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Abstract

Introduction TNFa is increased in the synovial fluid of patients
with rheumatoid arthritis and osteoarthritis. TNFo activates
mitogen-activated kinase kinase (MEK)/extracellular regulated
kinase (ERK) in chondrocytes; however, the overall functional
relevance of MEK/ERK to TNFa-regulated gene expression in
chondrocytes is unknown.

Methods Chondrocytes were treated with TNFo with or without
the MEK1/2 inhibitor U0126 for 24 hours. Microarray analysis
and real-time PCR analyses were used to identify genes
regulated by TNFa in a MEK1/2-dependent fashion. Promoter/
reporter, immunoblot, and electrophoretic mobility shift assays
were used to identify transcription factors whose activity in
response to TNFo was MEK1/2 dependent. Decoy
oligodeoxynucleotides bearing consensus transcription factor
binding sites were introduced into chondrocytes to determine
the functionality of our results.

Results Approximately 20% of the genes regulated by TNFa in
chondrocytes were sensitive to U0126. Transcript regulation of
the cartilage-selective matrix genes Col2a1, Agc1 and Haplnt,
and of the matrix metalloproteinase genes Mmp-12 and Mmp-9,
were U0126 sensitive — whereas regulation of the inflammatory
gene macrophage Csf-1 was U0126 insensitive. TNFa-induced
regulation of Sox9 and NFxB activity was also U0126
insensitive. Conversely, TNFa-increased early growth response
1 (Egr-1) DNA binding was U0126 sensitive. Transfection of
chondrocytes with cognate Egr-1 oligodeoxynucleotides
attenuated the ability of TNFa to suppress Col2a1, Agcl or
HapIln1 mRNA expression.

Conclusions Our results suggest that MEK/ERK and Egr1 are
required for TNFa-regulated catabolic and anabolic genes of the
cartilage extracellular matrix, and hence may represent potential
targets for drug intervention in osteoarthritis or rheumatoid
arthritis.

Introduction

Chondrocytes maintain articular cartilage through coordinated
production and degradation of the extracellular matrix. Type I
collagen, aggrecan, and link protein — encoded by the genes
Col2a1, Agc1 and Haplin1, respectively — are major compo-
nents of the articular cartilage extracellular matrix (ECM). Type
Il collagen is the major structural collagen of articular cartilage
[1]. Aggrecan is the most abundant proteoglycan, and is
responsible for resisting the compressive forces imposed on
articulating joints [2]. Finally, link protein stabilizes the associ-

ation of aggrecan with hyaluronic acid [3]. The expression of
these ECM proteins is regulated by transcription factors within
the nucleus promoting or inhibiting transcript production. Sry-
type high-mobility group box-9 (Sox9) is a regulatory transcrip-
tion factor that binds DNA at specific sites within Col2af,
Agc1 and Hapln genes to induce their transcription [4-6].

In diseases such as rheumatoid arthritis and osteoarthritis
there is a shift in the equilibrium in cartilage production and
degradation towards catabolism. TNFa, a potent inflammatory

Agc1: aggrecan 1; Col2al: type Il collagen (a); Csf-1: colony stimulating factor 1; DMSO: dimethyl sulfoxide; ECM: extracellular matrix; Egr: early
growth response; ERK: extracellular regulated kinase; IFN: interferon; IL: interleukin; MEK: mitogen-activated kinase kinase; Mmp: matrix metallopro-
teinase; NF: nuclear factor; ODN: oligodeoxynucleotide; PCR: polymerase chain reaction; Sox: Sry-type high-mobility group box; TBST: Tris-buffered

saline with Tween-20; TNF: tumour necrosis factor.
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mediator, is found at higher levels in the synovial fluid bathing
articular cartilage in diseased joints compared with that of nor-
mal, healthy joints [7-9]. Previous work has shown that treat-
ment of chondrocytes with TNFo downregulates the
expression of Col2al, Agc1 and Hapin1 without inducing
apoptosis [10-13]. Furthermore, the activation of NFkB) by
TNFa signalling reduces Sox9 activity, possibly through com-
petition for the transcriptional cofactor p300 [10,12]. Other
signalling pathways are known to be activated by TNFa, how-
ever, including the extracellular regulated kinase (ERK)/
mitogen-activated protein kinase pathway (reviewed in [14]).

TNFa initiates the activation of ERK/mitogen-activated protein
kinase through the adaptor protein, Grb2, binding to the TNFa
receptor 1, leading to activation of the ras/mitogen-activated
kinase kinase (MEK)/ERK signalling cascade [15]. In immortal-
ized chondrocytes and primary rat chondrocytes, ERK1/2 can
be phosphorylated as early as 15 minutes of treatment with
TNFa [10,11]. Inhibition of MEK1/2 signalling can attenuate
the decreases in Col2a1, Agc1 and Hapin1, as determined by
northern blot analysis [10,11]. TNFa also regulates the activity
of NFkB and Sox9 in chondrocytes [10,12]. TNFa-induced
NF«xB DNA binding in immortalized chondrocytes is reduced
by inhibition of MEK1/2 signalling [10]. TNFo may therefore
regulate the expression of a subset of genes by alterations in
the activity of these transcription factors in a MEK1/2-depend-
ent manner.

Although some information is known about selected changes
in chondrocyte gene expression in response to TNFa-acti-
vated MEK/ERK signalling, the overall impact of this pathway
on changes to the chondrocyte gene expression and the
downstream transcriptional mechanisms mediating these
changes has been poorly defined. We sought to identify the
extent to which MEK/ERK may contribute to the overall
changes in chondrocyte gene expression in response to
TNFo.

In the present study, we found that ERK1/2 undergoes muilti-
ple temporal phosphorylation events in response to TNFa-
induced MEK1/2 activation. We discovered that approxi-
mately 20% of the genes that changed at least 1.45-fold with
TNFa were dependent on MEK1/2 activation. A significant
subset of these genes encoded proteins that localized to the
extracellular space and had collagenase or hyaluronic acid
binding activities. We determined that specific matrix metallo-
proteinases and cartilage-selective ECM transcript levels were
regulated by MEK/ERK, while transcripts of the inflammatory
gene macrophage colony stimulating factor 1 (Csf-1), were
regulated in a MEK1/2-independent manner. Surprisingly, the
activation of NF«kB and the inhibition of Sox9 activity by TNFa
were independent of MEK1/2. The DNA binding activity of the
transcription factor early growth response 1 (Egr-1), however,
was regulated by TNFa-activated MEK1/2 signalling. Finally,
we determined that Egr family members are responsible for the
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TNFa-induced, MEK-dependent reductions in mRNA tran-
scripts. Egr-1 may therefore regulate a select number of genes
in response to TNFa-activated MEK/ERK signalling.

