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Simple Summary: This study evaluated the effects of Schizochytrium sp., as a promising feed additive,
on the antioxidant enzyme activity, physicochemical quality, fatty acid composition and volatile
compounds of beef. The results revealed that Schizochytrium could improve the antioxidant capacity
of beef and increase the nutritional value, which was related to the abundant docosahexaenoic acid
(DHA) found in Schizochytrium. Our current research results provide guidance for the development
of environmentally friendly diet additives.

Abstract: The purpose of this study was to evaluate the effects of dietary supplementation with
microalgae (Schizochytrium sp.) containing docosahexaenoic acid (DHA) on the antioxidant enzyme
activity, physicochemical quality, fatty acid composition and volatile compounds of beef meat.
Eighteen male Qaidamford cattle were randomly allocated into three treatments (n = 6): no micro-
algae supplementation (Control group, C), 100 g microalgae supplementation per bull per day (FD1),
and 200 g microalgae supplementation per bull per day (FD2), and fed for 49 days before slaughter.
The results showed that, compared with the C group, the addition of DHA-rich microalgae to the diet
could significantly increase the total antioxidant capacity (T-AOC) in meat. In the FD2 group, it was
found that the concentration of glutathione peroxidase (GSH-Px) was significantly higher than that
of the control group (p < 0.05). DHA-rich microalgae supplementation increased polyunsaturated
fatty acid (PUFA), eicosapentaenoic acid (EPA; C20:5 n-6), DHA, EPA + DHA, and n-3 PUFA and
reduced n-6:n-3 fatty acid ratio. Twenty-four volatile compounds identified in beef were mainly
aldehydes, alcohols and ketones from the fingerprints. The contents of short-chain fatty aldehydes,
1-octen-3-ol and 2-pentylfuran, were higher in the FD2 group than in the other two groups. The
microalgae diet improved the sensory attribute score of beef. The results demonstrated that dietary
supplementation of DHA-rich microalgae improved the antioxidant status, increased the deposition
of DHA and enhanced the characteristic flavor of beef.

Keywords: microalgae; docosahexaenoic acid; antioxidant status; n-3 polyunsaturated fatty acids;
volatile compounds

1. Introduction

The beef industry has become one of the fastest-growing industries in China’s animal
husbandry [1]. Beef contributes high-quality protein to consumers. However, due to the
biohydrogenation of n-3 polyunsaturated fatty acids (n-3 PUFA) in the ruminant rumen [2],
the n-3 PUFA in beef is insufficient to meet the needs of human health [3]. It is well
known that more n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
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ingested in the diet, has health benefits for the control of human cardiovascular and
cerebrovascular diseases [4]. The n-3 PUFA is an “essential” nutrient for the human body
because humans cannot synthesize them [5]. Although α-linolenic acid (ALA) could be
converted into EPA and DHA in the human body, it seems that the degree of conversion is
limited, and the efficiency is extremely low [6,7]. Thus, it is an effective strategy to increase
the concentration of DHA and EPA in beef by feeding the cattle n-3 PUFA-enriched fish oil
or microalgae.

Researchers found that after animals were fed fish oil, the oxidative stability of the
meat was reduced and was accompanied by off-odors, which was caused by the oxidation
of lipids in the meat during shelf life [8–10]. Another alternative approach is to add marine
microalgae into animal diets. The advantage of this approach would be that microalgae
may be photosynthetically autotrophic and grow fast [11,12]. They are used as a source of
animal feed [13], thereby solving the problem of sustainability of supply [14]. In addition
to the high content of DHA, microalgae also contain antioxidants such as β-carotenoids,
vitamin E and vitamin A [15], which can enhance the immune response [16], antioxidant
activity [17] and antibacterial effect [18] of animals, and ensure that animals remain healthy.
Schizochytrium is a kind of thraustochytrid microalgae, and is the source of DHA in the
marine food chain [19]. The addition of Schizochytrium in animal diets has been proven to
improve the quality of meat and increase the content of n-3 PUFA [20–23]. Nevertheless,
information on the relationship between microalgae and volatile compounds has not
been reported.

We hypothesized that the difference in antioxidant status and volatile compounds in
beef after slaughter could be explained by the level of Schizochytrium addition. Therefore,
the purpose of this study is to determine the influence of a dietary DHA-rich microalgae
concentration through the determination of antioxidant capacity, physical indicators, fatty
acid composition and volatile compounds.

2. Materials and Methods
2.1. Animals, Experimental Design and Diets

A total of 18 male Qaidamford cattle (24 months old, weighing 345.42 ± 12.49 kg)
were randomly allocated to three experimental groups with 6 bulls of each, and assigned
to individual pens (3 × 2.5 m). The experiment lasted for 49 days. This research was
conducted in Qinghai Jinsui Animal Husbandry Co., Ltd. (Haixi Mongolian and Tibetan
Autonomous Prefecture, Delingha City, China). All animals were fed twice daily at 08:00 h
and 17:00 h. Water was provided freely. The experimental groups were as follows: (1) C
(control group, a basal diet without microalgae powder supplementation), (2) FD1 (100 g
microalgae powder per bull per day of basal diet) and (3) FD2 (200 g microalgae powder
per bull per day of basal diet). The bulls first received the concentrate mixed with the
Schizochytrium sp. powder and then ingested the dietary roughage mixed with oat hay
and alfalfa hay. The ratio of forage to concentrate was 60:40. The ingredient and chemical
composition of the basal diets are presented in Table 1.

