
ARTICLE

Genomic diversity landscape of the honey bee gut
microbiota
Kirsten M. Ellegaard 1 & Philipp Engel 1

The structure and distribution of genomic diversity in natural microbial communities is largely

unexplored. Here, we used shotgun metagenomics to assess the diversity of the honey bee

gut microbiota, a community consisting of few bacterial phylotypes. Our results show that

most phylotypes are composed of sequence-discrete populations, which co-exist in individual

bees and show age-specific abundance profiles. In contrast, strains present within these

sequence-discrete populations were found to segregate into individual bees. Consequently,

despite a conserved phylotype composition, each honey bee harbors a distinct community at

the functional level. While ecological differentiation seems to facilitate coexistence at higher

taxonomic levels, our findings suggest that, at the level of strains, priority effects during

community assembly result in individualized profiles, despite the social lifestyle of the host.

Our study underscores the need to move beyond phylotype-level characterizations to

understand the function of this community, and illustrates its potential for strain-level

analysis.
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Most bacteria live in genetically diverse and highly com-
plex communities under natural conditions, and their
evolution and ecology is dictated by both external

environmental factors and internal microbial interactions. How-
ever, surprisingly little is known about how diversity is structured
and spatially distributed in natural microbial communities. Are
bacteria organized into genetically and ecologically congruent
units, akin to the species of the eukaryotic world? And if so, how
can we delineate these units? Do closely related lineages co-exist
spatially, and if so, how? Addressing these questions is funda-
mental for understanding the evolution and function of natural
bacterial communities1.

16S rRNA amplicon sequencing is the most commonly used
culture-independent method to analyze bacterial communities
and has provided valuable insights into the distribution of bac-
teria across habitats2. However, for studying bacterial evolution
and function, the 16S rRNA gene lacks resolution. First of all, the
same divergence in the 16S rRNA sequence can correspond to
vastly different levels of relatedness at the genomic level, even
within the same bacterial species3,4. Secondly, adaptation of
bacterial populations to specific environmental conditions is often
linked to functions in the accessory gene pool, which cannot be
inferred from amplicon sequencing data1. Shotgun metagenomics
is therefore becoming an increasingly popular method because it
provides both strain-level taxonomic resolution and information
about the functional repertoire of the sequenced community5,6.

Despite the on-going debate on the existence and delineation of
bacterial species, read recruitment of shotgun metagenomic data
to reference genomes7 has provided evidence that many bacterial
populations are organized into discrete genetic clusters8. These
so-called ‘sequence-discrete populations’ (SDPs) are defined by a
genetic discontinuity in relatedness between a population of
strains and the rest of the community3,7–10. Evidence for the
broad existence of SDPs in bacteria was recently obtained based
on a pairwise average nucleotide identity (ANI) analysis on more
than 90,000 sequenced genomes from the NCBI genome data-
base11. However, in natural populations, SDP analyses have so far
only been conducted in a small number of studies, and almost
exclusively from aquatic habitats3,7–10, leaving the question
somewhat open as to how general this pattern is. Since SDP
analysis requires representative reference genomes and high
sequencing coverage at the taxon level, it is in practice often
limited to a very small fraction of the members of a given
community.

The successful analyses of shotgun metagenomic data,
including de novo assembly, variant calling, and SDP analysis,
depends largely on sequencing depth and community complex-
ity5. Therefore, the honey bee gut microbiota has great potential
as a model for studying natural bacterial populations due to the
remarkably simple and conserved composition of the commu-
nity12,13. Multiple studies employing 16S rRNA amplicon
sequencing have confirmed that the honey bee gut microbiota is
composed of only 8–10 phylotypes (i.e. clusters of 16S rRNA
sequences with ≥97% sequence identity), belonging to the Fir-
micutes, Actinobacteria and Proteobacteria phyla, which typically
make up >95% of all 16S rRNA sequences14–16. These phylotypes
appear to be specific to the honey bee gut and dominate the
community regardless of the geographic origin of the sampled
bees, their age or the season15–18. However, genome sequencing
has revealed the presence of highly divergent strains and exten-
sive gene content diversity within several phylotypes, indicating
that the community is considerably more complex than 16S
rRNA amplicon sequencing would suggest19–21. From a taxo-
nomic perspective, the extensive intra-phylotype diversity has
resulted in some phylotypes now harboring multiple named
species, and others harboring highly divergent lineages with the

same species name22. Naming of species within phylotypes has so
far mostly been motivated by divergence in the non-ribosomal
part of the genomes and the aforementioned differences in
metabolic profiles23, but also on ANI24. However, the natural
population structure within phylotypes has not been system-
atically investigated, and it is unclear to what extent the named
species represent discrete evolutionary lineages (SDPs). More-
over, metabolic profiling has only been done on a small number
of isolates19,23,25, raising the question whether such metabolic
features do in fact represent species core repertoire. Regardless,
there is increasing evidence that the intra-phylotype diversity is of
functional relevance for the bee gut microbiota. For example,
divergent strains of the phylotype corresponding to Gilliamella
exhibit different capacities to degrade pectin, a major plant glycan
of pollen21. Similarly, it has been shown that strains of one of the
two Lactobacillus phylotypes (originally named ‘Firm5’) differ in
their ability to metabolize sugars commonly found in the honey
bee diet23. How these strains distribute in the host population has
remained elusive, but may influence the interaction of the bee gut
microbiota with its host26,27, with possible effects on the health
status of this important pollinator species.

In the current study, we used shotgun metagenomic sequen-
cing to comprehensively analyze the genomic diversity landscape
of the honey bee gut microbiota, at three taxonomic levels:
phylotype, SDP and strain (Fig. 1a). By generating metagenomic
samples from individual honey bees, we analyzed the distribution
of genomic diversity within and between colonies (Supplementary
Fig. 1). Our analysis revealed remarkably high levels of genomic
diversity within colonies, of which only a fraction was carried by
individual bees, resulting in marked functional differences, and
highlighting the need to move beyond phylotype-level analysis in
future studies.

Results
Extensive metagenomic read recruitment to a reference data-
base. We shotgun sequenced the gut microbiota of 54 bees of
three different age groups, sampled from two adjacent colonies,
one of which was sampled over two consecutive years (Fig. 1b).
To this end, we established a DNA extraction protocol that
allowed for the enrichment of bacterial cells in samples origi-
nating from single homogenized bee guts (hindgut), and con-
structed a reference genome database containing genomic data
for all major phylotypes of the honey bee gut microbiota (Fig. 1c,
Supplementary Data 1). The enrichment protocol efficiently
reduced host-derived DNA in most samples, with an average of
13% of the reads mapping to the honey bee genome (Supple-
mentary Fig. 2a). Moreover, ~90% of the remaining reads map-
ped to the reference genome database in the majority of samples,
regardless of honey bee age, indicating that the current database is
representative of most of the community (Supplementary
Fig. 2b). One sample (DrY2_W5) did contain an abnormal
amount of unmapped non-host reads (71%), and was therefore
removed from all downstream analyses related to the core
microbiota composition and distribution.

