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ABSTRACT
Standard latent class modeling has recently been shown to provide
a flexible tool for the multiple imputation (MI) of missing categor-
ical covariates in cross-sectional studies. This article introduces an
analogous tool for longitudinal studies: MI using Bayesian mixture
Latent Markov (BMLM) models. Besides retaining the benefits of
latent class models, i.e. respecting the (categorical) measurement
scale of the variables and preserving possibly complex relation-
ships between variableswithin ameasurement occasion, theMarkov
dependence structure of the proposed BMLM model allows cap-
turing lagged dependencies between adjacent time points, while
the time-constant mixture structure allows capturing dependencies
across all timepoints, aswell as retrieving associationsbetween time-
varying and time-constant variables. The performance of the BMLM
model for MI is evaluated by means of a simulation study and an
empirical experiment, in which it is compared with complete case
analysis and MICE. Results show good performance of the proposed
method in retrieving the parameters of the analysis model. In con-
trast, competing methods could provide correct estimates only for
some aspects of the data.

ARTICLE HISTORY
Received 20 March 2019
Accepted 8 November 2019

KEYWORDS
Bayesian mixture latent
Markov models; missing
data; longitudinal analysis;
multiple imputation

1. Introduction

Sociological, psychological and medical research studies are often performed by means
of longitudinal designs, and with variables measured on a categorical scale. An example
is the LISS (Longitudinal Internet Studies for the Social Sciences) panel study consist-
ing of periodically administered Internet surveys by CentERData (Tilburg University, The
Netherlands) to a representative sample of the Dutch population, and covering a broad
range of topics such as health, religion, work, and the like.

Different from cross-sectional studies, missing data in longitudinal studiesmay not only
concern partial missingness within a single measurement occasion but may also take the
form of complete missing information for certain occasions as a result of missing visits
(or complete missingness) or subjects dropping out from the study.1 When data are miss-
ing at random (MAR)2 and the missingness occurs in the covariates of the analysis model,
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it is well known that ignoring the missing data (i.e. retaining only the complete cases in
the dataset) can lead to biased and inaccurate inferences. While computationally cheap,
this method can lead analysts to wrong conclusions under the MAR assumption. Multi-
ple Imputation (MI) is a method developed by [16] which allows separating the missing
data handling from the substantive analyses of interest, and moreover takes the additional
uncertainty resulting from the missing values into account. Under the MAR assumption,
in MI the missing values of a dataset are replaced withM>1 sets of values sampled from
the distribution of the missing data given the observed data, Pr(ymis|yobs). In order to be
able to do this, an imputation model is needed. The substantive model of interest is then
estimated on each of theM completed datasets, where theM sets of estimates can be pooled
through the rules provided by [7,16]. Throughout this paper, we assume the missing data
are MAR, and we will deal with methods for incomplete covariates of the analysis model.3

When imputing missing longitudinal data, the imputation model must fulfill several
requirements in order to produce valid imputations. In particular, an imputation model
for longitudinal analysis should:

(1) capture dependencies among variables within measurement occasions;
(2) capture overall dependencies between time points resulting from the fact that individ-

uals differ from one another in a systematic way;
(3) capture potential stronger relationships between adjacent time points;
(4) automatically (i.e. without explicit specification) capture complex relationships in the

data, such as higher-order interactions and non-linear associations;
(5) respect the measurement scale of the variables (continuous/categorical).

In particular, requirement 4 is motivated by the fact that the imputed datasets could be
re-used for several types of analyses, in which different aspects of the data need to be taken
into account. An imputation model that can automatically describe all the relevant associ-
ations of the data provides datasets that can be re-used in different contexts. Conversely, if
an imputationmodel requires explicit specification of interaction terms and other complex
relationships, the imputed datasets are likely to be tailored only for some specific analy-
ses, and the imputation step should be re-performed according to the particular problem
under investigation. Furthermore, specifying all the complex interactions that might arise
in a dataset can be a difficult and tedious task [23].

One possible approach for the MI of longitudinal categorical data is given by the imple-
mentation of the MICE technique [19,20] (a full conditional specification method) with
generalized linear models using a logistic link function after converting the data from long
to wide format. That is, converting the dataset in such a way that the different time points
(the single rows of the dataset in the long format) become columns in the wide format.4
In such a way, relationships among the variables at different time points can correctly be
captured by MICE and reproduced in the imputations [1,26]. This occurs because MICE
works by estimating a series of logistic regressionmodels, in which the variables withmiss-
ing values are treated as outcomes. Each of these outcomes is sequentially regressed on
all the other variables present in the dataset; imputation values are then drawn from the
resulting models. Despite the advantages and the ease of implementation of the method,
MICE is not always guaranteed to work. In the first place, notwithstanding its good perfor-
mances in simulation studies, convergence to the true distribution of the missing data is
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not ensured, since the method lacks of theoretical and statistical foundation [23]. Second,
conversion from long to wide format causes the number of variables to be imputed (and
to be used as predictors) to grow linearly with the number of time points T, slowing down
computations and requiring regularization techniques if the sample size is small. Lastly,
by default MICE only includes linear main effects into the imputation model. While the
routine allows for the specification of more complex relationships when these are needed
in the analysis model, it is not always clear at the imputation stage what relationships are
needed for future analyses, and thus requirement 4 above might not be always met.

An alternative solution for categorical data is represented bymixture or latent class (LC)
models [12], proposed and shown to provide good results as imputation models by [3,23].
Mixturemodeling allows for flexible joint-density estimation of the categorical variables in
the dataset and requires only the specification of the number of LCs K. When K is set large
enough, the model can automatically capture the relevant associations of the joint distri-
bution of the variables [14,23], achieving requirement 4. However, standard LCmodels are
better suited for cross-sectional datasets because they do not account for the longitudinal
architecture of the data, and, accordingly, do not satisfy requirement 3 above.

