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A structure–kinetic relationship study using
matched molecular pair analysis†

Doris A. Schuetz, ‡ Lars Richter,‡ Riccardo Martini ‡ and Gerhard F. Ecker *

The lifetime of a binary drug–target complex is increasingly acknowledged as an important parameter for

drug efficacy and safety. With a better understanding of binding kinetics and better knowledge about

kinetic parameter optimization, intentionally induced prolongation of the drug–target residence time

through structural changes of the ligand could become feasible. In this study we assembled datasets from

21 publications and the K4DD (Kinetic for Drug Discovery) database to conduct large scale data analysis.

This resulted in 3812 small molecules annotated to 78 different targets from five protein classes (GPCRs:

273, kinases: 3238, other enzymes: 240, HSPs: 160, ion channels: 45). Performing matched molecular pair

(MMP) analysis to further investigate the structure–kinetic relationship (SKR) in this data collection allowed

us to identify a fundamental contribution of a ligand's polarity to its association rate, and in selected cases,

also to its dissociation rate. However, we furthermore observed that the destabilization of the transition

state introduced by increased polarity is often accompanied by simultaneous destabilization of the ground

state resulting in an unaffected or even worsened residence time. Supported by a set of case studies, we

provide concepts on how to alter ligands in ways to trigger on-rates, off-rates, or both.

Introduction
Importance of kinetic parameters in drug design

Multiple studies on the kinetic behavior of small molecules
show how the lifetime of a binary drug–target complex is
inevitable for translation into in vivo efficacy.1–6 The so-called
drug residence time (τ), which is the time a drug spends
bound to its protein target, not only influences efficacy, but is
also linked to toxicity7 and off-target activity.8,9 The life span
of this complex does not only need to be of minimal duration
to achieve a certain function, but also, in particular cases,
should not exceed a certain time for optimal function.10

Therefore, the residence time of a drug might be a key
determinant for clinical success of drug candidates.11

The two important kinetic parameters in drug–target
binding kinetics are the on-rate and the off-rate. The on-rate
or association rate, kon, is a measure of how fast a molecule
binds to its biological target. The off-rate, koff, is the
dissociation rate, which is the parameter most scientific
publications have focused on. It is the inverse of the
residence time, and therefore a measure for how long a

compound remains bound to its protein target. The off-rate
koff can be influenced in 2 ways: i) stabilization of the ground
state12 and/or ii) destabilization of the transition state.13–15

In both cases, the energy difference between the bound state
and the transition state needs to be increased to reach higher
τ values. Stabilization of the ground state translates into
improved affinity of the drug towards its target, which has
been widely studied. In contrast, achieving an increase of
residence time by destabilizing the transition state is a less
explored field. There are only a few examples in the literature
highlighting how to impact the transition state.14–16 In
particular, it has been reported that different drugs with the
same affinity for a given protein exhibit totally different
kinetic behaviours.13 While the difference in energy between
the bound state and the unbound state refers to the affinity,
the difference in energy between the unbound state and the
transition state can be directly translated into the association
constant (kon). Increasing the energy barrier to overcome the
transition state results in a slower binding event (the kon
value gets smaller), and consequently in a prolonged
residence time (assuming two different molecules display
similar binding affinities) and the system is in an
equilibrium state (where KD = koff/kon). Therefore, to
understand how to trigger the residence time it is of crucial
importance to grasp the relationship between structural
modifications of a molecule and the effect on its koff and kon
profile. While the functional efficacy is often correlated to
the residence time,3 Copeland observed that kon also has to
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be considered for the pharmacological action of a drug.17 It
contributes to kinetic selectivity by displaying different
binding pathways for yet identical binding pockets.13

Furthermore, it translates into cellular and in vitro effects.18

Apart from that, the on-kinetics of a ligand significantly
affect its profile and side effects, which has recently been
demonstrated for the dopamine D2 receptor.19 Additionally,
on-rates have been shown to be of significant importance for
target occupancy20,21 and contribute to drug rebinding.22 It
has also been shown that on-rates translate into kinetically
biased agonism towards different pathways. Thus,
Herenbrink et al. published that on-rates are the determining
factor in GPCR downstream pathway prioritization, leading
to different biological outcomes.23

In order to systematically explore the effect of distinct
structural modifications on the kinetic profile of compound–
target associations, we derived the hitherto largest kinetic
dataset (KIND) available in the literature and used the kinetic
data triplets for extensive matched molecular pair analysis.