These findings reveal that MEK/ERK-dependent transcription
factors that are downstream of TNFa, such as Egr-1, may be
targets for therapeutic intervention to treat the pathophysiol-
ogy of arthritis without disrupting other potential positive
effects of TNFa.

Materials and methods

Primary chondrocyte culture

Chondrocytes were isolated from the femoral condyles of neo-
natal (1 day old) rats as previously described [10]. The carti-
lage canals in newborn rats do not form in the femoral
condyles until 5 days postnatal and radiographic signs of the
secondary ossification centre do not appear until about 10
days postnatal [16]. Furthermore, to avoid hypertrophic
chondrocytes, the upper two-thirds of the cartilage was taken.
Cells were plated onto tissue culture plastic (Falcon, Franklin
Lakes, NJ, USA) at a density of ~2.5 x 104 cells/cm2. Under
these conditions, the culture consists of an essentially pure
chondrocyte population.

Monolayer chondrocyte cultures were grown in RPMI 1640
media (Invitrogen, Burlington, ON, Canada) supplemented
with 5% foetal bovine serum, 100 U/ml penicillin, 100 ug/ml
streptomycin and 1% HEPES buffer (Invitrogen) until approxi-
mately 90% confluence was reached (6 to 7 days). Prior to
treatment, chondrocytes were incubated in serum-free media
overnight. For inhibitor studies, chondrocytes were pretreated
with the selective MEK1/2 inhibitor U0126 (10 uM; Promega,
Thermo Fisher Scientific, Rockford, IL, USA) [17] for 30 min-
utes. As previously shown, U0126 has very low inhibitory
activity towards other protein kinases [18]. Furthermore, previ-
ous studies in our laboratory have demonstrated that 24-hour
treatment with 10 uM U0126 had no significant effect on the
cell morphology or organization in culture [11]. As controls,
cultures were treated in parallel with dimethyl sulfoxide
(DMSO) (vehicle for inhibitors), U0124 (10 uM; Calbiochem,
EMD Biosciences Inc., La Jolla, CA, USA) or the selective epi-
dermal growth factor receptor inhibitor PD153035 (1 uM; Cal-
biochem, EMD Biosciences Inc.) [19]. Cultures were then
treated with human recombinant TNFa (30 ng/ml; Endogen,
Thermo Fisher Scientific) for 15 minutes to 24 hours.

Antibodies

Antibodies used in this study included anti-phospho-tyrosine-
ERK1/2 (E4), anti-Egr-1 (588), anti-a-tubulin (E-19), and anti-
NFkB p65 (C-20) antibodies (all from Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA). Horseradish peroxidase-conju-
gated goat-anti-rabbit or rabbit-anti goat secondary antibodies
were obtained from Thermo Fisher Scientific.



Protein isolation and western blotting

Nuclear and cytoplasmic extracts were isolated using a modi-
fied method of Dignam and colleagues [20], as previously
described [10]. Total cell extracts were isolated using RIPA
buffer as previously described [21]. Protein concentration was
determined using the Pierce BCA Protein assay kit (Pierce,
Thermo Fisher Scientific), as per the manufacturers' instruc-
tions. For western blotting, 20 ng cytoplasmic protein was
loaded into 10% polyacrylamide gels containing SDS and
separated by electrophoresis. Proteins were transferred onto
Protran™ nitrocellulose membranes (Whatman, Inc., Florham
Park, NJ, USA) by electroblotting and were stained with Pon-
ceau S to qualitatively determine equal loading of samples and
efficient transfer of proteins. Membranes were blocked in 5%
nonfat milk (Carnation, North York, ON, Canada) in 0.05%
Tris-buffered saline containing 0.05% Tween-20 (TBST) for 1
hour followed by incubation with primary antibodies in block-
ing buffer overnight. Membranes were washed in TBST and
incubated in 5% milk-TBST with appropriate secondary anti-
body for 45 minutes to 1.5 hours. Membranes were then
washed with TBST and rinsed in Tris-buffered saline prior to
incubation in Supersignal West Pico Chemiluminescent Sub-
strate (Pierce, Thermo Fisher Scientific) and exposed to Amer-
sham Hyperfilm ECL (GE Healthcare Bio-Sciences Inc., Baie
d'Urfé, QC, Canada). Membranes were stripped using 1 M
glycine, pH 2.5, and washed using TBST prior to reprobing.

RNA isolation

Total RNA was isolated from cultures by Trizol (Invitrogen) fol-
lowed by RNeasy clean-up (Qiagen, Mississauga, ON, Can-
ada) as per the manufacturer's directions. Total RNA was
quantified spectrophotometrically. High-quality RNA for use in
the microarray analysis was confirmed by analysis in the Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA).

Microarray analysis

Total mRNA (10 pg) from two biological replicates of cells
treated with DMSO, U0126, TNFo or UO126 and TNFo., were
amplified once and hybridized to RAT230_2.0 gene chips
(Affymetrix, Santa Clara, CA, USA). Amplification, labelling,
hybridization and detection were performed at the London
Regional Genomics Centre (London, ON, Canada) according
to the manufacturers' instructions.

Microarray data and gene ontology analysis

The raw expression values were imported into Genespring GX
7.3 (Agilent Technologies). Raw expression values <0.01
were set to 0.01 and the normalization per chip was set to the
50th percentile. Relative gene expression of the 31,099 probe
sets on the chip was determined by normalizing the raw
expression values for each probe set to the DMSO control (=
one-fold change for each probe set) from each independent
experiment. To identify genes that were TNFa-regulated,
probe sets that were altered > 1.45 in DMSO/TNFa-treated
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cultures compared with DMSO-treated cultures were deter-
mined for each independent experiment. Probe sets identified
as being TNFa regulated in both independent experiments
were selected for further analysis. Genes whose transcript lev-
els changed > 1.45-fold were selected for study, as our micro-
array analysis revealed that aggrecan mRNA — a transcript
previously shown to be TNFa sensitive [12] — was reduced
approximately 1.45-fold and thus served as a positive control
establishing the validity of our microarray data.

To identify probe sets whose changes were altered by TNFa
in a MEK1/2-dependent fashion, we normalized the fold
change in gene expression of U0126/TNFa-treated cultures
to that of cultures treated with U0O126 alone from both inde-
pendent experiments. We determined probe sets that were
altered <1.45-fold in response to DMSO/TNFa. treatment, and
hence were TNFa regulated in a UO126-sensitive fashion. The
remainder of the genes on the lists of TNFa-regulated probe
sets were determined to be TNFa regulated and MEK inde-
pendent. Probe sets identified as being TNFa regulated and
MEK/ERK dependent or MEK/ERK independent in both inde-
pendent experiments were selected for further analysis.

