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Autoimmune diseases are a significant cause of debilitation and mortality globally and 
are in need of cost-effective therapeutics. Autophagy is a cellular pathway that facilitates 
immune modulation involved in both pathogen control and autoimmunity. Regulation is 
multifactorial and includes a number of epigenetic pathways which can involve modifica-
tion of DNA-binding histones to induce autophagy-related mRNA synthesis or microRNA 
and decapping-associated mRNA degradation which results in autophagy suppression. 
Appreciation of epigenetic-based pathways involved in autophagy and autoimmunity 
may facilitate application of a burgeoning group of epigenetic pharmaceuticals to these 
important diseases.
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inTRODUCTiOn

Autoimmunity-related diseases are a common cause of debilitation globally. The search for treat-
ments is an active area of research, in no part due to the fact that three of the top six best-selling 
prescription drugs in 2015 were for the control of autoimmune disorders. In addition to the wide-
spread prevalence of these diseases, the compelling economic benefit of these agents is borne out by 
a recent study showing that maintenance of even a mild degree of inflammation in patients resulted 
in comparative employee productivity to that of unaffected employees (1).

FDA approved epigenetic drugs include the histone deacetylase inhibitors romidepsin (cuta-
neous and peripheral T-cell lymphomas), belonostat (refractory peripheral T-cell lymphoma), 
panobinostat (refractory multiple myeloma), and vorinostat (refractory T-cell lymphoma) as well 
as a number of histone acetyltransferase inhibitors such as azacitidine and decitabine (both for 
chronic myelomonocytic leukemia and myelodysplastic syndrome) (2). As development progresses, 
it is likely that pharmaceutical epigenetic therapies will be adapted to other diseases including 
autoinflammatory diseases and small molecule inhibitors, such as these, may prove cost-effective. 
While this could have tremendous implications for patients with these diseases, it is important to 
identify regulatory pathways inherent to epigenetic regulation including autophagy to minimize side 
effects that are unexpected only because of ignorance of a relevant pathway(s). “On target” treatment 
toxicity is common. For example, the increased risk of Aspergillus infections in patients taking the 
B-cell-directed Bruton’s tyrosine kinase (BTK) inhibitor, ibrutinib (3), due to an unexpected role of 
these inhibitors in a TLR9-BTK-calcineurin-nuclear factor of activated T-cells pathway in innate 
immunity to the fungus (4). Thus, a thorough understanding of the impact of epigenetic pathways 
may be key to avoiding unexpected toxicities of these agents.
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THe BALAnCe OF AUTOPHAGY DURinG 
inFeCTiOn AnD AUTOiMMUniTY

Autophagy was first described in yeast as a mechanism of 
intracellular recycling during nutrient stress (5). During cel-
lular stress, specific autophagy-related proteins (designated Atg) 
orchestrate the sequestration of cytosolic materials to be recycled 
into a double-membraned structure, called the autophagosome 
(Figure  1D). Recently, the role of autophagy in mammalian 
immune modulation has been demonstrated in both innate and 
adaptive immunity (6, 7). Autophagy plays a direct role in elimi-
nating invading pathogens by phagocytic processes (8), as well 
as MAP1LC3-associated phagocytosis (LAP) and sequestosome-
like receptor recruitment (9). Autophagy also limits excessive 
inflammation during pathogen control by: removing residual 
microbial debris, known to activate the inflammasome pathway; 
digesting dysfunctional mitochondria, which typically mediate 
production of reactive oxygen species (ROS); or through direct 
removal of inflammasome complexes (10). These residual “mop 
up operations” of autophagy can also be induced by secondary 
“danger” signals (11) typically mediated by the mTOR pathway 
that harkens back to the role of this pathway in the yeast nutrient 
response. In adaptive immunity, autophagy also facilitates effec-
tive major histocompatibility complex presentation for T-cell 
activation (12), serving to control pathogens and remove inflam-
matory microbial products. Indeed, the importance of autophagy 
has been recognized by the pathogens themselves in that many 
utilize host autophagy to protect themselves against killing and 
support survival within host cells. The fungus Cryptococcus neo-
formans, which causes lethal meningoencephalitis (13), as well as 
certain bacterial pathogens, such as Mycobacterium tuberculosis 
(Mtb), have co-opted autophagic vesicles to conceal their intra-
cellular residence and prevent lysosomal fusion and microbial 
killing (14, 15).