Results and discussion
KIND (KINetic Dataset)

The kinetic dataset KIND (KINetic Dataset) contains a total of
3812 structures and their kinetic data triplets (kon, koff, KD). It
has been compiled from 21 publications16,19,24–42 and the
K4DD database (for details see the ESI,† the dataset is
provided in KIND.xlsx). For the literature search, only papers
containing numerical values for all three parameters
investigated (KD, kon and koff) were selected. Moreover, papers
reporting data for less than 10 compounds were excluded
from the analysis. Furthermore, KIND contains the indication
of the clinical phase the molecule has reached.

The K4DD consortium merged the efforts of 22 partners
from European academia and the pharmaceutical industry in
order to explore the role of kinetics in drug discovery. The
kinetic data points collected were mainly derived from SPR
experiments, radioligand binding assays, ITC and kPCA. The
data collected were enriched with assay conditions like
different buffers or duration of the experiments. All collected
information was used to populate the database for the K4DD
project. Upon the end of the project, all non-confidential data
were transferred to ChEMBL43 (http://chembl.blogspot.com/
2018/05/chembl-24-released.html), and all data are available
following the ChEMBL document ID CHEMBL3885741.

The KIND dataset contains 78 biological targets,
comprising 3238 data triplets for kinases, 242 for GPCRs, 160
for heat shock proteins (HSPs), 127 for enzymes, and 45 for
ion channels. To give a general overview on the distribution
of physicochemical properties, three relevant ones were
chosen to examine the dataset's property distribution. The
three descriptors mentioned are log P(o/w), TPSA, and
molecular weight, and the respective graphs for the different
target classes of the database can be found in Fig. S1.† The
log P(o/w) was chosen as a measure of hydrophobicity of a
compound, while the TPSA was chosen to represent polarity.

This large dataset offered the opportunity to analyze and
extrapolate general trends of kinetic behavior of compounds
on different targets. The analysis was limited to the available
data, which in the case of the ion channels was a single
publication reporting kinetic data of hERG inhibitors.31 In
this case all the compounds display rather high lipophilicity
values, which is a relevant property for hERG inhibition and
explains the shift of the property distribution in Fig. S1.† The
correlations of on-rates (displayed as pkon) and affinity (pKD)
for different target classes (Fig. 1) indicate that for most
target classes, the on-rates and corresponding affinity values
show a negative correlation. The same trend across target
classes cannot be observed for the correlation between off-
rates (displayed as pkoff) and affinity (pKD) (Fig. 2).

Thus, the effect where ameliorated affinity accelerates
binding seems to be a general trend. However, elaborating
on specific examples (see the Case studies section) showcases
opportunities on how on-kinetics can be influenced
independently from affinity.

Matched molecular pair (MMP) dataset and its analysis

In order to elucidate the impact small structural changes
might have on the kinetic behavior of a molecule, we
analyzed in total 395 matched molecular pairs (MMPs)
extracted from KIND. Such pairs are composed of two
molecules possessing an identical scaffold and showing one
minor chemical modification (i.e. introduction of a

Fig. 1 Correlation of affinity and on-rates, where pKD is plotted on the
x-axis and pkon is plotted on the y-axis. Target families are displayed in
different colours. Regression line is indicated, and error bars are
shaded in grey. Pearson's R coefficient (r) for each class is displayed.
Further details are reported in Table S1.† R 3.6.3 was used for statistical
analysis and visualization.
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substituent onto an unsubstituted aromatic ring, or
replacement of a functional group by another group).