Genes were also identified whose basal expression was sen-
sitive to UO126 alone. Probe sets altered > 1.45-fold in
response to UO126 treatment relative to DMSO treatment
were identified in both independent experiments. The limited
number of genes that were altered with U0126 in both exper-
iments (89/31,099) prevented the use of meaningful cluster
analysis, but nonetheless served as a potent indication of the
selectivity of the U0126 inhibitor. The generated list was then
compared with the list of genes changing > 1.45-fold with
DMSO/TNFa to identify genes that were basal TNFa inde-
pendent but MEK/ERK dependent and those genes that were
both TNFa and basal MEK/ERK dependent.

The fold change in the transcript levels increased or
decreased > 1.45-fold in both independent experiments was
averaged. The generated lists of genes determined as TNFa-
activated MEK/ERK dependent and TNFa-activated MEK/
ERK independent were analysed using the gene ontology
browser in Genespring GX 7.3. Major cellular components
and molecular functions subcategories of protein products
from the list of genes were identified. The resulting list of cel-
lular component ontologies was filtered such that a minimum
of 10 genes must be in the initial group of annotated genes
from the microarray and the resulting subcategory must be sig-
nificantly represented (P < 0.05). Selected genes within the
extracellular space ontology were then organized into sub-
categories that were significantly represented by the molecu-
lar function ontologies (P < 0.01).

Quantitative real-time PCR
Total RNA (25 ng) was amplified using the TagMan One Step
RT-PCR Master Mix (4309169; Applied Biosystems Inc.,
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Streetsville, ON, Canada). Primer/probe sets to rat type Il col-
lagen (Col2a1, Rn00564954_m1), aggrecan 1 (Agcl,
Rn00573424_m1), link protein (Hapln1, Rn00569884_m1),
matrix metalloproteinase-9 (Mmp-9, Rn00579162_m1), matrix
metalloproteinase-12 (Mmp-12, Rn00588640_m1), macro-
phage Csf-1 (Csf-1, Rn00576849_m1) and eukaryotic 18S
rRNA (4352930E) were used to analyse relative transcript
levels.

Reverse transcription and quantitative real-time PCR reactions
were performed using the Prism 7900 HT Sequence Detector
(Applied Biosystems Inc.). Samples were incubated at 48°C
for 30 minutes to make cDNA templates. The resulting cDNA
was amplified for 40 cycles. Cycles alternated between 95°C
for 15 seconds and 60°C for 1 minute.

Results were analysed using SDS v2.1 software (Applied Bio-
systems Inc.). The AACt method was used to calculate gene
expression levels relative to 18S and normalized to vehicle-
treated cells. Data were log-transformed prior to analysis by
one-way analysis of variance and Tukey's post-hoc test, paired
t tests and Student's t tests, using Graphpad Software v. 4
(Graphpad Software, La Jolla, CA, USA).

Transfection

Confluent cell cultures were detached using trypsin-ethylene-
diamine tetraacetic acid (Invitrogen), pelleted, and resus-
pended in serum-free culture medium. Cells were then plated
into 48-well dishes (3.4 x 104 cells/well) in 200 ul and were
transfected with equal amounts of reporter plasmids. The
reporter plasmids used in this study included the «B reporter
(BD Biosciences, Mississauga, ON, Canada), comprising four
tandem repeats of the kB response element upstream of the
firefly luciferase reporter sequence and a type Il collagen
enhancer luciferase reporter (Sox9 reporter) containing four
repeats of the 48-base-pair minimal enhancer of the type Il col-
lagen gene (pGL3 (4 x 48)) [22]. Each minimal enhancer
sequence contains a binding site for Sox9. Multiple repeats of
the minimal enhancer are required for optimal firefly luciferase
expression [23]. Cells were transfected with 20 ul serum-free
media containing the equivalent of 0.156 ng Sox9 reporter or
NFxB reporter and 0.352 pl Fugene 6 transfection reagent
(Roche Diagnostics Corporation, Indianapolis, IN, USA). In all
experiments, chondrocytes were co-transfected with a 0.002
ug renilla luciferase plasmid (pRL-CMV; Thermo Fisher Scien-
tific) to control for transfection efficiency. Cultures were trans-
fected for 4 hours prior to addition of 200 pl foetal bovine
serum containing media.

After overnight incubation, the media was aspirated off from
the transfected cultures and replaced with serum-free media.
Cultures were treated as indicated above and collected using
Passive Lysis Buffer (Thermo Fisher Scientific) as directed by
the manufacturer. Luciferase activity was measured using the
Dual Luciferase Assay System (Thermo Fisher Scientific) in an
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L-max Il microplate reader (Molecular Devices, Sunnyvale, CA,
USA). Tanscription-factor-regulated firefly luciferase units
were adjusted relative to constitutive cytomegalovirus-regu-
lated renilla luciferase units obtained in control DMSO-treated,
U0124-treated or UO126-treated cultures. Data were log-
transformed prior to analysis by Student's t tests and one-way
analysis of variance using Graphpad Software v. 4 (Graphpad
Software).

Electrophoretic mobility shift assays

Binding of nuclear protein complexes to the kB or Egr-1 cog-
nate elements was determined as previously described
[10,12]. The double-stranded oligodeoxynucleotides (ODNs)
containing the xB cognate sequence (5-AGTTGAG-
GGGACTTTCCCAGG-3'), the Egr cognate sequence (5'-
GGATCCAGCGGGGGCGAGCGGGGGCGA-3') and the
Egr mutant sequence (5'-GGATCCAGCTAG-
GGCGAGCTAGGGCGA-3") were purchased from Santa
Cruz Biotechnology. Competition assays were performed by
adding 100-fold molar excess of unlabelled probe to the
nuclear extract-labelled probe mixture. Antibody interference
assays were performed by adding 2 ng antibody against Egr-
1 (specific) or NFkB (nonspecific) 1 hour prior to the addition
of nuclear extract to the buffered radiolabelled DNA. Samples
were loaded into 4% polyacrylamide gels and were electro-
phoresed for 3.5 hours. Following electrophoresis, gels were
dried and exposed to Amersham Hyperfim-MP (GE Health-
care Bio-Sciences Inc.) at -80°C.

Promoter analysis for putative transcription factor
binding sites

Upstream regions proximal to the transcriptional start site of
the rat Col2a1 and Agc1 genes have been described previ-
ously [24,25]. Upstream regions from the transcriptional start
site (~5,000 base pairs) of the Rattus Norvegicus Col2a1l
[GenBank:NM_012929.1 and Agci [Gen-
Bank:NM_022190] genes were obtained and analysed for
putative transcription factor binding sites by TRANSFAC anal-
ysis [26].