Although a direct link between autophagy, autoimmunity, 
and infectious disease is still under investigation, monogenic 
primary immune deficiencies in humans highlight the grow-
ing evidence for their interconnection. Activated PI3K-delta 
syndrome (APDS), for example, whose dysregulation results in 
immune-mediated cytopenias treatable by the PI3K inhibitor 
leniolisib (18)—has been associated with higher risk for develop-
ing autoimmune diseases (19). Similarly, chronic granulomatous 
disease (CGD), resulting from defects in the NADPH oxidase 
complex is not only associated with reduced ROS production, 
multiple recurrent infections (20), and chronic inflammation in 
patients—whose inflammatory colitis can be successfully treated 
with the IL-1 receptor antagonist, anakinra (21), but also auto-
immunity (22). Interestingly, the increased IL-1β production in 
CGD was linked to a reduction in autophagy that also resulted 
in defects in phagocyte killing of internalized bacteria and fungi 
(23), demonstrating a link between autoimmunity, autophagy, 
and infectious disease.

Therapeutic interventions against autoimmune diseases are 
also strongly associated with susceptibility to infection. This is 
exemplified in patients undergoing treatment for multiple sclerosis 
(MS) who are at an increased risk of life-threatening Histoplasma 
capsulatum infections with the use of TNFα inhibitors, such as 

infliximab and etanercept (24), or increased risk of CNS infections 
with the very late antigen 4 (VLA-4) inhibitor, natalizumab, used 
for minimized autoimmune inflammation (25, 26). A number of 
“off-target” epigenetic side effects have also been described that 
associate autophagy and epigenetics. For example, the psycho-
tropic drug lithium acts to downregulate HDAC1 translation, 
leading to decrease in histone deacetylation and upregulation of 
autophagy (27). Clearly, an appreciation of regulatory pathways 
related to autophagy and immunity will be useful to anticipate 
side effects of epigenetic modifying pharmaceuticals.

mRnA TRAnSCRiPT SYnTHeSiS: ROLe 
OF HiSTOne MODiFiCATiOn

The field of epigenetics has been a slowly evolving and often 
controversial concept in genetics. Indeed, some of the first 
epigenetic molecular work was published in 1964 by Allfey et al. 
who proposed a role for histone modifications in gene regula-
tion. However, the field progressed slowly until ignited by the 
synthesis of histone epigenetic studies by Strahl and Allis (28) and 
Turner (29). Since that time, epigenetic studies have identified 
a number of covalent histone post-translational modifications, 
including acetylation, methylation, phosphorylation (30, 31), 
ADP-ribosylation (32), ubiquitination (33), SUMOylation (30), 
citrullination (34), glycosylation (35), hydroxylation (36), and 
isomerization (37, 38). Prominent among these are acetylation 
and methylation with a number of these histone modifications 
related directly to the regulation of autophagy and will therefore 
be the focus of this review. However, since the field of epigenetic 
regulation of autoimmunity is still in its infancy, many areas 
remain to be elucidated.

Histone post-translational modifications control gene expres-
sion by a number of mechanisms including altering the electro-
static associations between nucleosomes, modulating interactions 
between nucleosomes and DNA, interfering with transcription 
factor binding to promoter/enhancer regions, or recruiting either 
activating or repressing protein complexes to the specific histone 
modification (39). Typical modifications occur at the epsilon 
amino group of lysine sidechains within the polypeptide and 
serve to reduce the electrostatic charge of histones by acetylation 
and methylation or reverse this by phosphorylation. Some of the 
best-known modifications affecting autophagy are exhibited in 
Figure  1A. For example, the histone acetyltransferase hMOF/
KAT8 acts to add an acetyl group to H4K16 facilitating chromatin 
decondensation, which sterically allows transcriptional machin-
ery and enhancers access to DNA facilitating expression of 
autophagy-related genes (40). Conversely, overexpression of the 
NAD-dependent histone deacetylase sirtuin 1 (SIRT1) antago-
nizes H4K16 acetylation reducing basal levels of autophagy, 
which can be inhibited by the drug valproic acid (41). However, 
the relationship is complicated by a feedback loop whereby SIRT1 
acts on non-histone targets in an mTOR-dependent fashion to 
induce autophagy, which subsequently inhibits hMOF/KAT8 
activity (40).