Table 1. Ingredients and chemical compositions of experimental diets.

Ingredients (g/kg Fed Basis) Chemical Composition (g/kg DM Basis) 2

Oat Hay 200 Crude protein 122.0
Alfalfa hay 400 Neutral detergent fiber 315.5

Corn 216 Acid detergent fiber 169.0
Wheat bran 24 Calcium 5.2

Wheat distillers dried grains with solubles 20 Phosphorus 4.0
Soybean meal 48 Net energy/(MJ/kg) 3 5.3
Rapeseed meal 40

Cottonseed meal 16
Jujube powder 12

Fatty Acid Calcium 4
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Table 1. Cont.

Ingredients (g/kg Fed Basis) Chemical Composition (g/kg DM Basis) 2

Sodium Chloride 4
Mineral and vitamin premix 1 16

Fatty Acids, mg/g Diet

C14:0 0.13 C16:1 0.10
C15:0 0.02 C18:1 n-9 12.08
C16:0 9.19 C18:2 n-6 16.44
C17:0 0.05 C18:3 n-3 (ALA) 0.94
C18:0 1.03 C20:1 0.16
C20:0 0.17 C20:2 n-6 0.01
C21:0 0.02 C20:5 n-3 (EPA) 0.02
C22:0 0.10

DM, dry matter; ALA, α-linolenic acid; EPA, eicosapentaenoic acid. 1 Vitamin and mineral premix supplied each kg of feeds with Vitamin
A 4000 IU; Vitamin D3 300 IU; Vitamin E 45 IU; Cu 8 mg; Fe 48 mg; Mn 30 mg; Zn 25 mg; I 0.2 mg; Se 0.3 mg; Co 0.12 mg. 2 Analyzed value.
3 Calculated value.

The crude protein, calcium and phosphorus contents of the experimental diet were
analyzed following the Association of Official Analytical Chemists’ (AOAC) methods [24].
The concentrations of neutral detergent fiber and acid detergent fiber were calculated as
described by Van Soest et al. [25]. The fatty acid (FA) profiles of the experimental diet
were determined at the Ministry of Agriculture Feed Industry Center (College of Animal
Science and Technology, China Agricultural University, Beijing, China), and analyzed by
gas chromatography (Agilent 6890 Series, Agilent Technologies, Avondale, Palo Alto, CA,
USA) equipped with a capillary column (CP-Sil 88 column, 0.25 mm × 50 m) according to
the procedure described by Li et al. [26]. The FA composition of the Schizochytrium sp. used
in the diets is shown in Table 2. The commercial Schizochytrium sp. powder (21.0% protein,
41.2% fat, 2.8% ash, and 2.3% moisture) was purchased from Xi’an Xiaocao Biotechnology
Co., Ltd. (Xi’an, China).

Table 2. The fatty acid composition of Schizochytrium sp. used in diets.

Fatty Acid, mg/g Dried Powder

C14:0 1.96
C15:0 5.07
C16:0 73.04
C17:0 4.33
C18:0 3.26
C20:0 0.84
C21:0 0.02
C22:0 0.53
C23:0 0.11
C16:1 0.56

C18:1 n-9 0.03
C20:1 0.06

C18:2 n-6 0.15
C20:2 n-6 0.24

C18:3 n-3 (ALA) 0.97
C20:3 n-6 0.82
C20:4 n-6 0.59

C20:5 n-3 (EPA) 1.90
C22:6 n-3 (DHA) 202.62

ALA, α-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

2.2. Sample Collection

All animals were weighed (393.37 ± 23.53 kg for the C group, 408.50 ± 24.72 kg for
the FD1 group, and 403.25 ± 15.94 kg for the FD2 group) and transported to commercial
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slaughterhouses for slaughter to facilitate sample collection and measurement after the end
of the feeding trial. In order to better simulate the quality of beef consumed by residents
in the Qinghai-Tibet Plateau, we chose 48 h after slaughter as the sampling time. After
chilling for 48 h at 4 ◦C, the M. longissimus lumborum (LL) muscle sample was taken from
the left side of each carcass and transported to the laboratory with a portable cooler. All
beef samples were trimmed with visible fat and connective tissue before vacuum packaging
and stored at −80 ◦C for further analysis within two weeks.