To identify bacterial lineages not represented in the current
database, orthologs of 33 universally conserved gene families28

were extracted from de novo assemblies of non-host reads, and
the subset of these sequences without a close hit to the current
genomic database (<95% nucleotide sequence identity) was
further analyzed. The median number of such orthologs per
gene family ranged from 0–3 per sample, indicating that relatively
few additional taxa were present with sufficient coverage for
assembly in a given sample (Supplementary Data 2). A blast
search against the NCBI non-redundant database showed that the
taxa not represented in the current database belong to three
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different classes of Proteobacteria (alpha, beta and gamma). Hits
to Bartonella, Commensalibacter and Snodgrassella were found in
several samples, indicating that these bee gut microbiota
phylotypes still lack some representation in the current database.
In addition, hits to phylotypes not considered as part of the honey
bee gut microbiota occurred sporadically (e.g. Sphingomonas sp,
Acinetobacter sp., and Serratia sp.) (Supplementary Data 2).

Altogether, these analyses show that bacteria-enriched meta-
genomes can be obtained from individual honey bees, and that a
large proportion of the diversity in these metagenomes is
represented in our reference database, justifying its utilization
for downstream analyses.

Core members are composed of sequence-discrete populations.
To begin our characterization of the genomic diversity landscape of
the honey bee gut microbiota, we first investigated whether phylo-
types of this community harbor SDPs and hence are organized into
genetically congruent units. To this end, candidate SDPs were
identified in the reference database by clustering genomes based on
phylogenetic relationships and pairwise average nucleotide identities
(ANI) (see methods and Supplementary Fig. 3). With this approach,
we identified candidate SDPs for four of the five core phylotypes and
for Bartonella apis, whereas no candidate SDPs were found for the
core phylotype Snodgrassella alvi (Fig. 2, Supplementary Figs. 4
and 5, see methods). Since SDPs inferred from sequenced isolates
could potentially result from biases in database representation, we
validated the candidate SDPs using the metagenomic data
(see methods and Supplementary Fig. 3). Briefly, orthologs of core
gene families were extracted from the de novo assemblies of the

metagenomic samples and aligned to the core sequences from
the database. For true SDPs, the metagenomic core gene orthologs
are expected to have a much higher similarity to one particular SDP
relative to any other SDP (resulting in a ‘gap-zone’ as described in8).
Indeed, we found a clear separation in the distribution of
sequence similarity between the highest and second-highest scoring
SDP for four of the five phylotypes with candidate SDPs (Fig. 2).
Only for B. apis, the distributions overlapped (Fig. 2f). In this case,
the wider curve for the highest-scoring SDP also shows that
the current database does not fully grasp the diversity present in the
metagenomic samples, as corroborated by the presence of B. apis-
like bacteria in the unmapped reads (Supplementary Data 2). Thus,
it is possible that SDPs are present in B. apis, although with much
less separation compared to the other phylotypes. A considerable
fraction of the bifidobacteria in the metagenomic samples also lacked
a close relative in the database (Fig. 2c). However, the two SDPs
(Bifido-1 and Bifido-2) were still discrete due to the large divergence
between them.

Since all samples in the current study were derived from the
same geographic location, we additionally re-analyzed a pre-
viously published metagenomic dataset, which consisted of
pooled honey bee guts sampled from a colony in the Unites
States21. Strikingly, as for the Swiss samples, most of the genomic
diversity in this sample was represented by our reference
database, with only 9% of the reads unmapped. Despite a general
shift in abundance towards Proteobacteria in this sample, all
SDPs identified in the current study were found to be present and
discrete (Supplementary Fig. 6b–d). As for the metagenomes
from Switzerland, most orthologs of the 33 universally conserved
gene families28 without a close hit to the database still had best
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Fig. 1 Overview of the experimental design and approach. a Three levels of diversity were explored in the current study: (i) phylotypes, i.e., bacteria with
about 97% similarity in the 16S rRNA gene (as defined by 16S rRNA amplicon sequencing studies), (ii) SDPs (sequence-discrete populations), i.e. divergent
sub-lineages contained within phylotypes, (iii) strains, i.e. any genomic diversity occurring within SDPs. A hypothetical example of possible distributions of
strains across bees is shown with colored bars. b In total, 54 individual honey bees of different age and from two different colonies were sampled for
shotgun metagenomics analysis. At each time point, six bees per colony were sampled. Colony 1 was sampled in two consecutive years. Bees sampled
10 days, 22/24 days, and 48/158 days after emergence are considered as ‘young’, ‘middle-aged’, and ‘old’, respectively. The ‘old’ bees correspond to winter
bees as the sampling started in late September. c Guts of individual bees were dissected and subjected to a customized protocol enriching for bacterial
DNA, which was then shotgun sequenced using Illumina. In parallel, a reference database of high-quality draft and complete genomes of bee gut bacterial
isolates was established. The downstream analysis of the metagenomic data was based on both mapping against the reference database and de novo
assembly. An overview flowchart of the entire analysis illustrating how genomic and metagenomic data was integrated is given in Supplementary Fig. 1
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hits to phylotypes of the honey bee gut microbiota in the non-
redundant database of NCBI, most frequently to Snodgrassella
and Bartonella, but some hits to Gilliamella were also observed
(Supplementary Data 2).

In summary, a total of 11 SDPs were identified and validated
within four of the five core phylotypes of the honey bee gut
microbiota. This means that most core phylotypes of the bee gut
microbiota have further diversified into genetically congruent
units that can be detected with shotgun metagenomics.
Compared to previously published species names, eight of the
SDPs contain a single named species, two SDPs contain two
species names, and one SDP has no associated species name yet
(Fig. 2, Supplementary Data 1). While additional SDPs may be
present at low abundance, our analysis shows that we have
identified the most dominant SDPs, and, that these are present in
bees in both Europe and the United States.

Replication and stability of the microbiota changes with age.
Having confirmed the existence of SDPs within phylotypes, we
next investigated whether there are age- or colony-specific sig-
natures in the distribution of phylotypes and SDPs among indi-
vidual honey bees. Both phylotype and SDP abundances were
quantified based on the summed gene coverage of core gene
family orthologs from the database (867–1,737 families per phy-
lotype, see methods and Supplementary Fig. 7). For the seven
phylotypes represented by complete genomes or genome scaffolds,
a pattern consistent with replicating bacteria29 was observed in the
vast majority of samples (Supplementary Fig. 8), independently of
the intra-sample phylotype abundance (Supplementary Fig. 9).
Therefore, quantifications were based on the coverage at the
estimated terminus in samples with detectable replication.