SIRT1 may also play a critical role in regulating the immune 
system by modulating the activity of essential transcriptional 
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FiGURe 1 | Epigenetic regulation of autophagy. (A) Histone marks facilitate either chromatin condensation (top panel) or an open matrix which facilitates 
transcription (lower panel). Repressors include the histone deacetylase SIRT1, the H3 histone methyltransferase G9a and activators include the H3 histone 
acetyltransferase hMof, the H3 demethylase KMS2B and the H3 arginine methyltransferase co-activator-associated arginine methyltransferase 1 (CARM1).  
(B) Canonical microRNAs (miRNAs), such as MIR106B, is recruited to Argonaut members (ARG) which recruits target mRNAs, such as the autophagy-related 
ATG16L1 mRNA, for degradation and gene silencing in concert with GW-motif proteins (GW). (C) Mechanism of mTOR-dependent decapping/degradation. 
mTOR-dependent phosphorylation of the decapping protein DCP2 facilitates recruitment of target mRNA molecules for decapping followed by degradation. 
Conversely, low mTOR activities in the presence of phosphatases result in dissociation of the decapping complex from the mRNA target with resultant 
accumulation of target transcripts, illustrated here with the autophagy-associated transcription, MAP1LC3A. [Model of putative mammalian DCP2-DDX6 
interaction with MAP1LC3A mRNA adapted from Ref. (16).] (D) Illustration of autophagy and autoimmune diseases associated with alterations in autophagic 
flux. In autophagy, protein aggregates, misfolded proteins, and pathogens are recruited to the phagophore and then enclosed by a double-membrane vesicle 
to form the autophagosome. Following lysosome fusion with the autophagosome, proteinaceous material undergoes degradation in the autolysosome. Red 
arrow found next to autoimmune disease names indicates whether disease improves (↑) or declines (↓) following pharmacological inhibition of autophagy (17).
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regulators. Specifically, SIRT1 deacetylates RAR-related orphan 
receptor gamma promoting its transcriptional activity and 
Th17  cell differentiation (40). In thymic epithelial cells, SIRT1 
is an essential regulator of AIRE-mediated expression of tissue-
restricted antigens, a critical step for immunological self-tolerance 
(42, 43). Interestingly, polymorphisms in SIRT1 are associated 
with autoimmune thyroiditis and high titers of anti-thyroid anti-
bodies (44), suggesting a link between epigenetic regulators and 
autoimmunity. Immune consequences for overlapping regulation 
of autophagy and immunity can be seen with other related histone 
deacetylases. SIRT6 potentiates autophagy activation through 

effects on autophagy-related genes (ATG12, ATG3, and ATG7), 
as well as the well-known Crohn’s colitis-associated autophagy 
gene, IRGM (45, 46). Broad spectrum deacetylases, such as those 
found within the HDAC family—exemplified by HDAC4’s ability 
to deacetylate H3K9, 14, 18, and 23 and H4K5, 8, 12, and 16—are 
well known for their role in cancer biology prompting develop-
ment of the HDAC inhibitors described above and in Table  1 
(47). But they also show promise for the treatment of autoim-
mune diseases, as HDAC4 inhibitors have been shown to alleviate 
vascular inflammation resulting from activation of autophagy 
(48). Similarly, HDAC6 has been shown to modulate ATG6 
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TABLe 1 | Epigenetic regulators associated with autophagy and immunity.