Oligodeoxynucleotide decoy assay

Chondrocytes were plated at 1.2 x 106 cells/well in six-well
culture dishes. Single stranded, phosphorothiol-modified
ODNs were annealed by heating complementary ODNs to
98°C for 20 minutes followed by cooling to room temperature
for 3 to 4 hours. Chondrocytes were transfected with 2 uM
double-stranded ODNs corresponding to the cognate EGR-1
binding sequence (56'-ggaTCCAGCGGGGGCGAGCG-
GGGgcgA-3') or the Egr mutant sequence (5'-ggaTC-
CAGCTAGGGCGAGCTAGGgcgA-3';  Sigma Genosys,
Oakville, ON, CA) using 1% HiPerfect transfection reagent
(Qiagen), as per the manufacturer's instructions. (Lowercase
letters indicate phosphorothiol-modified bases.)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_012929.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_022190

To optimize double-stranded ODN transfection conditions,
chondrocytes were transfected cells with increasing concen-
trations of double-stranded, fluorescein-tagged and phospho-
rothiol-modified ODNs, and the cells were imaged by live-cell
fluorescent microscopy (data not shown). Chondrocytes were
allowed to grow for 24 hours in the presence of ODNSs, after
which cells were washed and cultured in serum-free RPMI
media overnight. Chondrocytes were treated with TNFa. for 24
hours, as described, and total RNA was collected for analysis
by real-time PCR.

Results

ERK1/2 is phosphorylated by TNFa in chondrocytes

We have shown previously that TNFa. induces ERK phospho-
rylation in primary articular chondrocytes 15 minutes post
treatment [11]. To confirm and extend these results, we used
western blot analysis to show that TNFa induced ERK1/2
phosphorylation 15 minutes post treatment (Figure 1), fol-
lowed by a decrease in phosphorylation status (data not
shown). ERK1/2 phosphorylation was again increased at 90
minutes post treatment (Figure 1). As anticipated, both the
increases at 15 minutes and at 90 minutes could be inhibited
by the MEK1/2 inhibitor U0126, but not its inactive isoform
U0124 (Figure 1). Based on these data, we used U0126 as
an inhibitor to assess the effect of blocking MEK1/2 on the
mRNA expression pattern modulated by application of TNFa
to chondrocytes.

U0126 blocks part of the TNFoa-dependent gene
expression changes in chondrocytes

To investigate the global impact of U0126 on TNFa-modu-
lated gene expression in chondrocytes, we utilized microarrays
to analyse changes in chondrocyte mRNA expression. Cells
were serum-starved overnight and were treated with or with-
out U0126 (10 uM, 30 min) prior to addition of TNFa. for 24
hours. Cells were treated with TNFa. for 24 hours as previous
data showed that this length of TNFa treatment was neces-
sary to generate a TNFo-mediated suppression of chondro-
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cyte matrix genes, owing to the stability of chondrocyte matrix
gene mRNAs [27-30].

Microarray analysis from two independent experiments deter-
mined that 629 genes were regulated by TNFa signalling in
both sets of experiments by at least 1.45-fold, the majority of
which were increased in response to TNFa (Figure 2). Of
these genes, alterations of 138 (~22%) were attenuated with
UO0126. Furthermore, of the remaining genes that were not
regulated by TNFa, 62 genes were regulated by U0126 alone,
indicating that basal MEK/ERK activity may also play a role in
chondrocyte gene regulation. Complete microarray data have
been deposited in the Gene Expression Omnibus public
repository [GEO:GSE14402].

Selective extracellular matrix and proteinase genes are
regulated by TNFa-induced MEK/ERK signalling

We further analysed the lists of genes that were induced by
TNFa using specific gene ontologies. Analysis of the list of
TNFa-induced, MEK/ERK-dependent and MEK/ERK-inde-
pendent probe sets indicated that there was significant repre-
sentation (P < 0.05) of genes whose protein products localize
to the extracellular space within both lists (Table 1). Further
analysis of the list of TNFa-regulated, MEK/ERK-dependent
genes — whose products are found in the extracellular space
- indicated that some of these genes were significantly cate-
gorized by the molecular function of their protein products into
categories that included hyaluronic acid binding activity
(including Agc1 and Haplin1) and proteinase activity (including
Mmp-9 and Mmp-12). Analysis of the TNFa-regulated, MEK/
ERK-independent list of genes whose protein products were
localized to the extracellular space determined that many of
the protein products of these genes were involved in a variety
of activities, including chemokine/cytokine activity — including
macrophage Csf-1 — and various protease activities. The
inflammatory genes, however, appeared to be primarily U0126
insensitive.

Figure 1
TNFo — — — + + +
uo124 — + — — 4+ —
o126 — — + — — +
pERK1/2 s

ERK2 ““bﬂﬂ

15 min

|
|+ +
|

90 min

Multiple ERK1/2 phosphorylation events are dependent on MEK1/2 signalling. Chondrocytes were pretreated with dimethyl sulfoxide, U0124
(10 uM) or the active mitogen-activated kinase kinase (MEK) 1/2 inhibitor, U0126 (10 pM) for 30 minutes prior to TNFa treatment for 15 minutes or
90 minutes. Cytoplasmic extracts (20 ng) were resolved on 10% polyacrylamide gels and were immunoblotted for pY-extracellular regulated kinase
(ERK) 1/2 or total ERK2. Immunoblots are representative of three independent experiments.
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Figure 2

700+
600+
500+
4004
3004
200+
1004

I Upregulated
—Downregulated

# of Probe Sets with
1.45-fold changes

TNF-o.-
dependent

TNF-o- TNF-o-

induced induced
MEK/ERK MEK/ERK
independent dependent

Activated MEK/ERK signalling regulates a portion of genes regu-
lated by TNFa signalling. Total mRNA from two independent experi-
ments of primary chondrocytes pretreated with dimethyl sulfoxide or
U0126 for 30 minutes followed by treatment with vehicle or TNFa for
24 hours was subjected to microarray analysis. The number of probe
sets changing expression > 1.45-fold in TNFa-treated cells (first bar),
and the distribution of those changes that are dependent (second bar)
or independent (third bar) of mitogen-activated kinase kinase (MEK) 1/
2 activity. Probe sets showing > 1.45-fold fold changes with U0126
treatment alone are indicated by the last bar. In order for a probe set to
be counted in these categories, the gene needed to be increased or
decreased in the same direction > 1.45-fold in both of the two inde-
pendent experiments. For each bar, the number of genes downregu-
lated (white) and upregulated (black) are indicated. ERK, extracellular
regulated kinase.