First of all, we found that the bacterial community had a highly
stable phylotype composition, also at the level of individual bees,

60 70 80 90 100
% identity (65,333 genes)

Gilli-1

Gilli-2

Gilli-3

60 70 80 90 100

60 70 80 90 100 60 70 80 90 10060 70 80 90 100

Bifido-2

Bifido-1

60 70 80 90 100

a b c

fd e

 GilliamellaFirm5 Bifido

Bartonella apisFirm4 Snodgrassella alvi

BGH98

BHC50

SALWKB2

BGH96

Ga0133560

Firm4-2

Firm4-1

% identity (28,772 genes) % identity (86,671 genes)

% identity (25,129 genes)% identity (22,513 genes) % identity (19,332 genes)

G. apicola

B. aster.

B. indicum
B. coryne.

L. mellifer

L. mellis

S. alvi

B. apis

Firm5-2

Firm5-4

L. helsingborg. 

L. kimbladii

L. melliven.

L. apis

Firm5-3

Firm5-1

L. kullaberg.

G. apis

Fig. 2 Core genome phylogenies of bee gut microbiota phylotypes and SDP validation. a–f The upper part of each panel shows the maximum-likelihood
core genome phylogeny inferred for each of the five core phylotypes of the honey bee gut microbiota and the non-core phylotype B. apis, based on the
genomes in the reference database. Different shades of color represent candidate SDPs. The lower part of each panel shows the validation of the existence
of SDPs using the metagenomic data. Orthologous sequences of core genes were extracted from de novo metagenome assemblies and aligned to the core
genes of the reference genomes. The two density distributions correspond to the maximum alignment percentage identity of all extracted orthologs to their
highest and second-highest (grey color) scoring candidate SDP. Note that only one distribution is shown for S. alvi, since no candidate SDPs were found in
the database. The total number of non-redundant orthologous sequences extracted per phylotype is indicated in the legend of the density distribution plots.
Phylogenetic analyses were based on nucleotide alignments, except in the case of Firm4. Bars correspond to 0.05 substitutions per site. Published species
names are placed at the leaves of the trees (for full names, see Supplementary Data 1). Names of confirmed SDPs are shown next to the internal node
corresponding to their most recent common ancestor. Results for the two non-core members Commensalibacter sp. and F. perrara are shown in
Supplementary Fig. 6a. Larger trees with annotations can be found in Supplementary Fig. 5

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08303-0

4 NATURE COMMUNICATIONS |          (2019) 10:446 | https://doi.org/10.1038/s41467-019-08303-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


consistent with previous 16S rRNA-based analyses13,15. The five
core phylotypes were detected in more than 94% of the samples,
with Firm5 being the most abundant member (Fig. 3a, Supple-
mentary Fig. 10). In contrast to most previous 16S rRNA-based
studies, the Bifido phylotype was found to be the second most
abundant. This difference is likely explained by the known 16S
rRNA primer biases30, indicating that the abundance of this
member has so far been underestimated. The non-core species
Frischella perrara, B. apis and Commensalibacter sp. were more
variably present, with detected frequencies ranging from 0.37 to
0.68 across samples, also largely consistent with previous
studies13,31. All other species included in our reference database
had <1x genome coverage in any of the samples, and were
therefore not analyzed further.

Overall, there was no strong association between honey bee age or
colony and the relative abundance of core phylotypes in the current
study (Supplementary Table 1). Most of the parameter deviance in
phylotype abundance was contributed by the non-core members
Commensalibacter sp. (ManyGLM, P= 0.007, 11.9%) and B. apis
(ManyGLM, P= 0.002, 12.8%) (Supplementary Table 1), with
Commensalibacter sp. being more frequently encountered in old
bees and B. apis being highly dominant in one set of old bees
(Supplementary Fig. 10), suggesting that old bees may be more
prone to colonization by non-core members. Indeed, we observed an
age-dependent increase in the fraction of unmapped non-host reads
(Fig. 4a), and universal core ortholog sequences without a close hit
to the current genomic database were also more commonly found in
old bees (2/18 young bees, 8/18 middle-aged bees, and 15/18 old
bees) (Supplementary Data 2).

These results not only show that old bees are colonized more
frequently by non-core members, but also suggest that they
exhibit higher variability in microbiota composition. To formally
test this, we clustered the metagenomic orthologs of the 33
universal gene families at 95% nucleotide identity (analogous to
16S rRNA clustering), and recorded their occurrence across
samples (see “Methods” section, Supplementary Fig. 11). Notably,
the dispersion of beta-diversity was found to differ significantly
between age groups, with the highest values found in old bees

(Fig. 4b). Since beta-diversity was calculated on presence-absence
data, and the core members were present in essentially all bees,
the increased beta-diversity must be due to the variable presence
of non-core members (rather than a specific community not
represented in the database). Intriguingly, the average population
replication (PTR) for all core phylotypes also decreased with age
(Fig. 4c, d), possibly rendering the community more susceptible
to invasion by non-core members. Taken together, these results
point in the direction of a decrease in gut microbiota stability
with age.

At the level of SDPs, a high degree of co-occurrence was found
within individual bees. For example, the four SDPs of the Firm5
phylotype were found to co-occur in all bees (Fig. 3b). Likewise,
the two SDPs of the Firm4 and the Bifido phylotype co-occurred
in the majority of samples, although in both cases one of the SDP
was dominant across samples (Fig. 3c, d). In contrast, the
distribution of SDPs of Gilliamella was more variable, with Gilli-2
and Gilli-3 only being present in a subset of samples (Fig. 3e).
Interestingly, although Gilli-1 was generally dominant, it was
completely replaced by the other SDPs in 3/53 samples. Thus,
while most bees harbored multiple SDPs, the pattern of co-
occurrence differed among phylotypes, suggesting that there are
differences in the underlying mechanisms of co-existence.
Moreover, despite an overall high degree of co-occurrence
between SDPs within bees, subtle, yet significant, changes in
relative abundances of SDPs with honey bee age were found for
Firm4–2, Firm5-1 and Bifido-2 (ManyGLM, p < 0.01, Supple-
mentary Table 2).

In summary, we find that SDPs of most phylotypes co-occur in
individual bees, suggesting that they occupy distinct ecological
niches. However, some of these SDPs display shifts in relative
abundance according to age group and several lines of evidence
suggest that the overall stability of the community decreases with
age.

Strains within SDPs segregate into individual bees. As indicated
by many long branches at the tips of the core phylogenies (Fig. 2)
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and the pairwise ANI values (Supplementary Fig. 4), strains of the
same SDP can be highly divergent. Consequently, bees colonized
by the same SDP could in theory harbor very different strains of
that SDP. However, the genomes in the database were obtained
from different geographic locations across Europe and the US,
which may explain some of the observed intra-SDP divergence in
the reference database. Given that all the bees sampled in the
current study originated from two adjacent colonies, we therefore
asked: do bees from the same colony harbor similar strains?

Firstly, the fraction of recruited metagenomic reads per
genome varied substantially across samples (Fig. 5a, Supplemen-
tary Fig. 12), suggesting that individual bees do carry different
strains. For example, three profiles were visible for Gilli-1
(Fig. 5a), which correlated with the core phylogeny, consistent
with competitive exclusion among divergent strains within this
SDP. In contrast, the profiles did not correlate with either
sampling time or colony, nor did the geographic origin of the
sequenced genomes appear to matter. In fact, for Bifido-1,

the four genomes that were isolated from the same location as the
metagenomic samples recruited fewer reads than the genomes
isolated elsewhere (Supplementary Fig. 12b).