A natural extension of the LC model to longitudinal categorical data, which in addition
accounts for unobserved heterogeneity between units, is represented by themixture Latent
Markov (MLM)model [11,21,22]. Thismodel, also known in the literature asmixedHidden
Markovmodel or random-effects HiddenMarkovmodel, is describedmore in detail by [13]
and [5]. With the MLM model, subjects are clustered at two levels. At the higher level, a
time-constant LC variable groups the units with similar time-varying patterns with each
other, meeting in this way requirement 2. At the within-subject level, dynamic latent states
(LSs; i.e. LCs that can vary over time) are specified for each time point, and -with the first-
order Markov assumption- the LS distribution at a specific time point depends only on the
LS occupied at the previous time occasion. From anMI point of view, the dynamic LSs help
accounting for stronger dependencies across adjacent time points, satisfying requirement
3 above. Furthermore, the distribution of the observed variables at a specific time point
depends not only on the time-constant LCs but also on the dynamic LSs, allowing to take
dependencies within time points into account, thus meeting requirements 1 and 4. Lastly,
the model respects the data scale (requirement 5) by assuming Multinomial distributions
for all variables in the measurement model. As a further advantage, the MLM model can
produce imputations also for time-constant variables with missing values, when present in
the dataset at hand. Note that this imputationmodel differs from the one proposed in [24],
where aMultilevel Latent Class (MLC)model is used to impute multilevel categorical data.
In fact, while the time-constant latent classes in the MLM model serve the same purpose
as the higher-level classes of the MLC model, the two methods differ for the specification
of the lower-level models. On the one hand, the MLC model assumes static latent classes
for the lower-level units, which makes it suitable for the imputation and classification of
data coming from different populations observed at a specific point in time. On the other
hand, the MLMmodel assumes dynamic latent states for the within-subject observations,
which makes this model more fit with data collected across different time points, as auto-
correlations are explicitly taken into account by the latent Markov structure of the model.
If we were to impute longitudinal data with the MLC model, potential auto-correlations
required by the analysis model might be lost or become weaker due to the imputation step,
leading in this way to invalid inferences and incorrect conclusions.
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While the literature has mainly focused on obtaining unbiased estimates of MLMmod-
els in the presence of missing data (e.g. [4] use an event-history extension of the model for
situations of informative drop-out), in this article, we investigate the performance ofMLM
models as an MI tool for missing categorical longitudinal data. The model is implemented
under a Bayesian paradigm. The choice of Bayesianmodeling inMI ismainlymotivated by
two arguments: (a) it naturally yields the posterior distribution of themissing data given the
observed data; and (b) it automatically takes into account the variability of the imputation
model parameter, yielding proper imputations [17].

The outline of the paper is as follows. In Section 2, the model is formally introduced,
and the model selection issue is addressed. Sections 3 and 4 describe a simulation and an
empirical study evaluating the performance of the Bayesian MLM (BMLM) imputation
model. The authors provide final remarks in Section 5.

2. The Bayesianmixture latent Markovmodel for multiple imputation

Bayesian estimation of theMLMmodel requires defining the exact data generating model,
such as the number of classes for the mixture part and the number of states for the latent
Markov chain, as well as the prior distribution of themodel parameters. This allows obtain-
ing Pr(θ |yobs), the posterior distribution of the unknown model parameters given the
observed data yobs. In MI, theM sets of imputations are obtained from the posterior pre-
dictive distribution of the missing data, i.e. Pr(ymis|yobs) = ∫

Pr(ymis|θ)Pr(θ |yobs)dθ . To
achieve this, M parameter values θ (m) (m = 1, . . . ,M) are first sampled from Pr(θ |yobs),
and subsequently the imputations are drawn from Pr(ymis|θ (m)).

2.1. Data generatingmodel and prior distribution

We will assume fixed measurement occasions t (t = 1, . . . ,T) over all subjects and vari-
ables. For the ith unit (i = 1, . . . , n), yitj indicates the value observed for the jth time-
varying categorical variable (j = 1, . . . , J) at time t, with yitj ∈ {1, . . . , r, . . . ,Rj} (therefore
Rj represents the number of categories for the jth variable). The J-dimensional vector of
observed values for unit i at time t is denoted by yit = rt , where r represents a generic
pattern, and yi = r̃ is the vector of responses at all time points for unit i.

Often, also time-constant variables (such as the subject’s gender) are present in the
dataset.When this is the case, zip is used to denote the value on the pth (p = 1, . . . ,P) time-
constant variable observed for unit i. Here zip ∈ {1, . . . , u, . . . ,Up} and the P-dimensional
time-constant pattern observed for i is given by zi = u.

TheMLMdescribes the joint distribution of the data Pr(zi, yi) by introducing two types
of categorical latent variables: a time-constant LC variable w (w ∈ {1, . . . , l, . . . , L}) and
a sequence of dynamic LSs s1, s2, . . . , st , . . . , sT |w = l (st ∈ {1, . . . , k, . . . ,K} ∀ t). For the
first-order Markov assumption, the distribution of the LSs at time t is dependent on the
past only through state at time t−1, that is Pr(st|st−1, . . . , s1,w = l) = Pr(st|st−1,w = l).
Furthermore, the model assumes local independence for the distribution of both time-
constant and time-varying variables conditioned on the latent variables: Pr(yit = rt|st =
k,w = l) = ∏

j Pr(yitj = r|st = k,w = l) and Pr(zi = u|w = l) = ∏
p Pr(zip = u|w = l).

The MLMmodel is composed of four parts:
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• the latent class probabilities for the time-constant latent clusters, expressed by Pr(w =
l) = ωl ∀ l;

• the latent states probabilities, which represent the distribution of the LSs at each time
point; these are given by:
– the initial state probabilities, which describe the distribution of the latent states at

time t=1, and denoted by Pr(s1 = κ|w = l) = νκ l ∀ κ , l;
– the transition probabilities, the probabilities for a unit to switch from state st−1|w =

l to state st|w = l (t = 2, . . . ,T), and indicated with Pr(st = k|st−1 = q,w = l) =
ξq,k(t)l;

• the conditional response probabilities of the time-constant variables given the LC w,
denotedwith Pr(zip = u|w = l) = λupl for the pth variable and Pr(zi = u|w = l) = �ul
for the whole pattern: under local independence, �ul = ∏

p λupl;
• the emission probabilities, which define the probability of the time-varying variables con-

ditioned on the LC w and the LS at time t: Pr(yitj = r|st = k,w = l) = φrtjkl, and – for
the local independence – Pr(yit = rt|st = k,w = l) = 	rtkl = ∏

j φrtjk.