To validate the changes in gene expression in response to
TNFo-induced MEK/ERK signalling determined by the micro-
array analysis, we identified the relative changes in transcript
levels of the extracellular matrix components Agc1, Hapint,
and Col2a1, proteases Mmp-9 and Mmp-12, as well as the
inflammatory cytokine macrophage Csf-1 (Figure 3). TNFa
decreased Agc1 and HapIn1 (Figure 3a, b) and increased
Mmp-9 and Mmp-12 (Figure 3e, f) in a MEK/ERK-dependent
manner. In addition, Col2a1 — a gene not identified as MEK/
ERK sensitive by microarray analysis — was also determined to
be MEK/ERK sensitive (Figure 3c). Pretreatment with U01286,
however, only partially attenuated the TNFo-induced reduc-
tions in Agc1, HapIn1 and Col2a1 transcript levels — to a level
only moderately, but not significantly, lower than control
treated cultures, suggesting the possible involvement of other
pathways (Figure 3a to 3c). Conversely, TNFa-induced
increases in macrophage Csf-1 were independent of MEK/
ERK signalling (Figure 3d). As anticipated, the inactive U0126
analogue U0124 had no effect in any of the assays tested.
Taken together, these results suggest that U0126 may atten-
uate the changes in chondrocyte gene expression towards a
catabolic phenotype while allowing for inflammatory proc-
esses to be undisturbed.
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Regulation of Sox9 and NF«B activity by TNFa are
independent of MEK/ERK signalling

We next wanted to determine the possible molecular basis for
TNFa-modulated, U0126-sensitive gene expression. First, we
investigated whether U0126 affected the ability of TNFa to
regulate the activity of the transcription factors Sox9 and
NFkB, which are known to be regulated by TNFa in chondro-
cytes [10,12]. As expected, TNFa significantly reduced the
level of Sox9 activity and increased the level of NFkB activity
in chondrocytes (P < 0.01; Figure 4a, b). There was no signif-
icant effect, however, on the level of inhibition or the induction
of Sox9 and NF«B activity, respectively, by either U0124 or
U0126 (P > 0.05; Figure 4a, b). Furthermore, we found that
TNFa-induced DNA binding of NFkB was reduced by pre-
treatment with DMSO (vehicle for the inhibitors) and was not
further reduced by pretreatment with U0124, U0126 or the
selective epidermal growth factor receptor inhibitor,
PD153035 (Figure 4c). These results indicate that transcrip-
tion factors other than Sox9 and NF«B are targets of TNFa-
induced MEK/ERK signalling.

Egr-1 DNA binding is increased in a TNFo-induced MEK/
ERK-dependent manner

To determine additional, candidate transcription factors that
may regulated by MEK/ERK, we considered that Egr-1 is a
known early target of MEK/ERK signalling and that IL-1 induc-
tion of Egr-1 inhibits the activity of the human type Il collagen
proximal promoter [31]. We therefore focused the remainder
of our study on Egr-1 and its possible role in regulating
U0126-sensitive TNFo-induced genes.

We identified multiple putative Egr-1 binding sites in the pro-
moter regions of the rat Col2a1 and Agc1 genes that were
proximal to the transcription initiation site and overlapped with
putative Sp1 binding sites (Figure 5). TNFa treatment of
chondrocytes over 24 hours did not alter the Egr-1 protein lev-
els, and neither did treatment for 90 minutes alter the nuclear
localization of Egr-1 (data not shown).

We then used electrophoretic mobility shift assays to investi-
gate whether the binding of Egr-1 to DNA was dependent on
TNFo-induced MEK/ERK' signalling. Nuclear extracts from
chondrocytes treated with TNFo for 90 minutes increased the
DNA binding of two complexes containing Egr-1 to an Egr
consensus DNA binding site (Figure 6, arrowheads). Both
complexes were reduced when extracts were preincubated
with a 100-fold molar excess of double-stranded cold Egr con-
sensus ODNs, but not with cold mutant Egr ODNs or NF«kB
consensus ODNs (Figure 6, arrowheads). Compared with pre-
incubation of extracts with the anti-NF«kB p65 antibody, prein-
cubation of extracts with the anti-Egr-1 antibody specifically
reduced the DNA-protein complexes attributed by the Egr
consensus ODN competition studies to be a result of Egr/
DNA binding (Figure 6, arrowheads). Pretreatment of cells
with U0O126 attenuated the increase in complex formation of
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Extracellular space genes regulated at least 1.45-fold by TNFo2