2.3. Analysis of Antioxidant Enzymes Activity and Lipid Oxidation

All samples were thawed at 4 ◦C for 24 h before analysis. One gram of meat was mixed
with cold phosphate-buffered saline (0.06 mol/L, pH 7.4) at a ratio of 1:10 (weight/volume,
w/v) and then homogenized with Ultra Turrax T25 (IKA, Braun, Kronberg, Germany)
homogenizer. After centrifugation at 4000 rpm and 4 ◦C for 10 min, the supernatant was
collected to determine the protein content and antioxidant enzyme activity. Protein con-
centration, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione
peroxidase (GSH-Px) levels and thiobarbituric acid reactive substances (TBARS) level were
measured using commercial assay kits (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China) by a spectrophotometer (Spectral Instrument Co. Ltd., Shanghai, China). The
results of T-AOC, SOD and GSH-Px were expressed in U/mg protein, and the absorbance
was measured at 520 nm, 550 nm and 412 nm, respectively. Lipid oxidation was evaluated
using the TBARS value. The absorbance was measured at 532 nm. Results were expressed
as mg malonaldehyde (MDA)/kg meat.

2.4. Meat Physicochemical Quality Characteristics Analysis
2.4.1. pH and Color Measurement

The pH values were measured with a Testo 205 pH meter (Lenzkirch, Germany) cali-
brated with pH 4 and 7 standard buffer solutions. The average value obtained by inserting
electrodes into three different points of each sample was used for statistical analysis.

The thawed LL muscle sample was bloomed for 45 min before measurement. The
surface color of meat was measured with a portable CR-400 Colorimeter (Minolta Inc.,
Osaka, Japan), using an illuminant D65 and a 2-degree standard observer. Color parameters
L* (lightness), a* (redness) and b* (yellowness) were measured at different positions on
the surface of each sample with triplicate measurements, and the average values were
calculated. Chroma (C*) and hue angle (H*) were evaluated by the following equations:

C* = (a*2 + b*2)1/2, (1)

H* = arctan (b*/a*) × (180/π) (2)

2.4.2. Drip Loss and Cooking Loss Determination

Drip loss. Drip loss was estimated according to the protocol followed by Honikel [27].
Approximately 60 g of each meat sample was weighed (W1) and then suspended in an
inflated polyethylene bag at 4 ◦C without any contact with the bag. After 24 h, the sample
was taken out of the bag, gently wiped off the residual surface drip, and then weighed
(W2). Drip loss was calculated as the percentage ratio of the initial weight using the
following formula:

Drip loss = (W1 − W2)/W1 × 100%, (3)

Cooking Loss. Cooking loss was determined as suggested by Fabre et al. [28]. Briefly,
the thawed sample was weighed (M1) and placed in a polyethylene bag, and then cooked
under boiling water (98 ± 1 ◦C) until the internal temperature reached 71 ◦C. The sample
was taken out and weighed after cooling (M2). The cooking loss was expressed as a
percentage of the initial sample weight, according to the following formula:

Cooking loss = (M1 − M2)/W1 × 100%, (4)
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2.4.3. Proximate Composition Analysis

Approximately 50 g of the minced meat sample was measured according to the method
of the AOAC [24], in which protein was analyzed by a Kjeldahl K9840 analyzer (Hanon
Instrument Co. Ltd., Nanjing, China), and fat was determined by an Ankom XT15 analyzer
(Ankom Technology, Macedon, NY, USA). All measurements were taken in triplicates.

2.5. Fatty Acids Analysis

The fatty acids composition analyses were carried out according to Ponnampalam et al. [29].
In brief, the beef samples collected from each group were sliced and freeze-dried in a freeze
dryer (Ningbo Xinzhi Instruments, Inc., Ningbo, China) for 72 h. Freeze-dried samples
(0.5 g) were ground, and then 1 mL internal standard (C11:0, Sigma Aldrich Pty Ltd.,
St. Louis, MI, USA) was added to muscle samples. The contents were hydrolyzed with
0.7 mL of 10 mol/L potassium hydroxide aqueous solution and 5.3 mL of methanol to
form free fatty acids. Then, the contents were incubated in a water bath at 55 ◦C for 1.5 h
by vortex mixing and mixed with 0.58 mL of 24 N sulfuric acid (H2SO4) in water and
cooled to room temperature. After 1.5 h incubation, the mixture was cooled and then
thoroughly mixed with 3 mL of hexane solvent and centrifuged. Approximately 1 mL
supernatant (fatty acid methyl ester, FAME) was transferred into an injection vial for
analysis. The FAME was determined with the gas chromatograph (GC-6890 N, Agilent
Technologies, Wilmington, NC, USA), equipped with a detector (flame ionization), and
separate SP-2560 type column (capillary) (60 m × 2.5 cm × 0.25 µm, Supelco Inc., Belle-
fonte, PA, USA). The sample split ratio was 30:1. Gas chromatographic conditions were
set according to Aldai et al. [30]. The ratio of retention time to the FAME standard mixture
(FAME 37 component, Sigma-Aldrich Co., St. Louis, MI, USA) was used to identify the
fatty acids.