To obtain quantitative measures of intra-SDP diversity, we
inferred SNVs (single-nucleotide variants) based on a reduced
database containing a single reference genome per SDP
(Supplementary Fig. 13, Supplementary Data 1). The total
fraction of polymorphic sites in the core gene sequences ranged
from 4 to 33%, demonstrating a remarkably high level of strain
diversity overall, but also large differences between SDPs (Fig. 5b).
The most diverse SDPs were Bifido-1, Firm5-4 and B. apis, which
were also highly diverse in the genomic database (Fig. 2,
Supplementary Fig. 4). Within bees, the fraction of polymorphic
sites was considerably lower, ranging from 0–11%, suggesting that
strains compete for colonization or exclude each other after
establishment within hosts (Fig. 5b). Indeed, most of the SNVs
occurred at both high (>0.9) and low (<0.1) intra-sample relative
abundances, indicating that strains can be both dominant and
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rare/absent across bees sampled from the same apiary (Supple-
mentary Fig. 14).

The large fraction of variable sites observed, and the
comparatively lower levels found within individual honey bees,
prompted us to investigate how many bees would be needed to
reach the diversity levels found across the study. By calculating
cumulative curves of diversity, we found that approximately 20
bees were needed before the curves started to level off, regardless
of the total diversity associated with a given SDP (Fig. 5c).
Moreover, for each SDP, different sampling orders generated
highly similar curves, suggesting that individual bees contain
similar levels of strain diversity.

Bees in the current study were sampled to vary in
collection time, colony and age (Fig. 1b), and these factors

could potentially contribute to the total diversity observed. We
therefore calculated the fraction of polymorphic sites correspond-
ing to each of the nine samplings (Fig. 1b), and compared
these values to the fractions obtained from random subsets of
bees (Supplementary Fig. 15). While there was some variation in
the fraction of variable sites for both the real and
random samplings, there were no significant differences
between them for any of the SDPs with sufficient
representation for the analysis. This result therefore suggests that
the high strain-level diversity found across the current study
cannot be attributed to variation in age, sampling time, or colony
affiliation.

To obtain a visual representation of the distribution of SNVs
across individuals, we calculated the Jaccard distances between all
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Fig. 5 Strain-level diversity differs between SDPs, and strains segregate into different bees. a Proportion of metagenomic reads mapping to core genes in
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pairs of samples based on shared SNVs (see methods). Jaccard
distances generally varied from 0.2–0.8, indicating that some bees do
carry more similar strains than others. Principal coordinates analysis
revealed well-separated clusters for some SDPs (e.g. Supplementary
Fig. 16i, l). However, these clusters did not correlate with either
colony origin or sampling time, consistent with the read recruitment
patterns (Fig. 5a, Supplementary Fig. 12).

Taken together, these results demonstrate that the SDPs of the
honey bee gut microbiota harbor very high levels of strain
diversity, with competitive exclusion occurring at the level of
individual bees, but not within colonies, resulting in individua-
lized gut microbiota profiles. Intriguingly, individual bees seem to
carry a similar fraction of the total strain-level diversity,
regardless of the total diversity associated with the SDP.

Functional variation of the microbiota across individual bees.
Having found that divergent strains coexist within colonies, but
tend to segregate into individual bees, we hypothesized that
individual bees would differ in the functional gene content of the
microbiota, despite a stable composition at the phylotype level.
Indeed, previous studies have uncovered a remarkably high level
of gene content variation between strains belonging to the same
phylotype19–21. However, the distribution of this diversity among
individual honey bees has never been addressed.

To this end, we analyzed the distribution of 16,049 orthologous
gene families predicted from our genomic database across the 53
bees for which we had sufficient shotgun metagenomic data. Since
the detection of gene families is likely to be influenced by
sequencing depth, we first normalized the abundance of all gene
families relative to the abundance of the phylotype they were
derived from. Following coverage normalization, gene families
occurring with a relative abundance of <10% compared to the
phylotype abundance in at least one sample were categorized as
‘variably associated with the phylotype’ (see methods and
Supplementary Fig. 17). On the basis of this conservative
threshold, a third of the gene families in the current database
(5,059; 32%) displayed variable phylotype association (Fig. 6a,
Supplementary Data 3). In the following, we will refer to these
gene families as the ‘variome’.

Given the existence of SDPs within phylotypes, gene families
assigned to the variome might be expected to correspond largely
to SDP-specific core gene content. However, many of the variome
gene families contain members from multiple SDPs within
the database, and only a small fraction of the gene families were
found to correlate in abundance with a single SDP across the
metagenomic samples (Fig. 6a, Supplementary 3), indicating that
most of the variome does not represent SDP-specific core gene
content. Besides many hypothetical or poorly characterized gene
families, functions related to carbohydrate and amino acid
metabolism and transfer (COGs ‘G’ and ‘E’) were prevalent in
the variome (Fig. 6b). In particular, we found transporters and
hydrolases for the utilization of dietary glycans to dominate a
large fraction of the variome, especially in the core phylotypes
Bifido, Firm4, Firm5, and Gilliamella. However, genes coding for
cell surface structures or Type VI secretion systems were also
abundantly present (Supplementary Data 3).

To gain further insights into the putative origin of gene families
assigned to the variome, we clustered the genes of all variome gene
families within their genomes of origin (see methods and
Supplementary Fig. 17). On the basis of this analysis, between 49
and 73% of the variome gene families were found to occur in
genomic islands (>10 kb and >5 genes) within the database
(Supplementary Data 4). While a large fraction of these islands
appeared to be of phage origin, many others coded for metabolic
functions and cell surface structures (Supplementary Data 4). Islands

occurred at different frequencies across bees, no matter which
broader functional category they belonged to (Fig. 6c). Interestingly,
many of the intermediate or low frequency islands seem to be
associated with specific strains rather than SDPs (Supplementary
Data 3). For example, the island ‘JG29_28’ (phylotype Firm4), which
encodes genes for ethanolamine catabolism (Fig. 6d)32, occurred with
a frequency of only 63% across samples, despite being associated with
Firm4-1 (in the database), an SDP that is abundantly present in every
bee (Supplementary Data 3–4, Fig. 3c). Ethanolamine is a
membrane-derived compound that is prevalent in the gastrointestinal
tract due to the high turnover of bacteria and host cells32. In the
mammalian gut, pathogenic bacteria have been shown to utilize
ethanolamine33. While its role in insects is currently unknown,
ethanolamine utilization may provide a growth advantage in the bee
gut depending on dietary conditions, state of the microbiota and
fitness of the host. Many other islands with metabolic functions were
linked to carbohydrate utilization. For example, a large island
identified in the Bifido-1 SDP encoded key functions for the
degradation and uptake of cellulose and/or hemicellulose (Fig. 5e),
and was found to be present in only 90% of the sampled bees.