The dataset includes a variety of different modifications.
The top 20 modifications represent less than 65% of the
entire dataset, while the most common modification, which
is the introduction of a methyl group to replace a hydrogen
atom, comprises around 15%. The 20 most common

transformations found in the MMP dataset are reported in
Fig. 3. These chemical substitutions are in fact moieties
which are prominently used in a medicinal chemistry context
to optimize compounds in the drug discovery pipeline.

Fig. 4 shows the distribution of the MMPs among
different protein targets and how they cluster in various
protein families.

We previously demonstrated that changes in a molecule's
polarity are the major factor for kon alteration in Hsp90.24 In
order to investigate whether this hypothesis can be
generalized across targets, we analyzed KIND by focusing on
the MMPs with the highest differences in kon values. All pairs
were sorted according to decreasing kon, and the top 20 were
selected for further analysis (Table 1).

All five different protein families are present in the top 20
positions, granting diversity of the subset. For nearly all the
MMPs (16 out of 20) a substitution that increases polarity is
reported. This is a general finding which can be observed
across the entire dataset. The largest differences in on-rates
were found when introducing charged moieties. By
introducing those moieties, a slowdown of the on-rate of 0.5
up to 2 orders of magnitude could be observed. The
responsible for such a kon decrease might be: i) the
electrostatic repulsion (e.g. a charged moiety that transits
through a binding pathway which displays similar
electrostatic characteristics) and/or ii) desolvation penalties
(e.g. a polar moiety that traverses through a hydrophobic
passage and therefore needs to strip off all water molecules
solvating it). Among the 20 pairs examined, 18 are
accompanied by a concomitant impairment of affinity. This
is expected if a modification on the ligand doesn't provide
any additional interaction once the molecule accommodates
its bound pose within the binding site. Conversely, if such
modifications establish additional interactions in the final
bound complex, an improvement in affinity can be achieved.

Fig. 2 Correlation of affinity and off-rates, where pKD is plotted on
the x-axis and pkoff is plotted on the y-axis. Target families are
displayed in different colours. Regression line is indicated, and error
bars are shaded in grey. Pearson's R coefficient (r) for each class is
displayed. Further details are reported in Table S2.† R 3.6.3 was used
for statistical analysis and visualization.

Fig. 3 The 20 most common substitutions among the MMPs of the
dataset are depicted. Substitutions are reported according to the
molecules' increase in polarity (calculated as the overall increase of
TPSA). R 3.6.3 was used for statistical analysis and visualization.

Fig. 4 The numbers of matched molecular pairs (MMPs) per protein
target are shown. Colour codes refer to the protein family a target
belongs to. R 3.6.3 was used for statistical analysis and visualization.

RSC Medicinal Chemistry Research Article



1288 | RSC Med. Chem., 2020, 11, 1285–1294 This journal is © The Royal Society of Chemistry 2020

The latter could be observed in two of our proposed case
studies (Case study 1 and Case study 3 discussed in detail
below). A concurrent slowdown of the on-rate and
improvement of KD results in a prolonged residence time.

Apart from the association rate constant kon, we also
analyzed the dissociation rate constant koff. Following the
procedure we established for the on-rate, we sorted the MMP
dataset according to the biggest difference in koff, and the 20
pairs showing the most pronounced difference in
dissociation rates were selected (Table 2).

Conversely to the kon data, a change in polarity in the
MMPs did not produce a consistent shift in the average value
for koff. The plots in Fig. 5 illustrate that the behavior we
observed for the 20 examined MMPs can be seen for the
entire dataset. Fig. 5 furthermore exemplifies how polar
substitutions affect on-rates significantly differently from
apolar substitutions (Wilcoxon signed rank test p-value = 1.62
× 10−10 and p-value = 0.16 respectively), with almost 75% of
the data points showing an increase of Δpkon (polar box-plot
in dark cyan, on the left-hand side in Fig. 5). However, an
analogous impact of the polarity variation on Δpkoff cannot
be retrieved (polar box-plot in dark cyan on the right-hand
side of Fig. 5).

