglect and 
antibiotic overuse imprinted on S. Typhi’s biology: The ongoing 
XDR-H58 outbreak bears the biohistorical footprint of half a cen-
tury of narrow priorities and fragmented international antibiotic 
stewardship.
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