2.6. Volatile Compounds Analysis

Beef samples were collected in triplicate for each group of volatile compounds. The
volatile compounds were determined using a Flavorspec Gas Chromatograph-Ion Mobility
Spectrometer (GC-IMS) system (GAS GmbH, Dortmund, Germany) fitted with a SE-54
capillary column (15 m × 0.53 mm), and conducted with modifications according to the
methods of Xu et al. [31]. Briefly, without any sample pre-treatment, two grams of fresh
meat samples were weighed and placed in a 20 mL headspace vial and incubated at 60 ◦C
for 20 min. Then, 500 L of headspace was automatically injected into the heated syringe
with a syringe at 85 ◦C. High-purity nitrogen was used as the carrier gas with a flow rate of
150 mL/min. The carrier gas flow rate program was set to 2 mL/min for 2 min; 10 mL/min
for 10 min, 100 mL/min for 20 min, and 150 mL/min for 25 min. LAV software (version
2.2.1—G.A.S., Dortmund, Company) was used to create an area set integrating retention
time (Rt) and drift time (Dt) of all markers spots and to obtain the individual signal from
the topographic plot.

2.7. Sensory Analysis

Eight trained sensory panel members were selected according to the Chinese standard
GB/T 22210-2008 (criterion for the sensory evaluation of meat and meat products). The
samples were baked on a household grill at 185 ◦C and removed when the core temperature
reached 70 ◦C. After cooking, each sample was cut into 1.5 cm cubes, placed on a paper
plate with a three-digit number and then presented to the panelists. During testing,
panelists were seated in a separate compartment in the sensory room. Before proceeding
to the next round of evaluation, panelists were instructed to rinse their mouths with
water to clear the taste between the samples. All sensory analyses were repeated three
times. The sensory attribute score of each sample was divided into 8 levels: initial juiciness
(1 = extremely dry, 8 = extremely juicy); sustained juiciness (1 = extremely dry, 8 = extremely
juicy); flavor intensity (1 = extremely bland, 8 = extremely intense); off-flavor intensity
(1 = no off-flavor, 8 = extremely intense off-flavor); initial tenderness (0 = extremely tough,
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8 = extremely tender); sustained tenderness (0 = extremely tough, 8 = extremely tender);
residue (0 = none, 8 = abundant).

2.8. Statistical Analysis

All the experiments were performed in triplicate. The collected data were analyzed
using one-way analysis of variance (ANOVA) by the SAS 9.2 program (SAS Institute, Cary,
NC, USA). The Shapiro–Wilk test and Levene test were used to evaluate the normality
of the data distribution and the homogeneity of variance. The Duncan test was used to
compare mean values. Significant differences were declared at p < 0.05.

3. Results
3.1. Antioxidant Enzymes Activity and Lipid Oxidation

Effects of dietary DHA-rich microalgae on the antioxidant enzyme activity of beef
are shown in Figure 1. Compared with the control group, the activities of T-AOC in the
FD1 group and FD2 group and GSH-Px in the FD1 group significantly increased (p < 0.05).
No significant difference was observed in T-AOC and GSH-Px activities between the FD1
group and the FD2 group (p > 0.05). There was no significant difference in SOD activity
and TBARS in all treatment groups (p > 0.05).
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Figure 1. The influence of dietary DHA-rich microalgae on the activities of (A) T-AOC, (B) SOD, (C) GSH-Px and (D) TBARS
of beef. C = control group; FD1 = 100 g microalgae powder per bull per day of basal diet; FD2 = 200 g microalgae powder
per bull per day of basal diet. Different letters indicate significant differences due to DHA-rich microalgae supplementation
levels (p < 0.05).
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3.2. Meat Physicochemical Quality

The effects of dietary DHA-rich microalgae on physicochemical meat quality are
presented in Table 3. There were no differences (p > 0.05) in color parameters (L*, a*, b*,
C* and H*), pH, drip loss, cooking loss and protein among the three treatments. The fat
content in the FD1 and FD2 groups was significantly higher than that in the control group
(p < 0.05).

Table 3. The influence of dietary DHA-rich microalgae on the physicochemical quality of beef meat.

Item
Treatments

SEM p-Value
C FD1 FD2

L* 30.07 29.52 29.73 1.72 0.66
a* 15.17 14.34 15.73 2.51 0.64
b* 6.37 6.72 6.94 1.67 0.84
C* 16.47 15.93 17.23 2.66 0.70
H* 22.51 25.60 23.61 5.17 0.59
pH 6.1 6.04 6.19 0.522 0.885

Drip loss (%) 1.97 1.78 1.56 0.44 0.294
Cooking loss (%) 0.29 0.31 0.26 0.04 0.126
Protein (g/100 g) 23.84 23.59 23.91 1.11 0.875

Fat (g/100 g) 1.35 b 1.76 a 1.82 a 0.27 0.047
SEM, standard error of means. C, control group; FD1, 100 g microalgae powder per bull per day of basal diet;
FD2, 200 g microalgae powder per bull per day of basal diet. a,b Means within a row with different superscripts
differ (p < 0.05).