As the distribution of kon values varies according to target
classes, we are looking at the change of the on-rates rather
than absolute values. These Δpkon values showcase how a
change of substitution affects the on-rate in a positive or a
negative way. An increase in pkon (+Δpkon) leads to a slower
on-rate, while a decrease in pkon (−Δpkon) speeds up the
binding of the small molecule to its protein target. The
boxplots in Fig. 6 depict a set of specific cases of a hydrogen
atom being substituted by CH3, Cl, OCH3, or OH. Although
exchange by a methyl group leads to a variety of effects on
kon (including the increase and decrease of on-rates), the
mean change is close to 0. Overall, for this MMP no general
trend can be deduced across target classes, or even within
one target class. In contrast, substitution of H by a methoxy
group leads to a slowdown of molecules acting on kinases
and most HSPs as well as the example we could obtain for

Table 1 20 MMPs with the highest values of Δpkon (slowdown in the
association rate due to the chemical substitution). Kinetic parameters
Δpkoff and ΔpKD as well as biological (target and target class) and
chemical data (MMP summary and ΔTPSA) are included

Δpkon Δpkoff ΔpKD MMP_summary Target Target_class ΔTPSA

2.06 −0.13 −2.15 CH3 → COOH hERG Voltage gated
ion channel

37.30

1.98 −0.24 −2.22 H → CH(CH3)
NHCH3

MAP38 Kinase 3.24

1.71 1.44 −0.27 CH3 → H H1 GPCR 11.00
1.64 −0.09 −1.73 CH3 → H H1 GPCR 11.00
1.59 1.00 −0.60 H →

CH2COOH
H1 GPCR 37.30

1.56 2.82 1.26 C(O)OCH3 →
COOH

H1 GPCR 11.00

1.51 −0.19 −1.68 CH3 → CN hERG Voltage gated
ion channel

23.79

1.50 0.37 −1.39 H → COOH hERG Voltage gated
ion channel

37.30

1.48 1.29 −0.20 C(O)OCH3 →
COOH

H1 GPCR 11.00

1.44 −0.02 −1.05 CH2CH3 → H hERG Voltage gated
ion channel

8.79

1.39 0.05 −1.34 Br → COOH HSP90 HSP 37.30
1.34 0.30 −1.02 CH3 → t-butyl HSP90 HSP 0.00
1.19 −0.06 −1.19 H → F hERG Voltage gated

ion channel
0.00

1.19 0.59 −0.60 OCH3 → COOH H1 GPCR 17.07
1.16 0.02 −1.14 CH3 → F HSP90 HSP 0.00
1.11 0.49 −0.67 H → OCH3 HSP90 HSP 9.23
1.11 0.10 −1.01 CH3 → F TTK Kinase 0.00
1.11 0.13 −0.98 H → OCH2CH3 HSP90 HSP 9.23
1.04 1.97 0.94 OCH3 → COOH H1 GPCR 17.07
1.03 −0.66 −1.69 H → CH(CH3)

NHCH3

MAP38 Kinase 3.24

Table 2 20 MMPs displaying the highest values of Δpkoff (slowdown in the dissociation rate resulting from chemical modification). Kinetic parameters
Δpkon and ΔpKD as well as biological (target and target class) and chemical data (MMP summary and ΔTPSA) are included