Given the model components above, the MLM model describes the probability of the
observed variables as

Pr(zi = u, yi = r̃) =
∑
l

ωl�ulπr̃l, (1)

where, at the within-subject level,

πr̃l = Pr(yi = r̃|w = l) =
∑

s1,...,sT

νκ l	r1kl
∏
t>1

ξq,k(t)l	rtkl. (2)

Figure 1 represents the path diagram of the data generating model. The picture stresses
the double task executed by the subject-level mixture component w: capturing dependen-
cies among the time-constant variables and overall dependencies between all time points.
Figure 1 also shows how the LS st at time t affects the distribution of both st+1 and yit ,
capturing dependencies between variables within time point t (by means of the emis-
sion probabilities) as well as relationships between adjacent time points (by means of the
transition probabilities). With such a model configuration, requirement 2 of Section 1 is
satisfied with the time-constant latent variable w, while requirements 1 and 3 are met by
means of the latent Markov structure assumed upon the time-varying variables. Impor-
tantly, the model can also be implemented in the absence of the time-constant variables,
which involves dropping the term �ul from equation (1) and the nodes representing the
time-constant variables zi1, . . . , ziP from Figure 1.

The transition probabilities ξq,k(t)l are stored in T K × K squared matrices Xt
l ∀ t ≥ 2.

Xt
l is a stochastic matrix, the rows of which must sum to 1: an entry in row q and column

k of the matrix represents the probability for a unit to switch from state q at time t−1 to
state k at time t. The qth row of Xt

l will be denoted by ξ tql.
In order to improve class identification, and to reduce the computational burden dur-

ing the estimation step, we will assume homogeneous transition and emission probabilities
across time points: ξq,k(t)l = ξq,k(h)l ∀ t �= h and t, h ≥ 2 and φrtjkl = φrhjkl, which entails
	rtk = 	rhk ∀ t �= h and t, h ≥ 1. Thus, the time-identifier subscript will be dropped from
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Figure 1. Graphical representation of MLM model. w: time-constant latent class variable; z: time-
constant variables; s: dynamic latent variable; y: time-varying variables.

the transition and emission probabilities in the remainder of this article, i.e. ξq,k(t)l =
ξq,kl,Xt

l = Xl and ξ tql = ξql∀ t ≥ 2, and φrtjk = φrjk,	rtk = 	rk ∀ t ≥ 1.
For the Bayesian specification of the model, distributional assumptions must be made

for all variables and parameters in model (1)–(2). Since all (latent and observed) variables
in the model are categorical, a Multinomial distribution will be adopted for each of them.
Formally:

• w ∼ Multinomial(ω), with ω the latent weights vector (ω1, . . . ,ωL);
• zip|w = l ∼ Multinomial(λpl), with λpl = (λ1pl, . . . , λUppl) ∀ p, l;
• s1|w = l ∼ Multinomial(ν l), where ν l is the initial state probabilities vector

(ν1l, . . . , νKl) ∀ l;
• st|st−1 = q,w = l ∼ Multinomial(ξ ql) ∀ t > 1, l;
• yitj|st = k,w = l ∼ Multinomial(φjkl), with φjkl the probability vector (φ1jkl, · · · ,

φrjkl, · · · ,φRjjkl) ∀ j, k, l.

We denote by θ the whole parameter vector, i.e. θ = (ω,λ11, · · · ,λPL, ν1, . . . ,
νL,X1, . . . ,XL,φ111, . . . ,φJKL). The conjugate of the Multinomial is the Dirichlet distri-
bution. Hence we will set:

• ω ∼ Dirichlet(η), with η = (η1, . . . , ηL), ηl > 0 ∀ l;
• λpl ∼ Dirichlet(ζ pl), with ζ pl = (ζ1pl, . . . , ζUppl) and ζupl > 0 ∀ u, p, l.
• ν l ∼ Dirichlet(α), with α = (α1, . . . ,αK),ακ > 0 ∀ κ , l;
• ξ ql ∼ Dirichlet(γ ), with γ = (γ1, . . . , γK), γk > 0 ∀ k, l;
• φjkl ∼ Dirichlet(δjk), with δjk = (δ1jk, . . . , δRjjk), δrjk > 0 ∀r, j, k, l .
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η, ζ pl,α, γ and δjk are called hyperparameters of the model. The resulting posterior
distributions are :

• ω|w = l, η ∼Dirichlet(η1 + ∑n
i=1 Ii(w = 1), . . . , ηL + ∑n

i=1 Ii(w = L)), where
Ii(w = l) = 1 if w= l for unit i and 0 otherwise;

• λpl|w = l, zobs, ζ pl ∼Dirichlet(ζ1pl +
∑

i:w=l I(zip = 1), . . . , ζUppl +
∑

i:w=l I
(zip = Up)), where where I(zip = u) = 1 if zip = u and zip ∈ zobs and 0 otherwise;

• ν|s1,w = l,α ∼ Dirichlet(α1 + ∑
i:w=l Ii1(s1 = 1), . . . ,αK + ∑

i:w=l Ii1
(s1 = K,w = l));

• ξq|st−1, st ,w = l, γ ∼ Dirichlet(γ1 + ∑
i,t:w=l,st−1=q Iit(st = 1), . . . , γK +∑

i,t:w=l,st−1=q Iit(st = K));
• φjk|st ,w = l, yobs, δjk ∼ Dirichlet(δ1jk + ∑

i,t:w=l,st=k I(yitj = 1), . . . , δRjjk +∑
i,t:w=l,st=k I(yitj = Rj)), where I(yitj = r) = 1 if yitj = r and yitj ∈ yobs and 0

otherwise.

With symmetric Dirichlet priors (i.e. all the hyerparameters are set to the same value
for each of the specified Dirichlet), increasing the value of the hyperparameters has the
effect of leading to similar posterior modes of the model probabilities (and thus the Multi-
nomial distributions tend to uniformity). Conversely, decreasing this value leads to less
uniformMultinomial distributions. Supplemental online material (Section A) offers some
guidelines about how to set the priors for MI purposes, and describes what is the effect of
varying the hyperparameter values in terms of the allocation of the units to the latent states
and classes.