3.3. Fatty Acid Composition

The influences of dietary DHA-rich microalgae on fatty acids composition in the LL
muscle of beef are given in Table 4. It could be seen that dietary DHA-rich microalgae
treatments had no effects on monounsaturated fatty acids (MUFA) and n-6 PUFA (p > 0.05).
Saturated fatty acids (SFA) in the FD1 and FD2 groups was greater (p < 0.05) than that in
the control group. The cattle supplemented with DHA-rich microalgae had higher SFA
(p = 0.007), PUFA (p = 0.001), n-3 PUFA (p < 0.001) and EPA + DHA (p < 0.001), and a lower
(p < 0.001) n-6/n-3 ratio. Moreover, the concentrations of EPA, DHA, EPA + DHA and total
n-3 PUFA increased significantly with increasing DHA-rich microalgae (p < 0.001). The
relative proportion of EPA and DHA were 4–6 times and 8.5–11.4 times higher (p < 0.001)
for FD1 and FD2 groups compared to the control group.

Table 4. The influence of dietary DHA-rich microalgae on fatty acid profiles of beef meat.

Item
(mg/100 g Fresh Meat)

Treatments
SEM p-Value

C FD1 FD2

C14:0 17.64 23.00 24.99 8.11 0.297
C15:0 6.85 7.34 8.86 1.66 0.111
C16:0 248.47 b 327.77 a 336.94 a 59.86 0.042
C17:0 14.39 19.11 19.06 4.64 0.164
C18:0 236.01 331.83 357.42 86.44 0.065
C20:0 2.86 b 3.35 ab 4.41 a 0.97 0.041
C21:0 1.71 1.89 1.39 0.53 0.285
C22:0 0.08 0.07 0.07 0.01 0.752
C23:0 1.01 1.11 1.16 0.19 0.386
SFA 529.03 b 715.48 a 754.29 a 111.74 0.007

C15:1 82.88 90.44 86.85 17.87 0.768
C16:1 20.08 b 27.86 a,b 36.46 a 7.12 0.004

C18:1 n-9 213.31 222.08 286.45 91.73 0.347
C20:1 1.88 1.90 1.98 0.64 0.962
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Table 4. Cont.

Item
(mg/100 g Fresh Meat)

Treatments
SEM p-Value

C FD1 FD2

C22:1 1.60 1.63 2.02 0.45 0.230
MUFA 319.75 343.92 413.76 104.80 0.301

C18:2 n-6 165.56 176.09 160.43 35.64 0.744
C18:3 n-6 1.29 1.54 1.20 0.28 0.128

C18:3 n-3 (ALA) 5.31 b 6.33 a 6.82 a 0.74 0.009
C20:2 n-6 5.09 5.02 5.68 1.26 0.614
C20:3 n-6 13.39 11.86 11.16 2.31 0.261
C20:4 n-6 73.76 74.48 85.72 9.91 0.096

C20:5 n-3 (EPA) 3.46 c 12.34 b 18.87 a 2.44 <0.001
C22:6 n-3 (DHA) 7.33 c 60.30 b 80.19 a 5.24 <0.001

PUFA 275.19 b 351.51 a 370.09 a 36.86 0.001
n-6 PUFA 259.10 268.98 264.20 36.54 0.897
n-3 PUFA 16.10 c 78.97 b 105.89 a 6.19 <0.001

EPA + DHA 10.79 c 72.64 b 99.06 a 6.28 <0.001
n-6/n-3 16.15 a 3.43 b 2.52 b 1.13 <0.001

SEM, standard error of means; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyun-
saturated fatty acids; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; C, control group; FD1, 100 g
microalgae powder per bull per day of basal diet; FD2, 200 g microalgae powder per bull per day of basal diet.
Within a row, values with different superscript letters are significantly different. Different superscripts within a
row differ significantly (p < 0.05). SFA = C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0 + C21:0 + C22:0 + C23:0.
MUFA = C15:1 + C16:1 + C18:1 n-9 + C20:1 + C22:1. PUFA = C18:2 n-6 + C18:3 n-6 + C20:2 n-6 + C20:3 n-6 + C20:4
n-6 + C18:3 n-3 + C20:5 n-3 + C22:6 n-3. n-6 PUFA = C18:2 n-6 + C18:3 n-6 + C20:2 n-6 + C20:3 n-6 + C20:4 n-6. n-3
PUFA = C18:3 n-3 + C20:5 n-3 + C22:6 n-3.

Diet also influenced individual fatty acid contents, whereas C16:0 and C18:3 n-3 (ALA)
in the FD1 and FD2 groups was higher (p < 0.05) than that in the control group. DHA-rich
microalgae increased the concentrations of C16:0 and SFA in the meat, which may be
related to the higher contents of C16:0 and SFA contained in microalgae powder, which
were difficult to be oxidized and easy to deposit [15]. The concentrations of C20:0 and
C16:1 in the FD2 group were greater (p < 0.05) than that in the control group, but there was
no difference (p > 0.05) from that in the FD1 group.