Metabolic flexibility encoded via the variome could potentially
allow bees to adapt to changing environmental conditions or age-
specific dietary requirements, while maintaining a stable
composition at the phylotype level. Although we found no
evidence for higher similarity in strain diversity for bees sampled
together (Supplementary Fig. 15), functional redundancy among
strains could potentially generate similar functional profiles from
different strain compositions. To address this question, we
quantified the fraction of the variome shared between all pairs
of bees, with a gene family considered to be present in a sample
when having a mean coverage of at least 10% of the phylotype
coverage (see methods and Supplementary Fig. 17). The
corresponding Jaccard distances mostly varied between 0.25 and
0.75 (Fig. 6f), indicating that while no pair of bees shared the
same subset of the variome, some bees did share a larger fraction
than others. Based on the Jaccard distances, significant changes
related to age were found for the phylotypes Firm5 (F(2,46)=
2,21, p < 0.001, R2= 0.083), Bifido (F(2,46)= 2.27, p= 0.002)
and Firm4 (F(2,46)= 3.23, p= 0.008, R2= 0.117), but not for
Gilliamella (F(2,45)= 1.66, p= 0.076) and S. alvi (F(2,38)= 1.17,
p= 0.25), which was also consistent with the principal coordi-
nates analysis (Fig. 6g, h, Supplementary Fig. 18). However, as for
the age-related changes in SDP abundance, the amount of the
variability explained was rather low, indicating that additional
factors are likely involved in shaping the functional profile of the
gut microbiota.

In summary, we found age-related changes in the distribution
of the variome for three out of five core phylotypes, despite the
variability in strain composition among bees of the same age,
indicative of functional redundancy across strains. However, pairs
of bees rarely shared >70% of the variome, suggesting that the
segregation of strains across bees results in functionally distinct
bacterial communities at the level of individual bees.

Discussion
Analyzing the distribution of genomic diversity in microbial
communities is challenging due to the high complexity of most
communities and the difficulty of sampling these communities in
a consistent and controlled manner34. Taking advantage of the
low phylotype-level diversity of the honey bee gut microbiota, we
employed shotgun metagenomics to analyze the genomic diver-
sity of this community at great depth. We systematically cate-
gorized the genomic diversity at three different levels (phylotype,
SDP, and strain), profiting from a highly representative reference
database, and investigated its distribution across genetically
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related individuals within and across colonies and different age
groups.

First, we found that most phylotypes of the bee gut microbiota
have split into SDPs, i.e. discrete evolutionary lineages that in
most cases coexist in individual bees. Second, each SDP harbors
further genomic diversity at the level of strains, segregating into
individual bees. Third, while some age-related compositional
characteristics were identified at the phylotype- and SDP-level, no
correlations with age or colony appear to exist at the strain-level.
And fourth, consistent with the segregation of strains into indi-
vidual bees, we also found that bees differ considerably in the
functional composition of their microbiota.

The presence of SDPs within core members means that the
number of genetically coherent units in the bee gut microbiota is
larger than what has been estimated on the basis of 16S rRNA
amplicon sequencing studies. Moreover, several lines of evidence

suggest that the identified SDPs do not represent a local popu-
lation structure, but are widely distributed. Notably, we re-
analyzed the metagenomic data of a previous study from the U.S.
and found that all SDPs were present and discrete. Moreover, in
the reference database, most SDPs are represented by multiple
genomes that originated from different geographic locations, and
we found no evidence for increased read recruitment to genomes
from locally isolated strains.

Several previous metagenomic studies have provided evidence
for the existence of SDPs in natural bacterial communities, and a
more recent study suggested that the divergence within and
between such populations may conform to universal thresholds11.
Specifically, Jain et al.11 identified a ‘discontinuity zone’ of pair-
wise average nucleotide identity (ANI) in the 83–95% range
between most publicly available genomes. Interestingly, the
divergence within SDPs of the bee gut microbiota was in several
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Fig. 6 Functional gene content of the gut microbiota varies across bees. a Number of gene families per phylotype assigned to the variome (gene families
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cases larger than the expected 95% ANI threshold within the
genomic database (Gilli-1, Gilli-2, Firm5-4, Bifido-1). In fact, in
the most extreme case (Bifido-1), nearly all of the pairwise ANI
values were within the expected discontinuity zone. Moreover,
when examining the density distribution of similarity between the
core gene sequences extracted from the de novo metagenome
assemblies and those in the current database (Fig. 2c), a con-
siderable fraction fell within the 90–95% zone, indicating that
additional equally divergent strains of Bifido-1 are present in the
community.

High levels of diversity within SDPs were confirmed from the
metagenomic data. Based on SNV profiling, the median fraction of
polymorphic sites in the metagenomic data was 13% per SDP, with
Bifido-1 being an extreme outlier (33% polymorphic sites). For
comparison, a similar analysis on metagenomic samples from the
human gut reported only 3.1% polymorphic sites in the 101 most
prevalent species, across the entire dataset (207 individuals)35.
However, while the read coverage was normalized to 10× (as in
the current study), the cumulative coverage per SDP in the cur-
rent study was orders of magnitude higher than in35 (Fig. 5b),
resulting in an overall deeper sampling of each SDP. Indeed,
ref. 35 found that SNV discovery increased steeply until around
1000× (depending on the species), a coverage which is rarely
obtained in metagenomic studies. Therefore, in the absence of
other studies with a comparable sequencing depth per SDP, it is
currently not possible to say whether the high strain-level
diversity observed might also be common in other natural com-
munities such as the human gut microbiota. For now, given the
high levels of polymorphism, we can conclude that none of
the sampled SDPs have undergone a recent selective sweep10. On
the contrary, it appears that divergent strains of the same SDP can
co-exist in the same geographic location, and even within the
same colony.

These results raise several important questions: How does such
high levels of diversity evolve, and how can it be maintained within
the same host population? Based on how the diversity distributes
among colony members, it appears that the answer depends on the
taxonomic level of diversity considered (Fig. 1a).

At the SDP-level, niche differentiation seems plausible, con-
sidering their widespread co-occurrence within bees. Some sig-
nificant changes in response to age were observed, both in terms of
relative abundance of SDPs and functional profiles, suggesting that
niche differentiation may be partly age-dependent. However, the
amount of variation explained was modest, and a broader sampling
(including more colonies from different geographic origins) is
needed to confirm these patterns. In fact, the most conspicuous age-
related change in the current study was a decrease in the average
population replication (PTR) and the relative abundance of
core members compared to non-core members, suggesting that the
community may become unstable in old bees.

At the strain-level, both the SNV profiling and variome ana-
lysis indicated that strains segregate among individual bees. This
is remarkable when considering that honey bees live in large
eusocial colonies with frequent social interactions that in theory
should facilitate microbiota homogenization across individuals.
Based on cumulative fractions of SNVs across bees (Fig. 6c), at
least 20–30 individuals are needed before the total diversity is
reached, confirming that the diversity within bees is substantially
lower compared to the diversity across the colony. Notably, this
segregation appeared to be independent of both age and colony
origin. In fact, the strain profiles of bees of the same age and
colony, sampled at the same time, were as different from each
other as those of other bees (Supplementary Figs. 15, 16). These
results therefore point in the direction of competitive exclusion
among strains, rather than niche differentiation.