Δpkoff Δpkon ΔpKD MMP_summary Target Target_class ΔTPSA

2.82 1.56 1.26 C(O)OCH3 → COOH H1 GPCR 11.00
2.44 −1.68 3.99 H → I Haspin Kinase 0.00
2.23 −1.03 3.20 H → OH A2a GPCR 20.23
2.14 0.06 1.80 CH3 → H M3 GPCR 11.00
2.09 0.89 1.20 H → COOH Thermolysin Enzyme 40.13
2.02 −0.66 2.42 F → I Haspin Kinase 0.00
1.97 1.04 0.94 OCH3 → COOH H1 GPCR 17.07
1.79 0.32 1.48 H → COOH Thermolysin Enzyme 40.13
1.75 0.73 0.70 H → OH M3 GPCR 20.23
1.74 −1.69 3.35 H → Br Haspin Kinase 0.00
1.66 −1.15 2.77 H → Cl Haspin Kinase 0.00
1.56 0.08 1.40 OH → CH2OH M3 GPCR 0.00
1.44 1.71 −0.27 CH3 → H H1 GPCR 11.00
1.40 −0.38 1.78 H → CH3 MAP38 Kinase 0.00
1.34 0.71 0.61 H → OCH3 IGF-1 Kinase 9.23
1.33 0.76 0.30 CH3 → OH M3 GPCR 20.23
1.32 −0.67 1.79 F → Br Haspin Kinase 0.00
1.29 1.48 −0.20 C(O)OCH3 → COOH H1 GPCR 11.00
1.23 −0.13 1.21 F → Cl Haspin Kinase 0.00
1.21 −0.19 1.40 F → CN IGF-1 Kinase 12.03
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GPCR ligands. Alike, the collected examples for hydroxylated
compounds show a similar slowdown in on-rates.

In order to present an overview on the results in a visual
manner, we constructed a kinetic map for the MMPs (Fig. 7).
The map describes the MMPs according to their shift in pKD

and pkon (x and y axis, respectively) with additional
information on the respective change in the TPSA profile.
Due to the relationship of ΔpKD and Δpkon, (KD = koff/kon) it is
also possible to visualize Δpkoff (diagonal lines) on the same
chart. White dots are used to report MMPs for which no
difference in the calculated TPSA was observed. Black dots
show all pairs whose polarity was impacted due to the
introduced ligand modification (for consistency, all the pair
transformations are written to display an increase in ΔTPSA
for the MMP). The map has been divided into four
quadrants. In Q1 (top right corner) the MMPs are reported,
which show an increase in residence time by both stabilizing
the bound state (amelioration of pKD) and destabilizing the
transition state (slowdown of pkon) after substitution.

The modifications observed in Q1 constitute the best-case
scenario in terms of prolonging the residence time inasmuch
as the change produces a ligand with longer binding
(increased Δpkoff). Q2 (top left corner) includes those pairs
which show a destabilization in their transition state (positive
Δpkon therefore, a slowdown of the on-rate), but a
simultaneous reduction in affinity (negative ΔpKD therefore,
a loss in affinity). Due to the large variation, we observed
cases in which the alterations produced molecules with an
increased residence time (blue Q2 area) as well as a reduced
residence time (yellow Q2 area). The Q3 quadrant (bottom
left corner) covers MMPs whose alteration resulted in a
decrease of affinity (negative ΔpKD) and an increase of the
on-rate (negative Δpkon). The residence time is decreased for
all pairs found in Q3. Q4 (bottom right quadrant) contains
matched pair values which are derived from chemical
modifications which increase affinity (positive ΔpKD) and
trigger faster binding (negative Δpkon). Similar to Q2, the
variation of the Δpkoff for this quadrant depends on the shift
of Δpkon and ΔpKD. All cases resulting in a prolonged
residence time are placed in the blue area of Q4. The yellow
area comprises MMPs for which the ameliorated pKD didn't
compensate the faster binding, which results in a decreased
residence time. For a more detailed analysis, we chose three
relevant MMPs to discuss their kinetic parameter shifts in
the Case studies section.