3.4. Volatile Compounds

As shown in Figure 2, the abscissa was used to represent the drift time, and the
ordinate was used to represent the retention time. The drift time and retention time were
compared to indicate the volatile compounds in the beef sample. Each spot represented
a kind of volatile compound. The identified compounds are presented in Table 5. A
total of 36 peaks and 24 volatile components were identified from the beef samples of
the three groups, including 9 alcohols, 8 aldehydes, 6 ketones and 1 furan. Among them,
11 were dimers of the compounds, and 1 was a trimer of the detected compounds.

Table 5. The information on identified volatile compounds of beef meat (36 peaks for 24 compounds).

Number Compound CAS# Formula MW RI Rt [s] Dt [ms]

1 2-Pentylfuran C3777693 C9H14O 138.2 995.0 588.195 1.25804
2 Benzaldehyde C100527 C7H6O 106.1 958.7 511.489 1.15827
3 n-Nonanal C124196 C9H18O 142.2 1103.3 790.923 1.47531
4 Octanal C124130 C8H16O 128.2 1011.5 616.193 1.40526
5 Methional C3268493 C4H8OS 104.2 916.8 435.272 1.08542
6 Heptanal (Monomer) C111717 C7H14O 114.2 900.6 409.009 1.33262
7 Heptanal (Dimer) C111717 C7H14O 114.2 900.0 408.054 1.7041
8 2-heptanone (Monomer) C110430 C7H14O 114.2 892.3 396.116 1.26633
9 2-Heptanone (Dimer) C110430 C7H14O 114.2 891.9 395.639 1.64334
10 1-Hexanol (Monomer) C111273 C6H14O 102.2 871.8 368.421 1.32986
11 1-Hexanol (Dimer) C111273 C6H14O 102.2 872.1 368.898 1.64472
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Table 5. Cont.

Number Compound CAS# Formula MW RI Rt [s] Dt [ms]

12 Hexanal (Monomer) C66251 C6H12O 100.2 792.4 278.226 1.25507
13 Hexanal (Dimer) C66251 C6H12O 100.2 791.8 277.602 1.57443
14 1-Pentanol (Monomer) C71410 C5H12O 88.1 764.5 251.354 1.24767
15 1-Pentanol (Dimer) C71410 C5H12O 88.1 762.4 249.479 1.51031
16 2-Hexanone C591786 C6H12O 100.2 783.7 269.79 1.18602
17 Acetoin (Monomer) C513860 C4H8O2 88.1 716.1 210.419 1.05532
18 Acetoin (Dimer) C513860 C4H8O2 88.1 713.6 208.544 1.34015
19 1-Butanol (Monomer) C71363 C4H10O 74.1 663.8 177.922 1.18356
20 1-Butanol (Dimer) C71363 C4H10O 74.1 659.9 176.047 1.37591
21 2-Butanone (Monomer) C78933 C4H8O 72.1 581.6 142.612 1.06395
22 2-Butanone (Dimer) C78933 C4H8O 72.1 588.9 145.424 1.25137
23 1-Propanol C71238 C3H8O 60.1 560.7 134.8 1.11204
24 Acetone C67641 C3H6O 58.1 489.8 111.364 1.1256
25 2-Propanol C67630 C3H8O 60.1 501.1 114.802 1.18232
26 Ethanol C64175 C2H6O 46.1 458.3 102.303 1.04546
27 2-Methylpropanol C78831 C4H10O 74.1 620.3 158.236 1.17492
28 2-Pentanone (Monomer) C107879 C5H10O 86.1 685.3 188.546 1.12067
29 2-Pentanone (Dimer) C107879 C5H10O 86.1 685.8 188.78 1.37521
30 3-Methylbutanal C590863 C5H10O 86.1 652.1 172.421 1.40027
31 1-Octen-3-ol (Monomer) C3391864 C8H16O 128.2 985.9 567.857 1.16379
32 1-Octen-3-ol (Dimer) C3391864 C8H16O 128.2 984.8 565.584 1.61059
33 1-Octen-3-ol (Trimer) C3391864 C8H16O 128.2 987.3 571.04 1.73824
34 Pentanal (Monomer) C110623 C5H10O 86.1 695.9 195.421 1.18443
35 Pentanal (Dimer) C110623 C5H10O 86.1 694.3 194.228 1.42808
36 2-Ethylhexanol C104767 C8H18O 130.2 1043.5 672.122 1.40894