2.2. Model selection

InMI, the imputation model parameters need not be interpreted, and performing imputa-
tions with a model that takes into account sample-specific aspects (i.e. a model that overfit
the data) is of little concern here [23]. Much more problematic is performing imputations
with models that disregard important associations in the data (i.e. models that underfit the
data).

Overfitting the data with the BMLMmodel, and withmixture models in general, means
that a number of LCs and LSs (L and K) has been selected for the imputations that is larger
than what is needed for the data. When this happens, the BMLMmodel can carefully cap-
ture all relevant associations among the variables as well as sample-specific fluctuations,
similar to log-linear imputationmodels that include non-significant terms [23]. Therefore,
to perform imputations a large L and a largeK can be chosen.However, it is not always clear
whether the selected number of LCs/LSs is large enough; at the same time, too large values
might unnecessarily slow down computations, specially with large datasets.

Bayesian modeling offers a simple solution to detect the number of LSs. The method
is described by [9], chapter 22 for standard mixture models (i.e. for T=1). Their method
consists of preliminarily processing the data by estimating a LC model (by means of the
Gibbs sampler) with an arbitrarily large number of classes (K∗) and prior distributions
for the latent variable parameter that favor the occurrence of empty components (e.g.
with αk = 1/K∗ ∀ k) during the iterations of the Gibbs sampler. Counting the number
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of latent clusters (at each time point) occupied by the units during every iteration leads to
a probability distribution forK (i.e. K ∼ Pr(K)) once the Gibbs sampler is terminated. [9],
who developed themethod for substantive analysis, suggested to use the posterior mode of
such distributions to perform inference and obtain interpretable classes. For MI purposes,
[25] proposed using the posterior maximum of the resulting posterior distribution. If we
denote K̃ = {k|Pr(k) > 0, k = 1, . . . ,K∗} the set of all the number of latent classes that
have been occupied at least once during the run of the preliminary Gibbs sampler, then
the method simply consists of picking K = max K̃. Once K has been chosen, the mix-
ture model can be re-run (with prior distributions set as described in Section A of the
supplemental material) and the imputations can then be performed.

For the BMLMmodel (case T>1), [9]’s method (modified for this kind of model) can
be used to determine both L and K (as shown in the simulation study of Section 3 and
in the application of Section 4), by setting arbitrarily large initial values for the number
of latent classes and states (e.g. L∗ for the number of time-constant classes and K∗ for the
number of latent states). At this point, the preliminary Gibbs sampler can be run with such
large L∗ and large K∗, and the hyperparameters for the latent classes proportions and tran-
sition probabilities can be set equal to ηl = 1/L∗ ∀ l and αk = γk = 1/K∗ ∀ k. After the
run of the Gibbs sampler, the number of clusters to be used for the mixture components
can then be chosen to be equal to the posterior maximum of the resulting distribution for
L (analogous to what we have seen for the standard Latent Class imputation model). As
far as the number of latent states is concerned, the choice of the final K requires evaluat-
ing the number of latent states occupied both within each time-constant latent class, and
within each time point. In particular, we propose exploring the distribution of K within
each time point (conditioned, in turn, on each of the L∗ mixture components). This means
that, for the lth latent class, and for the t-th time point, we can find the maximum num-
ber of latent states occupiedKlt = max{k|Prlt(k) > 0, k = 1, . . . ,K∗}. Here, Prlt(k)denotes
the probability of observing k classes occupied at time t within the time-invariant mixture
component l. CalculatingKlt for each timepointwill lead to a vector K̃l = (Kl1, . . . ,KlT) for
the l-th latent class. From this vector, we can extract the ‘candidate’ number of latent states
for class l, denoted by Kl, as Kl = min K̃l. Note that we select the minimum, rather than
the maximum, number of latent states occupied across the various time points. This helps
to prevent that some of the latent states are left empty during the imputation stage, which
might cause instability in the Gibbs sampler (as explained in the supplemental material,
Section A). Last, the above evaluations are performed for all l = 1, . . . , L∗, which finally
leads to the vector K̂ = (K1, . . . ,KL∗). The final K is then chosen to be the maximum of
K̂; i.e. K = max K̂.

2.3. Model estimation and imputation step

In the presence of the latent variable w and the dynamic states s1, . . . , sT , model estima-
tion occurs through Gibbs sampling with Data Augmentation scheme5 [10,15,18]. Section
B of the supplemental material reports the Gibbs sampler (Algorithm 1) used to estimate
model (1)–(2). For MI, model estimation is performed only on zobs, yobs, as in [23]. Dur-
ing one iteration, units are first allocated to the time-constant classes according to the
posterior membership probabilities Pr(w|θ , zi, yi) and then, conditioned on the sampled w,
units are assigned to the states of the LM chain at each time point. For each subject, the
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sequence s1, . . . , sT is drawn via multi-move sampling [6,8] through their posterior distri-
bution Pr(s1, . . . , sT |w = l, θ , yobs). Multi-move sampling requires to store the filtered-state
probabilities Pr(st|yit , θ) for each time point. How to perform multi-move sampling and
compute the filtered-state probabilities is reported inAlgorithms 2 and 3 of the supplemen-
tal material. After units have been allocated to the LSs, the model parameters are updated
using subsequent steps of Algorithm 1.

For each subject with missing values, M values of the LCs w and the LSs st (for any t
in which the subject provided one or more missing values) should be drawn, along with
the conditional distribution probabilities and emission probabilities corresponding to the
variables withmissing information. These drawsmust be performed duringM of the (post-
burn-in) Gibbs sampler iterations and should be as spaced from each other as to resemble
i.i.d. samples. The sampled values can then be used to perform the imputations:∀ zip ∈ zmis

and yitj ∈ ymis, Pr(zmis
ip |w(m) = l) ∼ Multinomial(λ(m)

pl ) and Pr(ymis
itj |s(m)

t = l,w(m) = l) ∼
Multinomial(φ(m)

jkl ) form = 1, . . . ,M.

3. Simulation study

The performance of the BMLM imputation model was assessed by means of a simulation
study and compared with the complete case (CC) analysis and MICE techniques. In the
study, we used four time-varying and four time-constant variables, and we included miss-
ing visits (typical of multilevel analysis) to make the parameter retrieval more challenging
for the missing data routines. In both studies, analyses were carried out with R version
3.3.0.