Histone modification

Histone modification Regulator effect on autophagy immune phenotype Disease implicated Reference

H3K9Ac SIRT6 ↑ATG5 Inhibition of NOTCH/NF-κB signaling Proteinuric kidney disease (50–52)
H4K16Ac (H1.2 variant) SIRT1/HDAC1 ↑Autophagy Inflammation Diabetic retinopathy (53)
H3K9me HIF-1α, KDMs ↑BNIP3 Reactive oxygen species response Traumatic brain injury/tumors (51, 54)
H3R17me2 TFEB/co-activator-

associated arginine 
methyltransferase 1

↑ATG14 Myeloid differentiation, SWI/SNF Unknown (39, 55, 56)

H4R3me2 C/EBPβ/PRMT5 Unknown IL-8, TNFα expression Unknown (57)
Multiple HDAC6 SQSTM1 autophagic clearance Interferon response pathway Viral/bacterial clearance (58, 59)

Histone deacetylase inhibitors (HDACi)

Drug Regulator effect on autophagy immune phenotype Diseases treated with HDACi Reference

Vorinostat HDACs ↑Autophagosome formation (ATG5) Viral myocarditis Cutaneous T-cell lymphoma (60)
Vorinostat HDACs Unknown CD4 and CD8 tumor immunity Metastatic colorectal cancer (61)
Vorinostat HDACs ↑Autophagy (ATG5) NF-κB signaling, VSV oncolysis See diseases treated above (62)
Tubastatin A HDAC6 ↑Autophagy (ATG7) TNFα, IL-6 cisplatin toxicity Acute kidney injury/pancreatic cancer (49, 63)
Panobinostat HDACs ↑Autophagy (LC3) Lymphocyte tumor killing, TNFα Hodgkin lymphoma/multiple myeloma (64, 65)
Multiple HDACs ↑Autophagic flux (ULK1/ATG7) Reverse HIV-1 latency Peripheral T-cell lymphoma (66)
Multiple HDACs ↓Autophagy (ATG7) Apoptosis induction DS-AMKL (proposed) (67)

microRnA (miRnA) regulation of autophagy

miRnA effect on autophagy immune phenotype Disease implicated Reference

miR-30a ↓BECN1 (↓autophagy) Unknown Cancer (68)
miR-30b ↓Autophagy (↓ATG12, BECN1) Intracellular survival of Helicobacter pylori Cancer (69, 70)
miR-106b, miR-93 ↓Autophagy (↓ATG16L1) Defects in bacterial clearance, inflammation Crohn’s disease (71)
miR-142-3p ↓ATG16L1 Intestinal inflammation Crohn’s disease (72)
miR-30c, miR-130a ↓Autophagy (↓ATG5, ATG16L1) Invasive Escherichia coli, NF-κB activation,  

inflammation
Crohn’s disease (73)

miR-196 ↓IRGM (↓autophagy) Mitochondrial function, ineffective Mycobacterium 
tuberculosis (Mtb) and E. coli control

Crohn’s disease (74, 75)

miR-210 ↓Bcl-2 HIF-1α pathways, hypoxia-induced apoptosis,  
TH17 differentiation

Traumatic brain injury (76, 77)

miR-21 ↓IL-12p35, ↓Bcl-2 NF-κB activation, impaired anti-mycobacterial  
T cell responses

Mtb infection, asthma (78, 79)

miR-17, -20, -93, -106 ↓SQSTM1 Elevated P-ERK levels, enhanced hematopoiesis Acute myeloid leukemia (80)
miR-155, -31 ↓PPP2R5A (↓autophagy) ↓JAK-STAT ↑WNT-SHH, Th2 polarization Mycobacteria, Shigella, Listeria infection (81)
miR-UL148d (HCMV) ↓ERN1 (↓autophagy) Inhibition of apoptosis, impaired anti-viral response HCMV infection (82)
miR-1303 ↓ATG2B (↓autophagy) Suppression of mycobacteria-induced autophagy,  

↓TNF-α
Mtb infection (83)

miR-471-5p ↓LC3, ↓ATG12, ↓BECN1 LC3-associated phagocytosis, apoptotic germ cells Male infertility (84)
miR-155 ↓ATG3 (↓autophagy) Suppression of anti-Mtb dendritic cell response Mtb infection (85)
miR-155 ↓RHEB (↑autophagy) Enhanced killing of intracellular Mtb Mtb infection (86)
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(BECN1) and ATG7 and the inhibitor tubastatin A was found 
to potentiate autophagy with inhibition of the pro-inflammatory 
cytokine, IL-6 (49). These experiences suggest that further studies 
may identify epigenetic pathways relevant to HDAC inhibition 
that may prove useful in autoinflammatory disorders.