CAS#, the registration number of chemical substances; MW, molecular mass; RI, retention index; Rt, retention; Dt, drift time.
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To further study the flavor difference between beef samples after adding microalgae,
the fingerprints obtained are shown in Figure 3. The fingerprint was formed based on the
peak signal. Each row represented the sample, and each column represented the identified
volatile compounds. In the fingerprint, the more pronounced color indicated, the higher
the content of the flavor substance identified. The contents of 2-propanol and acetone in the
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FD1 and FD2 groups were much higher than that in the control group. In the FD2 group,
it was found that the concentrations of many compounds in beef greatly increased, such
as 1-hexanol, 1-octen-3-ol, 2-ethylhexanol, n-nonanal, octanal, heptanal, hexanal (dimer),
pentanal (dimer), 2-heptanone and 2-pentylfuran. However, the concentrations of acetoin,
2-pentanone (monomer) and 2-butanone (monomer) were the highest in the control group.
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3.5. Sensory Evaluation

The mean scores for sensory evaluation of beef are presented in Table 6. Compared
with the beef samples of the control group, the beef samples of the FD1 and FD2 groups
showed higher (p < 0.05) scores of initial juiciness, sustained juiciness, flavor intensity,
initial tenderness and sustained tenderness, and lower (p < 0.05) scores of residue. There
was no observed effect of diet (FD1 or FD2) on off-flavor intensity (p > 0.05). However,
the sensory scores between the FD1 and FD2 groups did not show a significant difference
(p > 0.05).

Table 6. Effect of dietary DHA-rich microalgae on sensory characteristics of beef.

Item
Treatments

SEM p-Value
C FD1 FD2

Initial juiciness 5.13 b 6.19 a 6.21 a 0.56 0.006
Sustained juiciness 4.94 b 5.94 a 6.10 a 0.63 0.012

Flavor intensity 5.48 b 6.33 a 6.44 a 0.45 0.004
Off-flavor intensity 2.17 2.00 2.31 0.28 0.187
Initial tenderness 5.52 b 6.33 a 6.50 a 0.60 0.029

Sustained tenderness 5.63 b 6.35 a 6.42 a 0.56 0.049
Residue 3.68 a 3.21 b 3.10 b 0.34 0.022

SEM, standard error of means. C, control group; FD1, 100 g microalgae powder per bull per day of basal diet;
FD2, 200 g microalgae powder per bull per day of basal diet. a,b Means within a row with different superscripts
differ (p < 0.05).

4. Discussion

It is known that antioxidant capacity is an important factor in maintaining animal
health [32]. As a part of the endogenous antioxidant defense system, antioxidant enzymes
played a key role, which could protect cells from oxidative damage by free radicals [33].
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A previous study showed that Schizochytrium contained some antioxidants such as β-
carotene and vitamin E [15]. SOD directly reacts with free radicals to remove hydrogen
peroxide [34], while GSH-Px catalyzes the decomposition of hydrogen peroxide [35]. In this
study, compared with the control group, the addition of DHA-rich microalgae increased
the T-AOC of beef meat, which indicated that DHA-rich microalgae could improve the
antioxidant status of beef. It was found that only the GSH-Px activity in the FD1 group
increased in the current study, which suggested that the antioxidants in the microalgae at
an appropriate dose might contribute to the stability of the meat after slaughter. Adding
DHA-rich microalgae to the diet did not affect the SOD activity of beef. This finding is
consistent with La et al. [36], who reported that supplementing the diet with Schizochytrium
did not affect the SOD activity in the blood of calves. The content of TBARS is considered
to be one of the most accurate indicators for evaluating lipid peroxidation [37]. Since
long-chain PUFA was the main target of reactive oxygen species, it was determined that the
risk of lipid oxidation of beef was increased [38]. Our results showed that the addition of
DHA-rich microalgae in the diet did not affect TBARS. This result could be explained that
the increase in antioxidant capacity and endogenous antioxidant enzyme activity (GSH-Px)
scavenged free radicals to protect PUFA, resulting in no lipid peroxidation, although the
concentration of PUFA of beef meat increased after adding microalgae to the diet.

Meat color is an important indicator for evaluating meat quality, which determines
the consumers’ desire to buy [39]. In the present research, no changes in beef meat color
between groups were observed, which is consistent with previous studies. They reported
that adding DHA-rich Schizochytrium did not affect the animal meat color [40–42]. The
lack of differences in the ultimate pH between the treatments indicates that the muscle
glycogen levels of the beef in the three treatment groups are similar. Drip loss and cooking
loss were used to evaluate the water holding capacity of the meat. It should be noted that
no difference in water retention was observed between the three treatments. The amount of
intramuscular fat is related to eating qualities such as juiciness, tenderness and flavor [43].
Urrutia et al. [44] reported that dietary microalgae changed adipose tissue development
and cell structure, which may be an important factor in causing fat deposition in this
study. Generally, the strategy of using microalgae as a diet does not affect meat quality
parameters [45], but it could improve the fatty acid composition of the meat. This deserves
more attention and further research.