Previous studies have shown that newly emerged honey bees
acquire their gut microbiota within hours, and that the gut is fully
colonized approximately by day 6 post emergence31,36. However,
as of yet, no longitudinal studies on the gut microbiota have been
conducted, and it is therefore not known whether the strain-level
composition changes over time within individual bees. If the
community composition is determined by the timing and order of
the host-bacterial encounters in newly emerged bees, the indivi-
dualized profiles could represent random early-life events
(‘priority effects’)37. Moreover, if new strains are not readily
incorporated in the community of fully colonized bees, initial
differences in colonization could play an important role in
facilitating the maintenance of strain-level diversity, and could
hinder the occurrence of selective sweeps (which would otherwise
reduce strain-level diversity). These observations are consistent
with neutral theories of biodiversity38, which predict that com-
munities of islands or other patchy ecosystems (here individual
bees) can vary, if they are inoculated from different starting
communities and if dispersal is small enough that initial differ-
ences cannot be compensated.

Currently, little is known about the distribution of strains in
natural populations of other environments. Host-specific strain-
level composition in gut bacterial communities have also been
observed in the human gut microbiota35, but the reason for the
host-specificity remains unclear. Considering the current results,
it appears that a long lifespan, or large variation in diet or host
genotypes is not needed for individualized gut communities. In
fact, these patterns need not even be host-related. A recent study
investigating the distribution of strain-level diversity in an
enhanced phosphorus removal reactor also found that bacterial
populations between granules are more different than expected
from the overall reactor diversity34.

The origin and functional relevance of individualized profiles in
honey bees represents an exciting future avenue of research. Nota-
bly, we found that a large fraction of the variome gene families
occurred in genomic islands, suggesting that diversification by
horizontal gene transfer among community members might be
prevalent. From a functional perspective, given that a large fraction
of the variome was found to encode metabolic functions, most of
which did not correlate in abundance with specific SDPs, it seems
likely that strains of the same SDP carry distinct metabolic func-
tions. If so, the communities found within individual honey bees
might also, by extension, encode distinct metabolic profiles.

In conclusion, aside from providing fundamental insights into
the genomic structure of a host-associated microbial community,
our study provides a framework for future studies to test the link
between bee health, ecology and microbiota composition at
unprecedented resolution.

Methods
Sample collection. Age-controlled honey bees (Apis mellifera carnica) were
sampled from the apiary of the Engel laboratory at the University of Lausanne
towards the end of the summer season (starting in September) in two consecutive
years (2015 and 2016). To this end, a single frame was collected from each target
colony, adult bees were brushed off the frame, and the frame was kept in the
laboratory incubator at 34 °C over-night. The following morning, newly emerged
bees were tagged with a marker pen on their thorax, and re-introduced to the
colony together with the frame. At defined time points, a total of 54 tagged bees
were collected from the two target colonies as shown in Fig. 1b. In year 1, six tagged
bees were collected from the colony ‘Les Droites’ at day 10 (28/9-2015), day 24 (12/
10-2015), and day 158 (22/2-2016). In year 2, six tagged bees were collected from
the colony ‘Les Droites’ and the neighboring colony ‘Le Grammont’ at day 10 (25/
9-2016), day 22 (7/10-2016), and day 47–48 (1-2/11-2016). Host genotype of the
colony ‘Les Droites’ was the same in 2015 and 2016, as the queen was not replaced.

DNA extraction and sequencing. After anesthetization by CO2, the guts were
pulled out from each of the collected bees. Midgut and malpighian tubules were
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removed, after which the hindgut (consisting of ileum and rectum) were collected
in bead-beating tubes with 1 ml PBS (kept on ice for the duration of the dissection).
Gut tissue was homogenized with a bead-beater using glass-beads (0.75–1 mm) for
30 s at speed 6.0. A series of centrifugation and filtration steps were then carried
out to enrich for bacterial cells in the sample relative to host cells/tissue/pollen, all
in PBS at room temperature. First, the homogenate was centrifuged at 2500 r.p.m.,
5 min, to remove debris, and the supernatant was collected into new eppendorf
tubes. The samples were then centrifuged at 9000 r.p.m., 15 min, to pellet bacterial
cells. The supernatant was removed, and the bacterial pellets were re-suspended in
800 µl PBS. The suspension was again centrifuged at 2500 r.p.m., 5 min, to
remove additional host-cells/debris. Finally, the sample was passed through a
10 μm filter, to remove large particles (pollen, remaining debris), and centrifuged at
10,000 r.p.m. for 15 min to pellet bacterial cells.

DNA was extracted from the enriched bacterial pellet using a CTAB-based
DNA extraction protocol. For each sample, the bacterial pellet was re-suspended in
485 µl CTAB lysis buffer (100 mM Tris-HCl, pH 8, 1.4 M NaCl, 20 mM EDTA,
2% w/v CTAB) with 1.3 µl β-mercaptoethanol and 13.3 µl proteinase K (10 mg/ml).
The samples were transferred to bead-beating tubes with zirconia/silica beads
(0.1 mm), and homogenized on a bead-beater for two times 90 s, at speed
6.0. Samples were incubated at 56° C over-night. 5 µl RNase (10 mg/ml) was added
to each sample, followed by incubation at 37 °C for 1 h. Finally, the DNA was
extracted with PCI (phenol-chloroform-isoamyl, 25:24:1) and precipitated with
1/10 vol NaOAc (3M, pH 5.2) and 2.5 vol 96% Ethanol, with 6 µl glycogen
(20 mg/ml) added as a DNA carrier. DNA pellets were re-suspended in 20 µl H2O.

All samples were sequenced at the Lausanne Genomic Technologies facility
(GTF). Sequencing libraries were prepared with the Nextera XT library kit
(Illumina), according to manufacturers instructions. A total of 2 × 100 nt paired-
end sequencing was done on an Illumina HiSeq 2500 instrument, with 6 samples
multiplexed per lane. For 6 samples of year 1, an additional multiplexed lane
was done to ensure similar coverage across samples. The quality of the raw-data
was evaluated with FastQC. This analysis revealed the presence of the Nextera
adapters for some samples, which were trimmed off with Trimmomatic39. Only
reads for which both members of the read-pair passed the trimming with a
minimum length of 40 bp were kept for downstream analysis.

Construction of a genomic database. For each member of the honey bee core gut
microbiota, all available published genomes (as of 2017) were downloaded from
genbank. Moreover, genomes of Lactobacillus kunkeei, Lactobacillus apinorum and
an unknown gammaproteobacterium, also isolated from the honey bee, but not
considered to be members of the core gut microbiota, were added. In addition to
previously published genomes, strains from the Engel lab stock collection were
selected for sequencing, based on screening of the 16S rRNA gene. In total, five
strains of Gilliamella sp., five strains of Bifidobacterium sp., one strain of S. alvi, one
strain of F. perrara and one strain of Commensalibacter sp. (phylotype group
‘alpha2.1’) were sequenced40. On the basis of this collection of genomes, the
database was streamlined to reduce redundancy due to highly related strains
(maximum 98.5% pairwise ANI), prioritizing the most complete genome assem-
blies. Finally, for some draft genome assemblies, manual curation of the contigs
was done, including removal of small contigs and re-ordering of contigs. To enable
downstream functional analysis, all genes in the database were re-annotated with
the eggnog-mapper41 and pfam42. A list of all genomes in the final database and
their accession numbers is provided in Supplementary Data 1.