Case studies

In order to discuss the trends observed in more detail, we
present three case studies, which were chosen according to
the different scenarios reported and visualized in our analysis
(Fig. 7). As we aim to impact drug–target kinetics toward
prolonged residence time benefiting from transition state
destabilization, regardless of the change in affinity, we chose
examples from quadrants Q1 and Q2. Tiotropium and
linsitinib, as well as their matched pair analogues, represent
the ideal scenario for a lead optimization program that aims
to find molecules with high affinity and long residence time.

Fig. 5 Boxplot depicting the contribution to Δpkon (left-hand side) and
to Δpkoff (right-hand side). The MMP dataset has been divided
according to the shift in ΔTPSA. The “apolar” boxplot (coral color)
exemplifies matched pairs which do not show a change in TPSA. The
“polar” (dark cyan color) boxplot depicts matched molecular pairs for
which the TPSA value changed (p-values reported in Table S3†). R 3.6.3
was used for statistical analysis and visualization.

Fig. 6 Boxplots of Δpkon for matched molecular pair analysis. The
substitution pattern is shown on the x-axis and the change in pkon
(Δpkon) is depicted on the y-axis. Left to right: the first two boxplots
show substitution patterns toward decreased polarity, while boxplots
three and four showcase compound pairs with increased polarity. The
respective target classes are represented using color codes. Asterisks
mark outliers. R 3.6.3 was used for statistical analysis and visualization.
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Case study 1 (Q1; H–OH)

The long-acting muscarinic antagonist tiotropium, which
shows very high affinity for the M3 muscarinic acetylcholine
receptor (pKD: 11.7, corresponding to 2 pM) remains bound
to its receptor for 2.724 minutes.30 Fig. 8 shows numerous
interactions of the molecule with its protein target. The area
highlighted in red indicates a hydrogen bond of the hydroxyl
group on tiotropium and the carbonyl group on Asn507. The
hydroxyl group acts as a H-bond donor. Its structural
analogue, des-hydroxy tiotropium, is shown in the cyan box
of Fig. 8. As the analogue lacks the hydroxyl group it is not
expected to participate in the protein–ligand interaction the
hydroxyl group was engaged in. The more apolar compound
des-hydroxy tiotropium displays a faster on-rate, when
compared to tiotropium, and a concomitant worsening of
pKD (pKD des-hydroxy tiotropium: 11.0, corresponding to 10
pM). The energy barrier which des-hydroxy tiotropium has to
overcome has been calculated to be 1.18 kcal mol−1 lower
than the one of tiotropium.30

The 5-fold increase in affinity of tiotropium vs. des-
hydroxy tiotropium and the accompanying 5.5-fold slowdown
of the on-rate (kon) result in a 56-fold increase in residence
time. This compound pair thus represents a good example
for transformations in quadrant Q1 (Fig. 7).

Case study 2 (Q2; H–CH2COOH)

Doxepin is a tricyclic antidepressant with histamine H1
receptor antagonist properties. It inhibits H1, H2, 5-HT2A,
5-HT2B, muscarinic acetylcholine receptors M1–M5, alpha1
and alpha2 adrenergic receptors, and the D2 receptor.44

Bosma et al. reported that olopatadine, which is a selective
histamine H1 antagonist, exhibits a 39-fold slower on-rate
than doxepin. Fig. 9 shows doxepin in its bound pose (PDB:
3RZE) and olopatadine, which is expected to accommodate
the binding pocket in a similar fashion.