Gene Accession number Description Fold change Basal MEK/ERK
dependent
Uo126 TNF  TNF+ U0126
TNFa-regulated MEK/ERK dependent
Hyaluronic acid binding
activity
Agct [GenBank:NM_022190 Aggrecan 1 1.14 0.68 1.08
Hapin1 [GenBank:NM_019189 Hyaluronan and proteoglycan ~ 1.15 0.65 0.96
link protein 1
Collagenase or
metallopeptidase activity
Mmp-12 [GenBank:NM_053963 Matrix metallopeptidase 12 0.67 292 098
Mmp-9 [GenBank:NM_031055 Matrix metallopeptidase 9 0.87 1.89 1.01
Metallopeptidase activity
Arts1, ERAP1, [GenBank:NM_030836 Type 1 TNF receptor shedding 1.33 1.78 1.565
Appils aminopeptidase regulator
Complement binding
C4bpa [GenBank:NM_012516 Complement component 4 1.01 219 1.35
binding protein, alpha
Others
Amigo2 [GenBank:NM_182816 Adhesion molecule with Ig-like  0.99 1556 1.26
domain 2
Cacna2d3 [GenBank:NM_175595 Calcium channel, voltage- 0.82 1.56 0.99
dependent, o.,/35 subunit
Cd68 (predicted) [GenBank:NM 001031638 CD68 antigen 1.01 1.80 1.14
Cgref1, Cgri1 [GenBank:NM_ 139087 Cell growth regulator with EF~ 1.01 0.61 0.83
hand domain 1
Cyp4b1 [GenBank:NM_016999 Cytochrome P450, family 4, 1.71 1.72 1.83
subfamily b, polypeptide 1
Gm1960, Cinc2, [GenBank:NM_138522 Gene model 1960 (NCBI) 0.94 2.38 1.27
Cinc-2
TNFa-regulated MEK/ERK independent
Peptidase activity
Adam17; TACE [GenBank:NM_020306 A disintegrin and 0.93 1.64 1.41
metalloproteinase domain 17
(TNF, alpha, converting
enzyme)
Mmp13 [GenBank:XM_343345 Matrix metallopeptidase 13 0.33 6.80 1.10 *
Ctsc [GenBank:NM_017097 Cathepsin C 1.18 284 1.72
Serpinb2, Pai2a [GenBank:NM_021696 Serine (or cysteine) proteinase  0.75 3.47 1.68
inhibitor, clade B, member 2
Plat, tPA, PATISS [GenBank:NM_013151 Plasminogen activator, tissue ~ 0.94 3.22 1.56
Plau, UPAM [GenBank:NM_013085 Plasminogen activator, 1.36 2.23 2.87
urokinase
Cfts, r-gsp [GenBank:NM_138900], Complement component 1, s 1.05 1.98 1.88
[GenBank:XM_575664 subcomponent
Cpxm1 (predicted)  [GenBank:XM_215840 Carboxypeptidase x 1 (M14 1.21 3.11 1.84
family) (predicted)
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Mmp3 [GenBank:NM_133523 Matrix metallopeptidase 3 0.36 10.26 3.41
Chemokine activity
Ccl5, Scyab, [GenBank:NM 031116 Chemokine (C-C motif) ligand  0.90 426 1.37
Rantes 5
Cxcl12, Sdf1 [GenBank:NM_001033882], Chemokine (C-X-C motif) 0.75 217 1.33
[GenBank:NM_001033883], ligand 12
[GenBank:NM_022177
Ccl20, ST38, [GenBank:NM 019233 Chemokine (C-C motif) ligand  0.65 12.86 5.82
Scya20 20
Cx3cl1, Cx3c, [GenBank:NM 134455 Chemokine (C-X3-C motif) 0.72 4.41 2.95
Scyd1 ligand 1
Cxcl1, Gro1, CINC- [GenBank:NM_ 030845 Chemokine (C-X-C motif) 0.55 9.18 3.61
1 ligand 1
Cxcl10, IP-10, [GenBank:NM_139089 Chemokine (C-X-C motif) 0.88 2.40 3.22
Scyb10 ligand 10
Ccl2, MCP-1, [GenBank:NM_031530 Chemokine (C-C motif) ligand  0.68 32.14 22.59
Scya2, Sigje 2
Cytokine or growth factor
activity
Bmp2 [GenBank:NM_017178 Bone morphogenetic protein 2 0.89 1.61 1.68
Gdf10 [GenBank:NM_024375 Growth differentiation factor 0.59 0.30 0.21
10
Csf1 [GenBank:NM_023981 Macrophage colony- 0.86 237 217
stimulating factor 1
lfngr1 [GenBank:NM_053783 IFNy receptor 1 0.96 1.97 1.39
Spp1, OSP [GenBank:NM_012881 Secreted phosphoprotein 1 0.97 4.21 1.98
Vegfa [GenBank:NM_031836 Vascular endothelial growth 1.11 1.80 1.43
factor A
ATPase activity
Tap1, Cim, Abcb2 [GenBank:NM_032055 Transporter 1, ATP-binding 1.22 1.91 2.24
cassette, subfamily B (MDR/
TAP)
Tap2, Cim, Abcb3 [GenBank:NM_032056 Transporter 2, ATP-binding 1.01 2.1 1.91
cassette, subfamily B (MDR/
TAP)
G-protein coupled receptor
binding
Ramp1 [GenBank:NM_031645 Receptor (calcitonin) activity 2.16 0.53 0.93
modifying protein 1
Ramp?2 [GenBank:NM_031646 Receptor (calcitonin) activity 0.88 1.57 1.31

modifying protein 2

aGenes separated into molecular function subcategories represented in the list of gene changing at least 1.45-fold by TNFa as either mitogen-
activated kinase kinase (MEK)/extracellular regulated kinase (ERK) dependent or MEK/ERK independent. Specifically defined subcategories were
identified in the molecular function gene ontology as significantly represented (P < 0.01) within the MEK/ERK dependent or MEK/ERK
independent lists.

Egr family DNA binding is responsible for decreased
chondrocyte matrix gene expression

To determine whether decreases in chondrocyte selective
matrix gene expression in response to TNFa were dependent
on the genomic DNA binding activity of Egr family members,
we transfected cells with double-stranded ODNs containing

both identified complexes. The binding of the identified com-
plexes to DNA was inhibited by pretreatment with U0O126 but
not with UO124, indicating DNA binding of Egr-1 is dependent
on TNFa-activated MEK/ERK signalling.
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TNFa regulates cartilage-selective matrix genes and proteinases in a MEK1/2-dependent manner. Chondrocytes were pretreated with dime-
thyl sulfoxide, U0124 (10 uM) or U0126 (10 uM) for 30 minutes prior to treatment with TNFa. for 24 hours. Total mMRNA was collected and analysed
for (a) aggrecan (Agc1), (b) link protein (HapIn1), (c) type Il collagen (Col2a1), (d) macrophage colony-stimulating factor 1 (Csf-1), (e) matrix metal-
loproteinase-12 (Mmp-12) and (f) matrix metalloproteinase-9 (Mmp-9), and 18S transcript levels by quantitative real-time PCR. (a) to (f) Data were
analysed by the AACT method to acquire matrix gene transcript levels relative to 188S transcript levels and were normalized to DMSO-treated cells.
Data were log-transformed prior to analysis by one-way analysis of variance followed by Tukey's post-hoc tests. Unlabelled bars or bars labelled with
the same lowercase letter are not significantly different (P> 0.05). Data are expressed as the mean % standard error of five independent experiments
— except (c), four independent experiments. MEK, mitogen-activated kinase kinase.

phosphorothiolate modifications corresponding to the cog-
nate and a mutated form of the Egr-DNA binding sequence
(Figure 7). Transfection of cells with mutant double-stranded
ODNs did not disrupt decreases induced by TNFa to Col2at,
Agc1 or Hapln1 transcript levels. Transfection using the cog-
nate Egr double-stranded ODNs, however, attenuated the
decreases in transcript levels of Col2a1, Agc1 and HapIn1 by
TNFa. Egr-containing complexes, probably that include Egr-1,
are therefore responsible for the reduced transcript levels of
cartilage selective matrix genes in response to TNFa in
chondrocytes.

Discussion

In the present study, we used the MEK1/2 inhibitor U0126 to
identify the possible contribution of the MEK/ERK signalling
pathway to changes in chondrocyte gene expression in
response to TNFa. Inspection of the ~20% of TNFa-regulated
chondrocyte mRNAs whose expression was modulated by
MEK1/2 revealed a significant representation of genes whose
protein products localized to the extracellular space, and had
proteinase activity (for example, Mmp-9 and Mmp-12, which
were induced by TNFa) or hyaluronic acid binding activity (for
example, the matrix-associated genes Agc1l and Haplini,

Page 9 of 14

(page number not for citation purposes)



Arthritis Research & Therapy Vol 11 No 1 Rockel et al.