3.1. Set-up

Population Model. Four time-constant binary predictors Z1, . . . ,Z4 were generated from

log Pr(Z1,Z2,Z3,Z4) ∝ 0.5
∑
p

Zp −
3∑

p=1

4∑
p′=p+1

ZpZp′ + 2.8Z1Z2Z3. (3)

For the time-varying variables, we started by defining the predictors of a potential substan-
tive model at time point t=1. Therefore, we generated J=3 binary variables Y11,Y12,Y13
with the log-linear model:

log Pr(Y11,Y12,Y13) ∝ −0.5
∑
j
Y1j +

2∑
j=1

3∑
j′=j+1

Y1jY1j′ − 0.5Y11Y12Y13. (4)

For t>1, the binary predictors Yt1,Yt2 and Yt3 were generated through auto-regressive
(AR) logistic models

logit Pr(Ytj) = 0.5Y(t−1)j − 0.15
∑
j′ �=j

Y(t−1)j′ , (5)

for j = 1, . . . , 3 and ∀ t > 1. In this way, we created predictors that are auto-correlated
with each other in time. After generating the 3 predictors, we created at each time point



JOURNAL OF APPLIED STATISTICS 1729

Table 1. Values of the parameters in model (6).

Parameter β0 β1 β2 β3 β12 μ1 μ2 μ3 μ4 ρ τ

Value −0.8 0.6 −0.9 0.8 −1 0.3 −0.2 0.75 0.6 0.75 0.2

the outcome variable Yt4 through the AR logistic model

logit Pr(Yt4) =

⎧⎪⎪⎨
⎪⎪⎩

β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2 + μ1Z1 + μ2Z2
+μ3Z3 + μ4Z4 if t = 1

β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2 + μ1Z1 + μ2Z2
+μ3Z3 + μ4Z4 + ρY(t−1)4 + τY(t−1)3 if t > 1.

(6)
Table 1 shows the parameter values chosen for β0, . . . ,β12, ρ, τ , and μ1, . . . ,μ4. These
parameters were chosen in order to assess how the missing data techniques could capture
different aspects of the data:

• β0,β1,β2,β3,β12 were used to assess how the techniques recovered relationships among
variables at the same time point;

• ρ was used to assess how the models could recover auto-correlations in Y4 at lag-1;
• τ served to determine whether the models could recover crossed-lagged associations

(between Y3 and Y4) at lag-1;
• μ1, . . . ,μ4 served to monitor how the missing data models could retrieve the relation-

ships between the time-varying outcome and the time-constant variables.

From the population model (3)–(6), we generated N=200 datasets with n=200 units
and T=10 time points.

Generating missingness. Missing entries following a MAR mechanism were inserted in
Z1, Z2, Y1 and Y3. Defining Rp equal to 1 when Zp was missing and 0 otherwise for p ∈
{1, 2}, and Rtj equal to 1 when Ytj was missing (j ∈ {1, 3}) and 0 when Ytj was observed,
missingness was created as follows. For the subject-level variable Z1,

Pr(R1 = 1) =
{
0.1 if Z3 = 0
0.3 if Z3 = 1,

while for Z2

Pr(R2 = 1) =
{
0.15 if Z4 = 0
0.35 if Z4 = 1.

As far as the time-varying variables are concerned, the mechanisms were specified as
follows. For Yt1,

Pr(Rt1 = 1) =
⎧⎨
⎩
0.30 if t = 1
0.35 if Y(t−1)4 = 0 and t > 1
0.25 if Y(t−1)4 = 1 and t > 1,

and for Yt3

Pr(Rt3 = 1) =
{
0.45 if Yt2 = 0
0.20 if Yt2 = 1.
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While for Yt3 missingness was fully MAR and dependent on the present values of Yt2,
for Yt1 the missingness mechanism depended on the time indicator t. In particular, at
t=1 missing values were entered according to a MCAR mechanism. For t>1, missing-
ness in Yt1 was MAR with a probability depending on the value of Y(t−1)4. In such a way,
we allowed the missingness mechanism to depend also on past values.

Furthermore, we entered missing visits at each time point by removing for some units
simultaneous values of Yt1,Yt2,Yt3 and Yt4 with probability equal to 0.05 ∀ t. These mech-
anisms yielded about 35% missing observations in Y1 and Y3 (across the whole dataset
and for each time point), about 20% in Z1 and Z2, and about 5% in Y2 and Y4.Missing data
methods.After missingness was generated, we implemented three missing data techniques
on the dataset. The first one was CC analysis. The second was the BMLM imputation tech-
nique presented in this article. For the selection of L andK, we used [9]’s method described
in Section 2.2. Running a preliminary Gibbs sampler for each dataset led to select an aver-
age number of LCs equal to L=7.76 and average number number of LSs equal toK=10.54
(starting with L∗ = 10 and K∗ = 15, with 3000 iterations for the Gibbs sampler, of which
1000 used for the burn-in). In the online supplemental material (Section A) it is reported
how the prior distributions for the BMLMmodel were set. B=3000 iterations were run for
the imputation step, including I=1000 of burn-in. For each dataset, M=20 imputations
were performed.

The third missing data technique was the MICE imputation method via logistic regres-
sion. For MICE, the datasets were transformed from long to wide format. Notice that, in
this case, MICE used an imputation model with JT=40 time-varying variables (plus the
4 time-constant ones). MICE was implemented with its default settings and run for 20
iterations per imputation, with whichM=20 imputations were obtained. Outcomes. Bias,
stability (in terms of standard deviation of the produced estimates) and coverage rates of
the 95% confidence intervals of the parameters in model (6) were used in order to evaluate
the performance of each method.

3.2. Results

Results of the simulation study are shown inTable 2. The BMLM imputationmethod could,
overall, retrieve approximately unbiased parameter estimates not only for the predictors
of the time-varying variables, but also for the parameters of the time-constant variables,
μ1, . . . ,μ4. CC analysis retrieved unbiased parameter estimates for themain effects param-
eters of the time-varying variables (as well as the main effects of the subject-specific
variables), but retrieved biased intercept and lagged-relationships. The MICE imputation
technique could not pick up the estimates of the main and interaction effects of time-
varying variables (especially β1 and β12). However, MICE could recover unbiased lagged
relationships (ρ and τ ) and parameters of the time-constant effects.