A second set of histone modifiers are those involved in H3K9 
methylation by the euchromatic histone-lysine N-methyltransferase 
2 (G9a/EHMT2) and GLP/EHMT1 methyl transferases which 
form heteromeric complexes via their Su(var)3-9-Enhancer of 
zeste-trithorax (SET) domains (87). These lysine methyltrans-
ferases transfer one to three methyl groups from S-adenosyl-l-
methionine to the target lysine e-amino group, causing a similar 
charge disruption as acetylation described above. In addition, 
H3K9me3 moieties (marks) recruit histone mark “readers” such as 
heterochromatin protein 1 (HP1) whose unique chromodomain 
mediates protein binding, heterochromatin formation (a tight 
lattice of DNA bound to histones), and transcriptional repres-
sion (Figure 1A, top panel). The methyltransferase activities of 
G9A/EHMT2 and the polycomb-repressive complex member, 
enhancer of zeste homolog 2 (EZH2), converge onto H3K27, 
whose methylation is associated with derepression of mTOR (88) 
and autophagy repression (89). Pharmacological inhibition of 
G9a/EHMT2 with BIX01294 results in induction of autophagy 
demonstrated by increased LC3B-positive autophagic vesicles 
(90), but autoimmunity was not studied in this context. Long 
non-coding RNAs (lncRNA) add an additional layer of regulation 
to this pathway that might hint at a connect to autoimmunity. 
Specifically, the lncRNA HOTAIR acts as a scaffold to recruitment 
the histone methyltransferase EZH2 to target genes, facilitating 
H3K27me-mediated gene repression (91). Aberrant expression 
of HOTAIR is associated with various cancers (92) and MS (93).

Interestingly, the hypoxia-inducible transcription factor 
(HIF1α)—recently shown to impact T-cell differentiation (94) 
and B-cell-related autoimmune disease (95)—was also found to 
regulate the H3K9 lysine (K)-specific demethylase, KDM2B, as 
well as the related demethylase KDM1A. This epigenetic regula-
tion leads to activation of autophagy as well as mTOR, NF-κB, and 
TGF-β pathways important in T-cell adaptive signaling (96). In 
addition, HP1 located at H3K9me3 marked histones can recruit 
DNA methylases, such as DNA (cytosine-5)-methyltransferase 
1 (DNMT1), which provide more permanent heterochromatin 
formation. DNA methylation carried out by DNMT1 have been 
implicated in susceptibility to endogenous retrovirus-induced 
systemic lupus erythematosus (97) related to increased antigen 
processing of hypomethylated DNA (98) or altered gene expres-
sion of inflammatory genes directly, including IL-17 (99).

An unusual histone modifying enzyme associated with 
autophagy is the arginine-specific H3R17 methyltransferase, 
co-activator-associated arginine methyltransferase 1 (CARM1), 
which collaborates with the transcription factor, TFEB, to enhance 
histone methylation allowing access of transcription factors in the 
AMP-SKP-CARM1 signaling cascade to autophagy-related genes 
(55). Previous studies have also shown a role for CARM1 as a 
promoter-specific regulator of NF-κB signaling (100), important 
for a number of innate and adaptive immune responses, demon-
strating the intimate relationship between autophagy activation 
and autoimmunity.

mRnA TRAnSCRiPT DeGRADATiOn: 
ROLe OF microRnAs (miRnAs)