The drugs show a less than 4-fold difference in KD to the
H1 receptor (doxepin: 0.8 nM, olopatadine: 3.1 nM); however,
the residence time of doxepin is reported to be around 22

Fig. 7 The kinetic map shows the correlation of the variation of pkon and pKD for the MMPs of the dataset. The map is divided into four
quadrants: Q1–Q4. The blue area hosts MMPs for which the residence time has increased. The yellow area comprises points exhibiting decreased
residence times. The Δpkoff value is encoded by the perpendicular distance from the Q2–Q4 bisecting line. White dots illustrate substitution
patterns with unaltered TPSA values (42 in Q1, 56 in Q2, 87 in Q3 and 37 in Q4), while black dots represent substitution patterns with changed
TPSA values (27 in Q1, 97 in Q2, 29 in Q3 and 20 in Q4). Red points highlight the MMPs discussed in further detail in the Case studies section of
the Results and discussion. Olopatadine (pink box), tiotropium (green box) and linsitinib (yellow box) are depicted in 2D. R 3.6.3 was used for
statistical analysis and visualization. Chemical structures were drawn using ChemDraw 14.
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minutes, while olopatadine is determined to remain bound
for 170 minutes.46 The affinity could not be fully preserved;
however, a 39-fold prolongation of the on-rate and a 10-fold
prolongation of the off-rate could be achieved by substitution
of a hydrogen atom by carboxymethyl. The doxepin–

olopatadine matched molecular pair showcases an example
of a prolonged residence time mainly driven by an increase
of Δpkon, passing from kon of 1.17 × 106 M−1 s−1 for doxepin
to a value of 3 × 104 M−1 s−1 for olopatadine. In fact, the
destabilization of the transition state poses a significant
barrier for the unbinding of the molecule from its bound
state.

Case study 3 (Q1; H–OCH3)

Linsitinib and its analogues are small molecules that inhibit
the type 1 insulin-like growth factor (IGF-1) receptor, a well-
known cell survival pathway activator and tumor growth
promoter.47 PQIP, an analogue of linsitinib, has been
crystallized in complex with its receptor. PQIP is structurally
very similar to linsitinib and its methoxylated analogue.

Therefore, PQIP has been used for our structural study, as
a similar binding mode for linsitinib and its methoxylated
analogue might be assumed. From SPR studies conducted
within the K4DD consortium, linsitinib and methoxy-
linsitinib show around 4-fold differences in KD with the more
polar compound being the more affine (linsitinib: 55.8 nM,
methoxy-linsitinib: 13.8 nM). Such an increase in affinity
might be explained by the introduction of a polar moiety in a
fairly polar area, in which water molecules can be found if no
ligand is bound. The crystal structure of PQIP bound to the
IGF-1 receptor shows such water molecules in close vicinity
of the substitution site of the MMP (Fig. 10). Moreover, the
increase of the molecule's polarity generates a slower

Fig. 8 2D representation of the small molecule tiotropium (green
box). Tiotropium bound to the binding pocket of the M3 muscarinic
acetylcholine receptor (PDB: 4DAJ). Tiotropium is shown in green,
stick representation. The hydroxyl group performing the polar
interaction inside the binding pocket is highlighted in red. Des-hydroxy
tiotropium derived from a study conducted by Tautermann et al.30 is
depicted in 2D for comparison (cyan box). Residues of the M3 receptor
are depicted in grey. Interactions of the drug and the protein are
visualized in dashed yellow lines. PyMol 2.7 was used for visualization
of the protein and small molecule. ChemDraw 14 was employed to
show the 2D depiction.

Fig. 9 2D representation of the small molecule doxepin (magenta
box). Doxepin bound to the binding pocket of the histamine H1
receptor (PDB: 3RZE). Doxepin is shown in magenta, stick
representation. The substitution site that will accommodate the
substituent for the matched molecular pair olopatadine is highlighted
in red. Olopatadine derived from a study conducted by Shimamura
et al.45 is depicted in 2D for comparison (orange box). Residues of the
H1 receptor are depicted in grey. Interactions of the drug and the
protein are visualized in dashed yellow lines. PyMol 2.7 was used for
visualization of the protein and small molecule. ChemDraw 14 was
employed to show the 2D depiction.