Figure 4
(¢ bmMmso - + - + - - — — — -
uot24 — — — — + — — + — —
(a) 126 - - - - - + - - + -
05- PD153035 — — — — — — + — — +
TNFo — — + + — — — + + +

I
-
1

o
w
1

(=]
N
1

o
=
N

Relative Fold Change in Sox9
Activity by TNF-o

=g
o
1

DMSO uo124 u0126

—
(=
-~

iy

w
1

Relative Fold Change in NF-xB
Activity by TNF-o.
- N
Il L

o
1

DMSO

uo124 U0126

TNFa-induced changes to Sox9 and NF«B functional activity are independent of MEK1/2 activity. Chondrocytes transfected with (a) Sox9 or
(b) NFxB reporters were pretreated with dimethyl sulfoxide (DMSQ), U0124 (10 uM) or U0126 (10 pM) for 30 minutes followed by treatment with
TNFo (30 ng/ml) for 24 hours. Data are ratios of (a) Sox9-regulated or (b) NFkB-regulated firefly luciferase units to constitutive cytomegalovirus-reg-
ulated renilla luciferase units in TNFo-treated cultures normalized to their respective DMSO-treated, U0 124-treated or U0126 control-treated cul-
tures. Data were log-transformed prior to analysis by paired ¢ tests to determine significant reporter regulation by TNFa, followed by one-way
analysis of variance to determine significant differences between the effects of DMSO, U0124 or U0126 pretreatment on TNFa-regulated reporter
activity. Data are expressed as the mean % standard error of four independent experiments. (c) Cells were pretreated with vehicle, DMSO, U0124
(10 uM) or U0126 (10 puM), or PD153035 (1 uM) for 30 minutes followed by treatment with TNFa. (30 ng/ml) for 24 hours. Nuclear extracts (10 pg)
were incubated with 32P-radiolabelled kB-consensus DNA. Resulting protein-DNA complexes were resolved on 4% polyacrylamide gels and
exposed by autoradiography. Arrow, NFkB p65-containing protein-DNA complexes, as previously described [12]. The autoradiograph displayed is

representative of three independent experiments.

which were suppressed by TNFa). Mmp-9 and Mmp-12
cleave selective proteoglycans and collagens [32-34] while
Mmp-9 is also an important mediator of inflammatory arthritis
[35]. Furthermore, we have shown that increases in transcripts
encoding proinflammatory genes, such as macrophage Csf-1,
were UO126 insensitive. Collectively these results suggest the
intriguing notion that, compared with the TNFo.-regulated tran-
script levels of genes involved in inflammation, TNFa-induced
matrix catabolism may selectively require MEK/ERK. Further
efforts will be required to assess whether similar mechanisms
might operate in adult rat or human chondrocytes, or in cells
isolated from patients with arthritis. Nonetheless, our data — for
the first time — suggest that MEK inhibitors modify the exces-
sive matrix degradation in arthritis.

Consistent with TNFa-induced increases in macrophage Csf-
1 transcript levels observed in this study, macrophage Csf-1
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protein levels are also induced by TNFa in chondrocytes [36].
In rat articular chondrocytes, macrophage Csf-1-induced sig-
nalling increases its own expression and the expression of the
matricellular protein CCN2 (formerly known as connective tis-
sue growth factor) [37]. CCN2 is required for Col2al and
Agc1 expression in mouse chondrocytes [38] yet does not
result in hypertrophic differentiation of rat articular chondro-
cytes [39]. Taken together, inhibition of TNFa-induced MEK/
ERK or downstream transcription factors may rescue cartilage
ECM gene expression and promote articular cartilage regen-
eration through continued macrophage Csf-1 expression.

In immortalized chondrocytes, NFkB-DNA binding activity is
dependent on TNFa-induced MEK/ERK signalling [10], con-
sistent with studies in other immortalized cells such as B-cell
lymphoma cell lines [40]. In our present study using primary
chondroctyes, however, both TNFoa-regulated NF«kB reporter
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(a)

(b)

Type Il collagen Proximal Promoter

-662 CCCCCGTCTACCTAGGTTTTTTTCATAGCTAGTTGGATGGGGGATGGGTTAGGGAGGCTGGGTT
TGCGAGCCTCCAGGTGGGAGTTCACCGACAGGTACTCCGCAAAGGAGCTGGAAGGCAGGTCTGGAA
AACTGTCCCCCAGATTTAGGATTCTGGGCAGCTTTCATCAGCTTATACTTTGG
AACTCCCCATCCCCACCTTCCTTTCTCCCGTTACTTCGTCCTCCCTCGCCTTTCCAGCCTTGAGTCTAA
AGCTCCATGCTTATGCCTCTGCAAACAACCCCCTCCCTTCTAACCCCAGCAGAACTCCGAGGAAAGG
GGCCGGAGGCCCCCCTTCTCGCCTGTGGTTAGAGGGGGCAGTGTGGCAGTCCCAAGTGGGGGCGA
CCGGAGGCCGTCTCGGTIGCCCCGCCCGATCAGGCCACTGGGCACAICGGGGGCGGGAAGCTGGGC

TCACCAAAGGGGCGACTGGCCTTGGCAGGTGTGGGCTCIGGT T T
CGGGGTCTCAGGTTACAGCCCCG T GGTTTGGGCTGGTTTGCCA

GCCTTTGGAGCGACCGGGAGCATATAACCGGAGCCTCTGCTGGGAGAAGACGCAGAGCGCCGCTGG
GCT +1

Aggrecan Proximal Promoter

-399 GCCAGGGCCTGTCATTCTGACAGCAGGAGTCGGGTGCTTTCGGCACTC

TGCGGGCACAGCCCTCCGGGGCCTCCTGGACTGCGGAGCTTACGACCGCAATGCAGACCCGGGTCC
TCCAGCGCTACCAGCACAGCTTTCCTCCGCGGCCCCAGGAGCTGCGGGGTCCGCGCTCCTCTCGTG

CCCTGCGCGCCCGGCGCCTTCCCCAGTGAGCGCGGGTCCCCAGCCCTGGTCCAGAGCGCTCCGGA

CGTCTCTGC CGAACTGGCCCCGGGGGTGGGGTTTCCCTGTGCGCTCGCCCC

CACCCCTAGTTTGTGCCCTCCCCTCCCCCGCCCGCCCCTATGTATGTGTCACCGCGCACCATTCCCG

CCCA +1

Proximal promoters and overlapping binding regions for Sp1 and Egr-1. Proximal promoters of rat type Il collagen and aggrecan, but not of link
protein, have overlapping binding regions for Sp1 and Egr-1. Upstream regions of (a) the rat type Il collagen, (b) aggrecan and (c) link protein were
analysed by TRANSFAC [26] for transcription factor binding sites. (a) and (b) Proximal to the transcriptional start site, the type Il collagen and aggre-
can promoters have multiple putative Sp1 (underlined) and Egr-1 binding sites (bold), some of which are found in overlapping regions.

activity and NFkB-DNA binding were unaltered by MEK/ERK
inhibition. Immortalized cells may therefore have altered signal-
ling that activates NFkB in a MEK/ERK-dependent manner by
TNFo. Furthermore, we showed that pretreatment of primary
chondrocytes with DMSO or DMSO-soluble inhibitors, such
as U0124, U0126 and PD153035, reduced TNFa-activated
NF«B-DNA binding activity. The regulation of NFkB-DNA
binding in primary cells can therefore be explained by the non-
specific effect of DMSO on NF«B activation.