Metagenome mapping, gene coverage and de novo assembly. Paired-end reads
were mapped to the honey bee gut microbiota database using ‘bwa mem’ with
default settings43, after which various post-mapping filters were explored. Since L.
kunkeei was found to be absent from all samples, mapping against the L. kunkeei
genome served as a useful indication of unspecific mapping and filtering efficiency.
Filtering based on read alignment length was found to be superior compared to edit
distance (which is a measure of the similarity between the read and reference in the
aligned part of the read). Therefore, all bam-files were filtered so that only reads
with a minimum alignment length of 50 bp were considered mapped.

On the basis of the filtered BAM files, gene coverage data was generated for all
genes in the database.

First, BED files (indicating gene locations within genomes) were generated from
the genome annotations. To reduce variation due to the use of different annotation
pipelines, and noise related to mapping against short regions, genes shorter than
300 bp were removed. Second, the number of mapped reads per gene was counted
with samtools44, based on which the gene coverage was calculated (average read
coverage per bp).

To infer de novo metagenome assemblies, paired-end reads were first mapped
against the honey bee genome (using bwa mem with default settings), to filter off host-
derived reads. Unmapped reads were extracted with samtools (flag -f 4) and assembled
independently for each metagenome sample, using the SPAdes metagenome assembler
(v.3.9.0) with default settings45. For each assembly, the resulting contig file was filtered
to exclude contigs shorter than 500 bp, or with a k-mer coverage <10. Putative ORFs
were predicted with Prodigal v.2.6.346 using the metagenome flag (-p meta). ORFs
shorter than 300 bp were excluded from downstream analysis.

Database coverage. To investigate the extent of microbial diversity not repre-
sented in our current database, reads not mapping to the database (minimum
alignment length 50 bp) were mapped against the honey bee genome, using bwa
mem as previously, and each of the fractions were counted with samtools. Fur-
thermore, protein sequences corresponding to 33 universal orthologs were
extracted from the ORFs predicted on each of the metagenomic assemblies, using
FetchMGs03.pl from the MOCAT package28. All extracted universal ortholog
sequences were first blasted against the honey bee gut microbiota database, and the
subset without a close hit to the genomic database was extracted (BLAST
nucleotide alignment identity lower than 95%). For the extracted subset, the total
number of sequences and the median number per universal gene family was cal-
culated for each sample, and blasted against the non-redundant database of NCBI.
The putative taxonomic affiliation of lineages not represented in the database was
determined for each sample, based on the most frequent hits, using the BLAST
taxonomy database.

Discovery and validation SDPs. Orthologous gene families were predicted
separately for the genomes of each phylotype in the database using Orthofinder47,
and gene families corresponding to single-copy core genes were extracted. For
Commensalibacter sp., for which only a single genome sequence was available, two
draft genomes with 96% sequence identity in the 16S rRNA gene compared to the
honey bee-derived isolate (ATSX01000000, AGFR01000000) were included for the
ortholog prediction only, in order to generate a set of putative core genes. Core
genome phylogenies were inferred individually for each phylotype represented by
at least 3 strains. For each core gene family, the sequences were aligned at the
protein level with mafft48, back-translated to nucleotides and trimmed for columns
represented by less than 50% of all sequences. Core genome phylogenies were
inferred on the concatenated trimmed alignments, using RAxML49 with the
GTRCAT model and 100 bootstrap replicates. For the Firm4 phylotype, which is
represented by two genomes in the current database, a phylogeny was inferred by
including 4 unpublished genomes, without back-translation to nucleotides, using
the PROTCATWAG model in RAxML. Pairwise ANI values were calculated all-
against-all, using FastANI11. After inspection of the phylogenies and ANI tables,
candidate SDPs were identified as forming discrete clades with 100% bootstrap
support, and having a minimum pairwise ANI of 89% within clusters. To reduce
noise in downstream analysis related to specific gene families with a high level of
similarity across SDPs (due to i.e. conservation or recent homologous recombi-
nation), the core gene families of each phylotype harboring candidate SDPs were
further filtered to exclude any families with more than 95% nucleotide alignment
identity in any pairwise comparison across SDPs.

To validate the candidate SDPs, orthologs of all filtered core gene families were
extracted from the de novo metagenome assemblies with blastn, using the core
gene sequences in the database as queries. Specifically, a metagenomic ORF was
considered an ortholog for a core gene family in the database if the blast hit had an
e value < 1e-5, a minimum percentage id of 80%, and a query coverage >0.5. The
clustering of metagenomic ORFs around the candidate SDPs was quantified based
on percentage identity between the metagenomic ORFs and their orthologous core
gene family sequences. For each of the extracted ORFs, the sequence was added to
the corresponding core gene alignment with mafft (method ‘add fragment’),
resulting in an alignment containing the core gene family sequences from the
database with a single metagenomic ORF. The percentage identity was calculated
between the ORF and each gene in the alignment using the Bioperl SimpleAlign
module. Finally, the maximum percentage identity in the alignment to each of the
two highest-scoring SDPs was recorded for each ORF. For phylotypes without
candidate SDPs, the same procedure was applied using the full set of core gene
families, and reporting the maximum percentage identity in the database (see also
flowchart in Supplementary Fig. 3).

Quantification of community members. For phylotypes without validated SDPs,
the metagenomic read coverage of all the genes in each core family was summed.
For phylotypes containing validated SDPs, the same procedure was applied per
SDP, using the filtered core gene families. Next, a single genome was chosen as
reference per phylotype/SDP, and the summed core gene family coverages were
plotted according to their position in the reference genome. Since a pattern con-
sistent with replicating bacteria was observed in the majority of samples for all the
phylotypes/SDPs harboring complete genomes or scaffolds (genes located close to
the origin of replication had higher coverage than genes located close to the ter-
minus), a segmented linear regression line was fitted to the data, and the raw
abundance was taken as the coverage at the estimated terminus (the intersection
between the regression lines). Additionally, the peak-to-trough ratio (PTR) was
calculated from the fit (maximum coverage at Ori, divided by coverage at Ter)29.
For samples where the segmented lines did not show a proper fit (terminus location
inferred far from estimated breakpoint, or coverage at Ori lower than Ter), the
median coverage of all core gene families was used instead, and the PTR was set to
1. Finally, the raw abundance of a phylotype/SDP was set to zero if less than 80% of
the core gene families used for quantification had a mean read coverage >1 (see also
flowchart in Supplementary Fig. 7).

