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Abstract: Learning and making inference from a finite set of samples are among the fundamental
problems in science. In most popular applications, the paradigmatic approach is to seek a model that
best explains the data. This approach has many desirable properties when the number of samples is
large. However, in many practical setups, data acquisition is costly and only a limited number of
samples is available. In this work, we study an alternative approach for this challenging setup. Our
framework suggests that the role of the train-set is not to provide a single estimated model, which
may be inaccurate due to the limited number of samples. Instead, we define a class of “reasonable”
models. Then, the worst-case performance in the class is controlled by a minimax estimator with
respect to it. Further, we introduce a robust estimation scheme that provides minimax guarantees,
also for the case where the true model is not a member of the model class. Our results draw important
connections to universal prediction, the redundancy-capacity theorem, and channel capacity theory.
We demonstrate our suggested scheme in different setups, showing a significant improvement in
worst-case performance over currently known alternatives.

Keywords: minimax estimation; minimax risk; statistical inference; estimation theory; universal pre-
diction

1. Introduction

One of the major challenges in statistics and machine learning is making predictions
and inference from a limited number of samples. This problem is mostly evident in modern
statistics (big data), where the dimension of the problem is very large compared to the
number of samples in hand, or in cases where data acquisition is relatively costly, and
only a small number of samples is available (such as in complicated clinical trails). The
standard approach in many applications is to seek a model that best explains the data. For
example, empirical risk minimization (ERM) [1] is a commonly used criterion in predictive
modeling. Minimizing the empirical risk has many desirable properties. Under different
loss functions, we may attain consistency, unbiasedness, and other favorable attributes. In
parametric estimation, perhaps the most popular approach is maximum likelihood. Here,
again, we seek parameters that maximize the likelihood of the given set of observations.

However, what happens if our specific instance of data does not represent the true
model well enough (as happens in high-dimensional problems)? Is it still desirable to
choose the single model that best explains it?

In this work, we study an alternative approach for this challenging setup. Here,
instead of choosing a model that best describes the data, we define a class of models that
describe it with high confidence. Then, we seek a scheme that minimizes the worst-case
loss in the class. This way, we control the performance over a class of reasonable models
and provide explicit worst-case guarantees, even when the given data fail to accurately
represent the true model. This scheme is, in fact, a data-driven approach of minimax
estimation, as later discussed. Further, we show it provides worst-case guarantees for the
expected regret of future samples. This property makes our framework applicable both for
inference and prediction tasks.
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One of the major challenges of our suggested scheme is to characterize the model class.
In this work, we consider a class of models that corresponds to a confidence region of the
unknown parameters. This way we provide a PAC-like generalization bound, as the true
model is a member of this class with high confidence. Then, we introduce a more robust
approach which drops the model class assumptions and provides stronger performance
guarantees for the derived estimator. We demonstrate our suggested approach in classical
inference problems and more challenging large alphabet probability estimation. We further
study a real-world example, motivated from the medical domain. Our suggested approach
introduces favorable worst-case performance, for every given instance of data, at a typically
low cost on the average. This demonstrates an “insurance-like” trade-off; we pay a small
cost on the average to avoid a great loss if “something bad happens” (that is, the observed
samples do not represent the true model well enough).

The rest of this manuscript is organized as follows. In Section 2, we review related
work to our problem. We introduce our suggested framework and some of its basic
properties in Section 3. Then, we extend the framework to a more robust estimation scheme
in Section 4. We demonstrate our suggested scheme in several setups. In Section 5, we study
the unknown normal mean problem, while in Section 6 we focus on multinomial probability
estimation. We consider a more challenging large alphabet probability estimation problem
in Section 7. Finally, we study a real-work breast cancer problem in Section 8. We conclude
with a discussion in Section 9.

2. Previous Work

Minimax estimation has been extensively studied over the years. Here, we briefly
review the more relevant results for our work. Let xn ∼ pn

θ be a collection of n i.i.d. samples,
drawn from a distribution pθ , where θ is a fixed and unknown parameter. Let Θ be a given
class of parameters. Assume that θ ∈ Θ. Let θ̂ , θ̂(xn) be an estimator of θ from xn. Let
R(θ, θ̂) be a risk function which measures the expected error between the true parameter θ
and its corresponding estimate θ̂. For example, R(θ, θ̂) = Exn∼pn

θ
(θ − θ̂(xn))2 is the mean

squared error. The minimax risk [2] is defined as

rmm = inf
θ̂

sup
θ∈Θ

R(θ, θ̂). (1)

A minimax estimator θ̂mm satisfies supθ∈Θ R(θ, θ̂mm) = rmm, if such exists. In words, θ̂mm
minimizes the worst-case risk for a given class of parameters Θ. Finding the minimax
estimator is, in general, not an easy task. However, the optimal solution is characterized by
several important properties.