In the present study we determined that, in addition to NFxB,
TNFoa-regulated reductions in Sox9 activity were also inde-
pendent of MEK/ERK signalling. Previous studies from our lab-
oratory have shown that reductions in Sox9 activity by TNFa
are dependent on NFxB nuclear translocation [10,12], a
mechanism probably involving reductions in p300 histone
acetylase activity associated with Sox9 [12]. MEK/ERK:-inde-
pendent reductions in Sox9 activity could therefore explain the
inability of U0126 to completely reverse the TNFa-induced
reductions in cartilage ECM gene transcript levels observed in
this study.

We showed that Egr-1 DNA binding was increased by TNFa
in a UO126-sensitive fashion. Moreover, competitive inhibition
of Egr-1 binding to genomic targets attenuated decreases in
cartilage ECM genes in response to TNFa. These results sug-
gest that TNFa can modify gene expression in chondrocytes
via MEK/ERK through the induction of Egr-1 DNA binding

activity. Treatment of chondrocytes with IL-1 increases the
Egr-1 protein and DNA binding, leading to decreased human
type Il collagen promoter activity through competition of Egr-1
for the Sp1 binding sites [31]. Previous studies have also iden-
tified that there are putative Sp1 binding sites in the aggrecan
promoter of the chick, mouse and rat [25,41]. In this study, we
identified putative overlapping binding sites for Sp1 and Egr-
1 in both the rat COL2A1 and AGC1 promoters proximal to
the transcriptional start site. Although beyond the scope of our
current report, Col2a1 and Agc1 transcription are probably
regulated by inhibitory actions of Egr-1 in competition for Sp1
binding sites. Collectively, these data suggest that, in
chondrocytes, alterations in Egr-1 DNA binding activity by
TNFa-induced MEK/ERK signalling is necessary for the tran-
scriptional regulation of downstream cartilage ECM genes.

In the current study, pharmacological inhibition of MEK
resulted in significant attenuation of the TNFa-induced
decreases to Col2a1, Agc1 and Hapin1 24 hours post treat-
ment. Depending on the species the half-life of Col2a1 mRNA
in chondrocytes is between 15 and 18 hours [27,29,30],
whereas the half-life of Agc1 mRNA is about 4 hours in bovine
articular chondrocytes [28]. In this study we observed ~50%
reduction in Col2a1 and ~70% reduction in Agc1 transcript
levels after 24 hours. Previous studies from our laboratory
have indicated that inhibition of Col2a1 transcripts in
response to TNFa results from an inhibition of transcription
and not from changes to message stability [10]. Furthermore,
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Egr-1 DNA binding activity is increased by TNFa-induced MEK1/2
signalling in chondrocytes. Cells were pretreated with dimethyl sul-
foxide, U0O124 (10 uM) or U0126 (10 uM) for 30 minutes prior to treat-
ment with vehicle (-) or with 30 ng/ml TNFa (+) for 90 minutes. Nuclear
extracts were incubated with 32P-radiolabelled oligodeoxynucleotides
corresponding to the Egr consensus DNA binding sequence. In some
cases, the nuclear extracts were incubated with 100-fold excess of
cold specific Egr consensus oligodeoxynucleotides (egr), mutant Egr
oligodeoxynucleotides (mut) or nonspecific oligodeoxynucleotides cor-
responding to the NFkB consensus sequence (kB). For antibody inter-
ference assays, nuclear extracts were preincubated with specific
antibody for Egr-1 (egr) or nonspecific antibody for NFkB p65 isoform
(p65). Resulting protein-DNA complexes were resolved on 4% polyacr-
ylamide gels and exposed by autoradiography. Arrows, Egr-1-contain-
ing complexes. The autoradiograph shown is representative of three
independent experiments.

treatment of chondrocytes with actinomycin D, a transcription
inhibitor, decreased Col2a1 and Agc1 mRNAs to a level com-
parable with that of TNFa, treatment alone (unpublished data).
Collectively, TNFo-induced reductions in cartilage ECM tran-
scripts in this study are consistent with regulation of these
mRNAs through inhibition of transcription. Although it is pos-
sible that TNFa may modulate cartlage ECM transcript
expression in an indirect fashion, the relatively delayed kinetics
of TNFa-modulated cartilage ECM transcripts is probably due
to the stability of the mRNAs.
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Competitive inhibition of Egr transcription factor-DNA binding
attenuates TNFa decreases in cartilage matrix transcripts.
Chondrocytes were transfected with 2 uM double-stranded, phospho-
rothiol-modified oligodeoxynucleotides containing Egr mutant or con-
sensus DNA binding sequences and were treated with vehicle (black
bars) or TNFa. (grey bars) for 24 hours. Total RNA was collected and
analysed by quantitative real-time PCR for (a) Agc1, (b) Hapin1 and (c)
Col2a1, or 18S transcript levels. Data were analysed by the AACt
method to acquire matrix gene transcript levels relative to 18S. Data
from cells transfected with the Egr mutant or consensus oligodeoxynu-
cleotides were normalized to vehicle-treated cultures and were log-
transformed prior to analysis by paired and Student's t tests. *Signifi-
cant difference (P < 0.05 by paired t test) in transcript levels compared
with vehicle-treated cells transfected with the same oligodeoxynucle-
otide. #Significant difference in transcript levels between cultures trans-
fected with mutant or consensus Egr binding sequences and treated
with TNFa (P < 0.05 by Student's t test). Results are displayed as the
mean * standard error of five independent experiments.




Conclusion

Most therapies for rheumatoid arthritis, specifically biologics,
are targeted towards TNFa protein and not towards its acti-
vated signalling pathways [42]. Targeted therapies that block
specific subcellular molecules involved in TNFo-activated sig-
nalling pathways, however, may be useful in selectively modi-
fying chondrocyte responses to TNFa. Our data suggest that
MEK/ERK may selectively be required for TNFa-modulated
proteinase and cartilage ECM transcripts, but not for inflam-
matory gene transcripts. These results raise the intriguing
notion that MEK/ERK inhibitors might be used to block the
ability of TNFa to promote matrix catabolism but leave perhaps
more beneficial effects of TNFa unaltered. In the long term, our
observations may be of relevance for developing new methods
of treating arthritis. In particular, antagonizing MEK/ERK ' or
activating Egr-1 may be useful methodologies for reversing
cartilage degradation observed in both osteoarthritis and rheu-
matoid arthritis.
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