Fig. 10 2D representation of the small molecule linsitinib (red box). As
a reference the linsitinib analogue PQIP bound to the binding pocket
of the insulin-like growth factor 1 (IGF-1) receptor (PDB: 3D94) is
shown in yellow. PQIP48 and linsitinib are assumed to accommodate
similar binding poses, inasmuch as their structural differences can be
found on the solvent exposed side only. The red circle highlights the
location of the matched molecular pair substitution. The methoxylated
linsitinib derived from a study by Jin et al.49 is depicted in 2D for
comparison (blue box). Residues of the IGF-1 receptor are depicted in
grey. Interactions of the drug and the protein are visualized in dashed
yellow lines. Water molecules are represented as red spheres. PyMol
2.7 was used for visualization of the protein and small molecule.
ChemDraw 14 was employed to show the 2D depiction.
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entrance (linsitinib: 8.92 × 104 M−1 s−1, methoxy-linsitinib:
1.75 × 104 M−1 s−1), resulting in a prolonged residence time
for the methoxylated molecule with respect to the approved
drug (linsitinib: 3.78 minutes, methoxy-linsitinib: 82.46
minutes). The introduction of a moiety that mildly disrupts
the entry pathway by increasing the energy of the transition
state, in combination with the favorable interactions once it
reaches the bound state, locates this MMP in the Q1
quadrant of Fig. 7. Similar to Case study 1, the increase of
the residence time is due to both the affinity increase and a
slowdown of the access.

Conclusions
Thermodynamic and kinetic molecular basis

To the best of our knowledge, our dataset KIND is the largest
publicly available kinetic dataset so far, comprising a total of
3812 small molecules. Taking advantage of the abundance of
data, we could illustrate how to trigger the kinetic behavior
of small molecules and derive more generalized trends. One
of our key findings illustrates that kon generally correlates
better with KD than koff does (shown in Fig. 1 and 2). This
trend can generally be observed among GPCRs, ion channels
and soluble proteins.

In our work, we have provided examples for slowing down
association rates by introducing polar moieties to a small
molecule, which will have to be desolvated while entering the
binding pocket.24,50 Furthermore, we have provided structural
insight on how the residence time can remain unaltered,
even though individual contributions of KD and kon change
significantly. The trend we aim to illustrate is that the
addition of polar moieties to small molecules tends to affect
on-rates if their desolvation is part of the binding process.
Those trends, which were showcased for proteins affiliated
with three different families, could be extrapolated to other
protein families and provide a more generalized scheme to
trigger kinetic parameters, specifically for a hydrophobic
pocket environment. Various MMPs presented in this work
impact the association rate significantly, and some of them
result in altered residence times. This could be achieved due
to the introduction of an increased energy barrier along the
(un)binding pathway (kinetic contribution) and furthermore,
by additionally established interactions of the
aforementioned polar groups once the molecule is bound
(thermodynamic contribution). Putting our findings in
context with scientific publications on enthalpic and entropic
contributions to on- and off- rates (Fig. S2 and Table S4†),
the enthalpic signature of the on-rate, which contributes to
the energy barrier, is predominant.

The gained knowledge about how to trigger kinetic parameters
of small molecules binding to protein targets is valuable
information. For different targets diverse ranges of residence
times are considered to be optimal. Therefore, the ability to tailor
a compound's residence time according to its biological target
and the desired effect would be the best-case scenario.

In future analysis, we want to extend our studies to
include information about the protein binding pocket
environment using the matched pair (MMP) analysis.
Employing grid based methods48 will allow us to distinguish
between different binding pockets. This more complete
perspective might identify the preconditions for different
kinds of substituents to achieve both the slowdown of the
binding event (introduction of an energy barrier along the
pathway) and simultaneous stabilization of the ground state
(improving affinity for the receptor) on a broader scale.
Optimization of binding kinetics of course is a complex
process with many factors contributing. Nevertheless, with
this contribution we aimed to shed light on this still
underexplored field by providing guidance for a more
rationalized modification of molecules in order to effectively
steer the residence time in the context of lead optimization.
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