CC analysis produced the most unstable estimates among the three methods. Estimates
yielded by the BMLM technique and MICE had, overall, similar stability for all types of
regression coefficients, although the main and interaction effects of time-varying predic-
tors produced by the BMLMmodel tended to be slightlymore unstable. On the other hand,
the BMLM method yielded confidence intervals that were rather close to their nominal
level. MICE imputation produced confidence intervals for the time-constant and lagged
effects whose coverage rates are rather close to their nominal level, but intervals with too
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Table 2. Simulation study: results observed for the estimates of the AR logistic regression coefficients in
model (6) for three missing data methods: CC (complete case analysis), BMLM (Bayesian Mixture Latent
Markov model) imputation, MICE imputation.

Missing data method

Parameter CC BMLM MICE

Bias β0 = −0.80 0.36 0.10 0.18
β1 = 0.60 0.01 0.00 −0.19
β2 = −0.90 −0.02 0.00 −0.14
β3 = 0.80 0.01 −0.02 −0.10
β12 = −1 −0.03 0.00 0.33
μ1 = 0.30 0.03 −0.04 −0.03
μ2 = −0.20 −0.05 0.00 0.01
μ3 = 0.75 0.09 −0.01 −0.01
μ4 = 0.60 0.08 −0.02 −0.01
ρ = 0.75 −0.22 −0.05 −0.04
τ = 0.20 −0.24 −0.05 −0.01

Stability β0 = −0.80 0.30 0.18 0.18
β1 = 0.60 0.32 0.19 0.18
β2 = −0.90 0.28 0.16 0.15
β3 = 0.80 0.19 0.13 0.12
β12 = −1 0.40 0.25 0.23
μ1 = 0.30 0.20 0.12 0.12
μ2 = −0.20 0.20 0.12 0.12
μ3 = 0.75 0.20 0.11 0.11
μ4 = 0.60 0.23 0.13 0.13
ρ = 0.75 0.27 0.11 0.11
τ = 0.20 0.27 0.12 0.12

Coverage β0 = −0.80 0.76 0.92 0.84
Rate β1 = 0.60 0.96 0.94 0.84

β2 = −0.90 0.95 0.96 0.91
β3 = 0.80 0.94 0.94 0.90
β12 = −1 0.98 0.97 0.72
μ1 = 0.30 0.93 0.97 0.96
μ2 = −0.20 0.98 0.97 0.95
μ3 = 0.75 0.94 0.95 0.97
μ4 = 0.60 0.92 0.94 0.96
ρ = 0.75 0.88 0.94 0.92
τ = 0.20 0.82 0.96 0.94

Note: Large bias (in absolute value) and too low coverage rates are marked in boldface.

low coverage for main and interaction effects of the time-varying items. The confidence
intervals computed after CC analysis were close to their nominal coverage level, excluding
the intervals of β0, ρ and τ , which resulted in a too low coverage.

4. Empirical study

While in the previous section, the parameters of the BMLM MI method was evaluated
using simulated datasets from constructed populations, in this section we focus on a real
dataset. More specifically, we make use of the associations as present in a real longitudinal
dataset rather than specifying these ourselves, and investigate whether these associations
are retainedwhen introducingmissing values (includingmissing visits) and imputing these
using the BMLM model. For this application, we create the missing values in the dataset
ourselves, in such a way to have a benchmark (the results obtained with the complete data)
for the estimates retrieved by the missing-data methods.
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Table 3. Real-data experiment: variables used in the panel regression model (7) (top part) and to
generate missingness (bottom part).

Variables for the analysis model

Variable ID Description Values (range)

Yt0 (TV) R.’s house satisfaction 0 Little or not satisfied; 1 (Very) Satisfied
Yt1 (TV) R.’s vicinity satisfaction 1 Very unsatisfied; 4 Very satisfied
Yt2 (TV) R.’s opinion about the value of the dwelling 1 Low; 5 High
Yt3 (TV) Number of rooms in the house 1 Less than 3; 4 More than 6
Yt4 (TV) Type of R.’s dwelling 1 Single family; 7 With shop or workplace
Yt5 (TV) Number of living-at-home children 0 = 0; 3≥ 3
t (TV) Wave indicator 1 = 1st wave; 4 = 4th wave

Extra variables used to generate missingness
Variable ID Description Values (range)
Z1 (TC) R.’s gender 0 Female; 1 Male

Note: Type of variables: TV = time-varying; TC = time-constant. R = respondent.

We used data collected by CentERData through their LISS panel, which consists of a
(representative) sample of Dutch individuals, who participate inmonthly Internet surveys.
Key topics surveyed once per year include work, education, income, housing, time use,
political views, values, and personality.6 For our experiment, we selected the first 4 yearly
waves (T=4, from June 2008 until June 2011) of the Housing questionnaire.

4.1. Study set-up

The data and the analysis model. The original datasets consisted of about a hundred vari-
ables (which included survey-specific and background variables) and sample sizes that
varied fromwave to wave, ranging from 4411 (Wave 3) to 5018 (Wave 4) cases. Wemerged
the datasets coming from the four surveys, retained only those units with complete infor-
mation for all four waves, and selected only those cases who were owners of the dwellings
where they had residence (this was functional to the analysis model we decided to esti-
mate). This resulted in a dataset with sample size of n=257 (and 1028 rows in total for the
four time points).

Next, using this dataset, we estimated a Generalized Estimating Equation (GEE) logistic
regression model with auto-regressive error (of order 1) for the binarized version of the
response variable ‘House Satisfaction’7; this variable is denoted by Yt0 in Table 3. Among
the remaining variables, we detected 5 (time-varying) predictors (Yt1, . . . ,Yt5 in Table 3)
that were significant at the 5% level, yielding a total of J=5 variables in the analysis model.
Descriptions of these variables, including the time indicator t, are given in Table 3 (top
part). Some of these were re-coded (transformed from continuous to categorical) and for
others we collapsed some categories (so that their frequencies were not too small).