The complexity of miRNAs has been quite daunting, but its com-
plexity is important to the programmatic modulation of autophagy 
and its effect on inflammation. miRNAs are the shortest of the 
non-coding RNAs at approximately 22 nucleotides in length. 
Most miRNAs are considered “canonical” in that they undergo 
primary miRNA processing in the nucleus by the “microproces-
sor” complex, which contains the RNase III enzyme Drosha and 
the dsRNA-binding protein Dgcr8, and further maturation in the 
cytoplasm by the ribonuclease DICER. The resulting ~22 nucleo-
tide duplex is loaded into the Argonaute-containing RNA-induced 
silencing complex (RISC), which then recruits mature mRNAs 
for degradation (Figure 1B). Interestingly, the complete structure 
of RISC is still unresolved and reports of size and component 
variability suggest complex adaptability to induction conditions 
or the passengers in question. In addition to “canonical” miRNAs, 
various non-canonical miRNAs appear to remain dependent on 
DICER, but are processed independent of Drosha or Dgcr8 (101). 
The best known of these are mirtrons, which are processed through 
a unique intronic splicing mechanism and have been recently asso-
ciated with the pathophysiology of IgA deficiency via regulation 
of immunoglobulin heavy constant alpha 1 (IGHA1) and IGHA2 
(102). It is likely that this intricate web of miRNA regulation fur-
nishes an important modulating capacity for the immune system 
to optimize survival against a range of pathogenic organisms under 
strong evolutionary pressure. But when inappropriately triggered 
may result in the “off-target” consequence of autoimmunity.

One of the first miRNAs identified to play a role in immunity 
was the global regulator miR-155. Prominently associated with 
IFN-γ expression and germinal center function (103–105), it 
was not determined until much later that some of the direct 
regulatory targets of miR-155 were autophagy-related (86). One 
of the best-known targets of miRNA-regulated autophagy is the 
immunity-related GTPase family M protein (IRGM) clinically 
associated with inflammatory bowel disease (106, 107). The 
canonical miRNA miR-196 targets and regulates IRGM whose 
levels confer either autophagic protection or cell death in target 
cells, implicated in both defense against the intracellular pathogen 
Mtb and damaging inflammation caused by Crohn’s disease. Such 
studies are an important demonstration of the importance of the 
exquisite immunological balance necessary to provide both micro-
biological protection and avoid autoimmune pathology. Pertinent 
to the importance of epigenetic mechanisms of regulation, clinical 
genetic studies identified a disease variant that was originally felt 
to be dispensable due to a lack of effects on either IRGM protein 
sequence or splice site selection, but later found to result in down-
regulation of an IRGM protective variant, but not a risk-associated 
allele due to a miRNA-based alteration in IRGM regulation (74).

Another prominent target of miRNA degradation is the 
autophagy-associated gene autophagy-related 16 like 1 (ATG16L1). 
Typically, ATG16L1 interacts with ATG12-ATG5 facilitating the 
phosphatidylethanolamine lipidation of the vesicular shaping 
protein, MAP1LC3A, and elongation of the nascent autophago-
somal membrane (108, 109). In one study, levels of MIR106B were 
found to be elevated in the intestinal epithelium of patients with 
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active Crohn’s disease along with decreased levels of ATG16L1 
transcripts (Figure 1B) (71). This was found in human cell lines 
to be associated with defects in autophagy-dependent eradication 
of intracellular bacteria. Studies in the same year identified a role 
for MIR142-3p in the same target gene (72) and others also found 
that Crohn’s disease-associated adherent Escherichia coli were 
able to modulate MIR30C and 130A to effect changes in ATG16L1 
transcripts as well as the autophagy-conjugation gene, ATG5 
(73). Interestingly, ATG16L1 has recently been found to play a 
role in NOD2 inflammasome activation (110) and is associated 
with inflammatory bowel disease (111). Recently, ATG16L1 gene 
polymorphisms were found to be associated with necrotizing 
enterocolitis in premature infants, again stressing the potential 
importance of this regulatory pathway to autoimmunity (112).