To address the question of whether old bees are more prone to colonization by
variable non-core members than younger bees, the sequences of each of the 33
universal ortholog gene families extracted from the de novo metagenome
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assemblies were first clustered at 95% nucleotide identity with uclust50. Second, for
each cluster, the presence across samples was inferred based on the cluster
members, and ‘OTU’-tables with presence-absence data were constructed. Finally,
the jaccard-distances between all sample pairs were calculated, and the distance to
the centroid for each age group was estimated (using ‘vegdist’ and ‘betadisper’
functions from the R package ‘vegan’).

To obtain an overall result for all of the 33 universal gene-families, the
‘distance-to-centroid’ data obtained for each gene-family was extracted and used
together for statistical testing (see also flowchart in Supplementary Fig. 11).

Strain-level analysis. The recruitment of reads to each genome was analyzed
based on the number of reads mapped to the core genes of each genome. Starting
with the total raw number of recruited reads per sample and genome (normalized
for the total core gene length), the relative fraction of reads recruited per genome
within each SDP was calculated and visualized using the R package ‘heatmap.2’.

To quantify diversity within SDPs, reads were mapped against a reduced version of
the database, containing one genome representative per SDP or, in the absence of
validated SDPs, per phylotype (genomes listed in bold letters, in Supplementary Data 1)
using ‘bwa mem’. To reduce errors in SNV calling caused by eventual indel alignment
errors, an edit distance < 5 was required for a read to be considered mapped, in
addition to the minimum alignment length of 50 bp previously employed. Candidate
SNVs were first called on the filtered bam-files using the metaSNV pipeline with default
settings51. To limit the influence of variably present genes, only SNVs located within
genes corresponding to the core gene families were included in the analysis. Given the
exceptionally high coverage obtained in the current study, a second filtering of SNVs
was done with the following cutoffs: (i) SNVs were only quantified in samples where
the corresponding reference genome was present with at least 10x terminus coverage;
(ii) for samples with sufficient coverage, SNVs found in genes with less than 10x mean
coverage were treated as missing data; (iii) intra-sample relative SNV abundances <10%
were set to zero (corresponding to the detection limit with 10x coverage). Following
these steps, only SNVs remaining polymorphic were included in the analysis (not fixed
across samples, and with a with an intra-sample relative abundance of at least 10% in at
least one sample) (see also flowchart in Supplementary Fig. 13).

After filtering, the fraction of variable sites within core genes was calculated for
each SDP, both per sample and across the full dataset. Furthermore, the cumulative
increase in the fraction of variable sites relative to the number of bees sampled was
calculated, using 10 random sampling orders per SDP. To investigate whether
differences in sampling might contribute to the observed levels of diversity, the fraction
of variable sites was first calculated for each sampling (9×, see Fig. 1b) for all taxa with
sufficient coverage representation (at least 6 samplings with at least 5 bees having a
terminus coverage >10×). Next, 27 random subsets of 6 bees were generated for the full
dataset, and the fraction of variable sites in these subsets was likewise calculated.

To visualize the distribution of SNVs across samples, and identify eventual
patterns related to honey bee age or colony, a distance matrix was generated based
on shared polymorphic sites. Specifically, a SNV was considered to be shared
between two samples if it occurred with an intra-sample relative abundance of at
least 10% in both samples. The jaccard distance was calculated as the fraction of
non-shared polymorphic sites divided by the number of sites scored in both
samples. The resulting matrix was visualized with a principal coordinates analysis.

Functional variation across metagenomic samples. To investigate functional
variation in the gut microbiota of individual bees, we analyzed the distribution of
all orthologous gene families predicted from the genomes in the database for each
phylotype. To reduce noise related to low coverage, only samples with a phylotype
terminus coverage of at least 10x were included in the analysis of gene content
variability. For functional inferences, all EggNOG and Pfam annotations were
transferred from the gene annotations to the gene families.

The raw gene family coverage was calculated as the summed gene coverage for
all genes within the family. To normalize for variation in coverage between samples
and phylotypes, the coverage of each gene family was linearly re-scaled according
to a phylotype terminus coverage of 10× in each sample. For example, a gene
family with a coverage of 25× in a sample with a phylotype terminus coverage of
50x would result in a normalized gene family coverage of 5×. Following coverage
normalization, gene families with less than 1x coverage in at least one sample were
considered to be variably associated with the phylotype (referred to as the
‘variome’) (see also flowchart in Supplementary Fig. 17).

Since the variome was inferred at the phylotype level, variome gene families
could potentially encode SDP core gene content, in which case their abundance is
expected to correlate with the SDP abundance52. Therefore, to estimate the subset
of the variome belonging to the SDP core gene content, pearson correlation
coefficients were calculated between the raw abundances of the variome gene
families (log10-transformed) and all SDPs (SDP terminus coverage, log10-
transformed). Variome gene families with pearson correlation coefficients larger
than 0.8 for a single SDP were considered to be correlated with the SDP52.

To address the question of whether bees sampled from the same colony and/or
time-point share a larger fraction of the variome than other bees within the study, a
jaccard distance matrix was generated, where a gene family was considered to be
present in a sample when having a normalized coverage of at least 1×.

To gain further information on the distribution of variome gene families within
genomes, the genes assigned to the variome were clustered within their genome of

origin. Specifically, genes with an intergenic distance of less than 5 kb were joined
in an ‘island’. ‘Big islands’ were defined as having a minimum length of 10 kb, and
containing at least 5 genes. To avoid excessive redundancy due to identical islands
being present in more than one genome in the database, islands for which all their
associated gene families were also present in another island (complete overlap)
were removed. Finally, the occurrence of islands across samples was recorded,
where an island was considered to be present when at least 80% of the gene families
contained in the island were present in the sample.

Statistics. To analyze variation in community composition, the raw abundances
(see ‘Quantification of community members’) for all SDPs and phylotypes were
converted to relative within-sample abundances, and analyzed with a generalized
linear model using the negative binomial distribution (visually confirmed to nor-
malize for the quadratic mean-variance relationship) and Age/Colony as expla-
natory variables53,54.

Changes in the fraction on unmapped non-host reads (log10-transformed),
dispersion in beta-diversity and average population replication (PTR) in response
to age were tested using one-way analysis of variance (ANOVA). Differences in the
mean fraction of variable sites (SNVs) in subsets of bees corresponding to
samplings (9×, see Fig. 1b) versus random subsets of 6 bees were tested with
Welch’s t test, applied on each comparison.

Changes in the distribution of the variome relative to age and colony affiliation
were tested for each phylotype using the jaccard distance matrices (see ‘Functional
variation across metagenomic samples’), with PERMANOVA (function ‘adonis’, R
package ‘vegan’).

Code availability. Documentations of the workflow, including all scripts, databases
and result files, are available on Zenodo [https://doi.org/10.5281/zenodo.1479668]55.
All scripts were written in perl, bash or R. Statistics and plots were likewise done in
R (using packages: ggplot2, gridExtra, reshape, gplots, RColorBrewer).

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw data has been deposited in the sequence read archive (SRA) with the
accession SRP150166. Source data underlying the results shown in the figures of this
manuscript are available on Zenodo [https://doi.org/10.5281/zenodo.147966]55.
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