The GEE logistic model we estimated was

logit(Yit0) = β0 +
5∑

j=1
βjYitj + β34Yit3Yit4 + τ1Yi(t−1)1 + τ3Yi(t−1)3. (7)

The response covariancematrix assumed by themodel takes the formVi = σ(A1/2
i RiA

1/2
i ),

where σ is a scale parameters that allows for overdispersion, Ai is a diagonal matrix with
elements var(Yi0), and Ri is the correlation matrix of Yi. The correlation matrix Ri will be



JOURNAL OF APPLIED STATISTICS 1733

Table 4. Real-data experiment: results for the parameters in model 7. Est. = point estimate. S.E. =
standard error.

Missing Data Method

Complete data CC analysis BMLM MICE

Parameter Est. S.E. Est. S.E. Est. S.E. Est. S.E.

β0 −6.41∗ 0.96 −6.14∗ 1.17 −5.89∗ 1.06 −5.46∗ 0.93
β1 1.20∗ 0.12 1.19∗ 0.16 1.13∗ 0.13 0.98∗ 0.12
β2 0.25∗ 0.08 0.26∗ 0.09 0.22∗ 0.09 0.20∗ 0.08
β3 1.13∗ 0.31 0.98∗ 0.40 1.03∗ 0.34 1.03∗ 0.31
β4 0.42 0.22 0.39 0.25 0.36 0.23 0.29 0.21
β5 −0.37∗ 0.12 −0.21 0.13 −0.34∗ 0.12 −0.37∗ 0.11
β34 −0.20∗ 0.08 −0.19∗ 0.10 −0.18∗ 0.09 −0.16∗ 0.08
τ1 0.50∗ 0.09 0.50∗ 0.15 0.44∗ 0.10 0.49∗ 0.10
τ3 −0.34∗ 0.09 −0.25 0.14 −0.31∗ 0.10 −0.35∗ 0.09
σ 0.97 – 1.04 – 0.95 – 0.92 –
ρ 0.44 – 0.53 – 0.46 – 0.47 –

Note: 5% significant predictors are denoted with a ‘∗ ’ next to the point estimates obtained with each method.

assumed to specify an auto-regressive model of order 1 (AR(1)), which implies:

Ri =

⎡
⎢⎢⎣
1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

⎤
⎥⎥⎦ .

The values of the model parameters β0, . . . β5,β34, τ1, τ3, σ , and ρ estimated on the com-
plete data are reported in the first columns of Table 4, along with their standard errors.
All predictor effects were significant at 5% level as highlighted, except for Yt4, one of the
variables yielding the significant interaction term β34.

Generatingmissingness. Apart from the variablesYt0, . . . ,Yt5, we used the time-constant
variable gender denoted with Z1 in Table 3, to generate MAR missingness in the variable
Yt1 (Z1 was thus also included in the imputation models as a time-constant variable). In
particular, by denoting the missingness of Yt1 with Rt1, we created missing values for Yt1
with the logistic model

logit Pr(Rt1 = 1) = −3 + 1.9Z1.

Furthermore, we entered MARmissingness in Yt2 – conditioned on Yt3 – with the logistic
model

logit Pr(Rt2 = 1) = 2.5 − 1.6Yt3,

where Rt2 is defined in a way similar to Rt1. The parameters of both logistic models were
chosen in such a way to obtain marginal missingness rates of about 20% for each of these
two variabes.

Furthermore, we generated missing visits in the dataset; thus, for some units, we
removed the observations for all the time-varying variables Yt0, . . . ,Yt5 with increasing
probability at each time point. If RMV(t) is the indicator equal to 1 for those units with
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missing visits at time t and equal to 0 otherwise, the mechanism we used was

logit Pr(RMV(t) = 1) = −4.5 + 0.55t,

which generated missing visits for about 1% of the cases at the first wave, and for about
10% of the cases at the fourth wave.

Overall, all the time-varying variables had a marginal (i.e. across all time points) rate
of missingness equal to about 5%, except for Yt1 and Yt2, which had a marginal rate of
missingness roughly equal to 25%.

Missing data methods. As done for Section 3, we compared the performance of three
missing data methods to retrieve the parameters of model 7: CC analysis, BMLMMI and
MICE.

With CC analysis we estimatedmodel 7 on the dataset with only complete observations,
i.e. excluding all cases withmissing data. This left a dataset with 619 rows, with sample sizes
ranging from n=153 at wave four to n=157 at wave two.

For the BMLM model, we performed model selection with [9] ’s method reported in
Section 2.2. We ran the preliminary Gibbs sampler with L∗ = 20 and K∗ = 20, and the
same number of iterations as the previous case. This led us to choose L=15 and K=9.
In the subsequent step,M=50 imputations were performed during 10000 iterations (plus
5000 iterations for the burn-in).

Lastly, MICE was implemented with its default settings, and its algorithm was run for
50 iterations for each of theM=50 produced imputations.

Outcomes. We compared the results provided by each missing data method with the
results observed for the complete-data case. In particular, we focused on the point estimates
of all parameters in model 7 as well as the standard errors for the fixed effects (β0, . . . , τ3).
We also examined which fixed effect estimates were significant at a 5% level.

4.2. Results

The results are reported in Table 4. Both CC analysis and the two versions of the BMLM
imputation model retrieved point estimates of the fixed effects rather close to those of the
complete-data analysis. Exceptions for the CC analysis were the main effects β3 and β5
and the cross-lagged term τ3, which were slightly different from the corresponding values
obtained with the complete data. Some of the standard errors yielded by CC analysis were
inflated because of the limited sample size exploited by this method, which made some
parameter estimates no longer significant at the 5% level (in Table 4, some fixed and cross-
lagged effects are no longer marked with a ‘*’). Conversely, despite a couple of values being
slightly off (the intercept β0 and the fixed effect β3), BMLM could exploit the original sam-
ple size, causing the standard errors to be only slightly larger than those of complete-data
analysis (reflecting in this way the imputation step uncertainty). As a result, all parame-
ters that were significant with the full data were also significant after imputing the missing
values with the BMLM model. The MICE method did also a good job at retrieving most
of the model point estimates; however, coefficients such as the intercept β0 and the main
effects β1, β3, and β4 were off the estimates of the complete-data condition. The standard
errors observed after imputing the data with MICE were close to the BMLMMI estimates.
Lastly, all parameters that were significant with the complete data, were also significant
after MICE imputation.
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Concerning the parameters of the variance component of the model, all missing data
techniques could retrieve good estimates for the variances of the scale parameter σ . The
auto-regressive coefficient ρ, on the other hand, was well retrieved by all MI techniques,
but overestimated by CC analysis.