mRnA TRAnSCRiPT DeGRADATiOn: 
ROLe OF ReGULATeD mRnA 
DeCAPPinG/DeGRADATiOn

A more recently identified mechanism of post-transcriptional 
regulation implicated a well-characterized mRNA decay path-
way, characterized as a housekeeping function to remove RNA 
in yeast (113) and mammalian systems (114). In this process, 
mRNA undergoes a reversible poly-A tail deadenylation followed 
by an irreversible 5′-decapping by the decapping enzyme DCP2 
and subsequent XRN1-exonuclease mediated degradation of the 
RNA in the 5′–3′ direction. More recently, studies in the yeasts 
Saccharomyces cerevisiae as well as C. neoformans identified an 
RNA-binding protein, ATP-dependent RNA helicase Dhh1/Vad1, 
as an RNA chaperone that binds and recruits targeted autophagy-
related mRNA to the decapping complex resulting in suppression 
of autophagic flux (Figures  1C,D). Regulation of this process 
by mTOR was demonstrated by a specific mTOR-dependent 
phosphorylation of the DCP2 protein in humans, without which 
mRNA recruitment and decapping was prevented. These studies 
were extended to patients with monogenic dominant-activating 
mutations in a PI3K p110δ subunit who were further character-
ized by increased mTOR activity and autoimmune-associated 
leukopenia (115). Increased mTOR activity in these patients 
resulted in accelerated decapping and degradation of relevant 
autophagy mRNA transcripts with resultant decreased autophagy 
activity. Further studies, prompted by the recent finding of a role 
for autophagy in modulation of inflammasome-related IL-1β 
levels (116) demonstrated that the reduced autophagy activity in 
these patients resulted in elevated levels of IL-1β, suggesting an 
etiology of the patient’s autoimmunity. Conversely, knockdown 
of DDX6 by siRNA was successful in pseudonormalization of 
IL-1β levels, suggesting both a pathway for rapamycin-treatment 
of this disorder and new targets for pharmacological intervention 
against autophagy-related IL1β-associated autoimmunity.

A QUeSTiOn OF BALAnCe AnD THe ROLe 
OF TRAnSCRiPTiOnAL “FUTiLe CYCLeS”

As suggested by the parallel pathways described in Figure 1, 
epigenetic mechanisms have the ability to modulate each 

pathway’s activity. This coupling of mRNA synthesis with 
mRNA degradation is exemplative of transcriptional “futile 
cycles” first describe in yeast (117). Futile cycles were first 
described in energy metabolism with the classic example 
concerning gluconeogenesis, where regulated inhibition of a 
degradative phosphatase resulted in a rapid accumulation of 
fructose 1,6-bisphosphate required for de novo glucose syn-
thesis during the “fight or flight” response (118, 119). These 
cycles were termed futile, because it was not yet understood 
why energy would be exerted to simultaneously synthesize and 
degrade a required cellular precursor. However, maintenance 
of basal levels of synthesis (metabolic intermediate or mRNA) 
even during periods of disuse allows more rapid induction 
of synthetic enzymes without the need to start from zero. It 
also allows rapid adaptation to newly required steady states by 
simultaneous modulations in both synthesis and degradation. 
The concept is well suited for immune mechanisms, demon-
strated by the induction of inflammasome activation by TLR4, 
accompanied by the simultaneous induction of autophagy to 
degrade IL-1β, resulting in mechanisms to optimize pathogen 
control and yet avoid autoimmunity (116).

While relationships between epigenetic regulation, autophagy, 
and immunity are just now being elucidated, the study of HDAC 
inhibitors in cancer demonstrates some of the complexity of 
epigenetic manipulations. For example, studies of breast cancer 
carcinogenesis in the presence of the chemopreventative DNMT1 
inhibitor, 3,6-dihydroxyflavone (3,6-DHF), demonstrated 
reduced DNA methylation with resulting activation of autophagy, 
as well as epigenetic activation of the MIR21 promoter, resulting 
in an unexpected induction of the NOTCH-1 pathway (120). 
Applying some of the known pathways in Figure  1 may help 
to anticipate some side effects. For example, mTOR-dependent 
signaling of SIRT1-dependent H3K9 acetylation would be 
expected to increase autophagy activity (121). However, high 
mTOR activities would be expected to phosphorylate the S249 
amino acid of DCP2, resulting in increased autophagy-related 
transcript suppression, which modulates the effect of autophagy 
on IL-1β and autoimmunity with potential reductions in patho-
gen clearance. However, without experimental probing of these 
relationships, it is difficult to discern which effects would pre-
dominate under a given condition of autoimmunity or infection. 
Clearly, the study of the role of epigenetic networks in autophagy 
and autoimmunity is in its infancy, but is critical to the applica-
tion of a developing repertoire of epigenetic pharmaceuticals to 
autoimmunity as well as for the anticipation of their potential 
side effects.
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