With the increase of DHA-rich microalgae supplemented in the diet, the contents of
EPA, DHA, EPA + DHA and n-3 PUFA showed a linear increase. As expected, marine re-
sources exhibited the ability to accumulate DHA and EPA contents in meat [46]. There was
evidence that adding algae to the diet was easier to obtain DHA deposition than through
the desaturation and prolongation pathway of α-Linolenic acid (C18:3 n-3, ALA) [47].
Based on the Australian nutrient reference standard, if the EPA + DHA in red meat exceeds
60 mg/135 g meat, it could be considered as a good source of n-3 [44]. The European
standard for a good source of n-3 recognized EPA + DHA as 40 mg and 80 mg/100 g of
meat [48]. In this experiment, the content of EPA + DHA in beef (60.30 mg/100 g fresh meat
and 80.19 mg/100 g fresh meat) was sufficient to meet this standard, which meant that the
beef in this study could provide enough EPA and DHA for the healthy human diet. The
balance of the ratio of n-6 and n-3 PUFA is a key factor for maintaining human health [49].
Burghardt et al. reported that the n-6/n-3 PUFA ratio in the human diet should not exceed
4 [50]. In this study, the ideal ratio of n-6/n-3 in beef meat in the FD1 and FD2 groups illus-
trated that this beef meat could help reduce the risk of cardiovascular and cerebrovascular
diseases and certain cancers after being consumed by humans [51]. The changes in fatty
acid composition observed in this study may be attributed to the differences in fatty acid
metabolism and deposition of beef with different dietary treatments [52]. In addition, in
the absence of C18:3 n-6 in the diet, the C18:3 n-6 detected in beef meat may be attributed
to the conversion of C18:2 n-6 through elongation and desaturation from certain diets in
this experiment [53].
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Volatile alcohols, aldehydes and ketones belong to lipid-derived compounds [54].
They are the simplest product of lipid degradation and are formed by the modification of
fatty acids after removal from the glycerol backbone [55]. In this experiment, short-chain
fatty aldehydes content was found to be the highest in the FD2 group, such as n-nonanal,
octanal, heptanal, hexanal and pentanal, and hexanal was the highest amount of them.
Most aldehydes are mainly derived from oleic acid (C18:1 n-9) and linoleic acid (C18:2 n-6),
but nonanal was only produced from oleic acid [56]. The results clearly illustrate that the
high correlation between the flavor compound and fatty acid composition, and the decisive
role of lipids in the formation of basic meat flavor. Previous studies showed that aldehydes
were the main volatile compounds in beef meat [57,58]. Volatile compounds were mainly
affected by diet because the fatty acid composition of meat was changed by diet [59].
Therefore, this also explained the higher aldehyde content in the FD2 group. Hexanal was
the main volatile compound in beef meat and directly related to lipid auto-oxidation [60].
The alcohols observed in the experiment were secondary products of aldehydes. The
FD1 group showed a higher amount of ethanol. It is interesting that due to the higher
alcohol threshold, the contribution to the undesirable flavor of the meat was less [61].
However, the highest content of 1-octen-3-ol in the FD2 group could indicate a mushroom
flavor, which could be perceived as a mushroom-related flavor. The highest value of
2-pentylfuran (beany and grassy flavor) was observed in the FD2 group, which could
be formed by lipid oxidation and degradation. It was an oxygen-containing heterocyclic
compound with a low threshold, resulting in a greater contribution to the overall flavor of
the meat [62]. Prior work has shown that ketones were derived from the β-oxidation of
free fatty acids increased with fat content in meat [63]. Acetoin (buttery flavor), 2-butanone
and 2-pentanone levels in the C group were significantly higher than the other two groups,
suggesting that the fat content was reduced by DHA-rich microalgae. To our knowledge,
there is no information on the effect of an algae diet on volatile beef compounds. In the
current study, high levels of volatile compounds were associated with high levels of DHA
in the meat of algae-fed animals.

Most consumers believe that higher fat is related to greater eating satisfaction [64].
This study found that consumers’ liking of tenderness, juiciness and flavor were affected
by diet. The aldehydes produced by the Strecker degradation of the Maillard reaction were
generally considered to be positive flavors associated with cooking [65]. This is consistent
with the results of volatile substances in this study. There was no difference in the off-flavor
scores of the three groups, which might be related to the TBARS value in the meat (less
than 0.5 mg MDA/kg meat) [66]. This study proved that adding DHA-rich microalgae to
the diet could reduce the development of off-flavor by increasing oxidative stability.

5. Conclusions

In conclusion, adding different levels of DHA-rich microalgae to the diet could increase
the activity of certain antioxidant enzymes in beef. Our results demonstrate that DHA and
EPA levels in meat were enriched by supplementing DHA-rich microalgae. In addition,
the reduced ratio of n-6/n-3 was another potential health benefit associated with algae
in Schizochytrium sp. At the same time, the supplementation of DHA-rich microalgae
enhanced the volatile compounds in beef, especially in the high-dose FD2 group. It is
necessary to conduct further research on the metabolites and oxidation mechanism of fatty
acids in meat.
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