5. Discussion

We introduced the use of the BMLM model for the MI of missing categorical longitudi-
nal covariates. The model is flexible enough to automatically recover relationships arising
between time-varying and time-constant variables, aswell as lagged relationships and auto-
correlations. Furthermore, the model reflects the correct (categorical) scale with which the
variables are measured.

The performance of BMLM-basedMI approachwas evaluated and comparedwith other
two missing data methods, CC analysis and MICE, by means of a simulation study and
an empirical experiment. In the simulation study, the analysis model used was a logistic
model including an auto-regression term and a crossed-lagged relationship coefficient, as
well as main effects of time-constant predictors. Despite the acceptable results produced
by MICE imputation and CC analysis, especially when retrieving parameter estimates of
main effects (CC analysis) or interaction and cross-lagged relationships (MICE), these two
methods could not fully do an adequate job for all the type of dependencies present in
the data. The BMLMmodel, on the other hand, though not uniformly overperforming the
other methods, it could retrieve unbiased estimates for all types of parameters specified
in the substantive models, the coverage rates of their confidence intervals being never too
small w.r.t. to their 95% nominal level. The good performance of MI via BMLM showed
that the model can also cope with missing visits when these are present at any time point.

In the empirical experiment, we estimated a GEE logistic regression model using data
from the LISS panel. The model included main and interaction fixed effects, along with
crossed-lagged relationships and an auto-regressive term. Furthermore, the variance of the
response was also described by an overdispersion parameter. When creating missingness
on this data, we also included cases with missing visits in the LISS dataset as a further
challenge for the missing data methods. The results confirmed the good performance of
the BMLM model when compared to complete-data condition estimates. In particular,
the same conclusions (i.e. the same terms were statistically significant) were drawn for the
complete-data case and the BMLM imputation method. This did not happen with the CC
technique, which nevertheless yielded good results for most of the parameters considered
in the study. Lastly, imputing the data with theMICEmethod also led to valid inferences of
the GEE model, although some of the parameter estimates obtained with MICE were a bit
farther from the complete-data estimates than the values obtained with the BMLMmodel.

Importantly, it should be noted that throughout the paper, we have assumed MAR data
on the covariates of the analysis model. This is known to lead to invalid inferences when
ignoring the missing data (i.e. when CC analysis is applied), as the simulation studies of
this article have shown. In this respect, the imputation models used in this paper were
favored over CC analysis, due to the implied assumptions. However, in practical analyses,
it is difficult to determine whether the missing data mechanism is missing at random or
completely at random (MCAR). When the data are MCAR, CC analysis can produce valid
inferences while providing a computationally cheap method to deal with missing data (as
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no action is taken to handle them, nor is an imputation model required). Therefore, when
data are known to be MCAR, performing CC analysis is a valid method to proceed.

In light of the results of the studies carried out in this article, we recommend the applied
researcher that needs to deal with missing longitudinal categorical data to consider the
BMLMmodel as a possible MI tool. Nevertheless, some issues still need to be better inves-
tigated in future research. For instance, whereas in this article, we aimed to introduce the
use of the BMLMmodel forMI purposes, somemore extensive simulation experiments (in
which the model is tested with different sample size and missingness conditions, such as
systematic drop-out) should be performed in future studies. In addition, while we showed
that our model can deal with MAR missing data, a version of the BMLM model for miss-
ing not at random data (MNAR; i.e. the distribution of the missingness depends on the
unobserved data), which are likely to occur in longitudinal analysis, should be developed
in future research. While we focused on unobserved predictor variables of the analysis
model, future studies should also investigate the behavior of such imputation model when
missingness occurs also in the response variable.

Furthermore, the proposed imputation model itself can be extended in various use-
ful ways. Firstly, while we dealt with categorical (both ordinal and nominal) variables,
the BMLM model can be extended to accommodate mixed types of data, i.e. it can be
implemented on datasets containing both categorical and continuous variables. This can
be achieved, for instance, by specifying mixtures of univariate Normal and Multinomial
distributions. Second, the BMLMmodel we proposed for the imputations can be seen as a
Hidden Markov Model with discrete random effect. An alternative to such model can be
obtained by specifying a continuous random effect, as proposed by [2]. The continuous
random effect might lead to more precise inferences, for instance, when a continuous ran-
dom effect is required in the analysis model. Future research should investigate this model
forMI. Third, althoughwe assumed the BMLMmodel to have aMarkov chain of order 1, it
is possible to consider lags of higher orders by conditioning the distribution of the dynamic
LSs at time t on the configuration of the states at earlier time points, e.g. t − 2, t − 3, etc., if
these kinds of lags are needed in the substantive analysis. Fourth, when the measurement
may occur at different continuous time points rather than at fixed discrete occasions, impu-
tations of the missing data can be provided by assuming a continuous-time latent Markov
chain for the distribution of the LSs. Last, for applications in which the subjects observed
across time are coming from different groups (e.g. patients coming from different hospi-
tals), the model can be moved towards a multilevel framework, for instance, by adding a
further LC variable at the group-level.

Notes

1. In the first case (missing visits), subjects fail or refuse to provide information for all variables
at one or more time occasions. In the second case (drop-out), a subject stops providing infor-
mation for all variables from a specific time point until the end of the study. Even though this
paper generally deals with partial missingness, we will also test the performance of the pro-
posed method in the presence of missing visits by means of a simulation study and an empirical
experiment. In the latter, few cases of drop-out are also present in the dataset.

2. That is, the probability of missingness depends exclusively on the observed data.
3. Note that, in case of missing visits, values can be unobserved also for the response of the analysis

model.
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4. In this way, each row in the wide format corresponds to a single unit of analysis.
5. In Data Augmentation units are assigned to the LCs in a first step, and – accordingly – model

parameters are updated in the subsequent step. These two main steps are then iterated.
6. More information about the LISS panel can be found at www.lissdata.nl.
7. The name of the variable was cd08a001 in the original dataset. We binarized this variable

(which originally was categorical with four categories), so that we could enable the estimation
of the GEE logistic regression model with the LISS dataset.
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