Let θ̂π =
∫

θ∈Θ θπ(θ)dθ be a Bayes estimator with respect to some prior π(θ) over
Θ. In words, θ̂π is a weighted average of θ ∈ Θ, according to a given weight function
π , π(θ). Let rπ =

∫
θ∈Θ R(θ, θ̂π)dπ(θ) be the average risk with respect to π. One of

the basic results in the minimax theory suggests that if rπ = rmm, then θ̂π is a minimax
estimator and π is a least favorable prior (satisfying rπ ≥ rπ′ for any π′) [2]. Importantly,
if a Bayes estimator has a constant risk, it is minimax. Note that this is not a necessary
condition.

For example, consider the problem of estimating the mean of a d-dimensional Gaussian
vector. Here, it can be shown that the maximum likelihood estimator (MLE) is also the
minimax estimator with respect to the squared error. Interestingly, in this example, the
MLE is known to be inadmissible for d > 2; assuming that the mean is finite, the famous
James–Stein estimator [3] dominates the MLE, as it achieves a lower mean squared error
(where the phenomenon is more evident as the mean is closer to zero) [2,3]. Additional
examples for the minimax estimators are provided in [2].

The minimax formulation was studied in a variety of setups. In [4], the authors
considered minimax estimation of parameters over Lp loss and provided key analytical
results. These results were further studied and generalized (for example, see in [5]). Bickel
studied minimax estimation of the normal mean when the parameter space is restricted [6].
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Later, Marchand and Perron considered the case where the norm of the normal mean is
bounded [7]. The minimax approach is also applicable to supervised learning problems.
In [8], the authors considered minimax classification with fixed first- and second-order
moments. Eban et al. developed a classification approach by minimizing the worst-case
hinge loss subject to fixed low-order marginals [9]. Razaviyayn et al. fitted a model that
minimizes the maximal correlation under fixed pairwise marginals to design a robust
classification scheme [10]. Farnia et al. described a minimax approach for supervised
learning by generalizing the maximum entropy principle [11].

The minimax approach has many applications, as it defines a conservative esti-
mate for a given class of models. A variety of examples spans different fields including
optimization [12], signal processing [13,14], communications [15], and others [16].

It is important to emphasize that the minimax problem (1), and its corresponding
solution, heavily depend on the assumption that the unknown parameter θ is a member
of the given class of parameters Θ. However, what happens if this assumption is false,
and θ /∈ Θ (as discussed, for example, in [17–19])? Furthermore, how do we choose Θ
in practice? If we choose Θ to be too large, we might control a class of models that are
unreasonable. On the other hand, if Θ is too small, we may violate the assumption that
θ ∈ Θ. Finally, notice that the minimax problem is typically concerned with the expected
worst-case performance (the risk). However, in many real-world applications we are given
a single instance of data, which may be quite costly to acquire. Therefore, we require
worst-case performance guarantees for this specific instance of data. In this work, we
address these concerns and suggest a robust, data-driven, universal estimation scheme for
a given set of observations.

3. The Suggested Inference Scheme

For the purpose of our presentation, we use the following additional notations. Let
Θr be a restricted class of parameters and denote P(Θr) as the corresponding restricted
class of parametric distributions. Assume that the true model pθ is a member of P(Θr)
(or alternatively, θ ∈ Θr). For example, pθ = N (θ, 1) is a normal distribution with an
unknown mean θ and a unit variance, while P(Θr) is a set of all normal distributions
with θ ∈ Θr = [θa, θb] (henceforth, restricted to [θa, θb]) and a unit variance. Let P =
{p| p(x) ≥ 0,

∫
p(x)dx = 1} be the class of all probability measures. Let q , q(·|xn) be a

probability measure which estimates pθ given the samples xn. Notice that as opposed to
the presentation in (1), the estimator q is with respect to the entire probability distribution
pθ , and not just unknown parameter θ. We measure the estimate’s accuracy using the
Kullback–Leibler (KL) divergence between the true underlying distribution pθ and q,
formally defined as DKL(pθ ||q) =

∫
pθ(x) log pθ(x)

q(x) dx. The KL divergence is a widely used
measure for the discrepancy between two probability distributions, with many desirable
properties [20]. In addition, the KL divergence serves as an upper bound for a collection of
popular discrepancy measures (for example, the Pinsker inequality [21] and the universality
results in [22,23]). In this sense, by minimizing the KL divergence, we implicity bound
from above a large set of common performance merits.

Ultimately, our goal is to find an estimate q that minimizes DKL(pθ ||q) for the unknown
θ. Thus, we consider a minimax formulation

min
q

sup
pθ∈P(Θr)

DKL(pθ ||q) (2)

where q ∈ P is the minimizer of the worst-case divergence over the class P(Θr), if such
exists. In words, q minimizes the worst possible divergence, over the restricted model
class P(Θr). To avoid an overload of notation, we assume that q ∈ P throughout the text,
unless otherwise stated. We observe several differences between (1) and (2). First, the
formulation in (1) considers an estimate θ̂, and by that implicitly restricts the solution to
be a parametric distribution pθ̂ of the same family as pθ . On the other hand, (2) considers
the entire distribution and does not impose any restrictions on the solution. Second,
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the standard minimax formulation (1) focuses on the risk. Our approach considers the
estimation accuracy for every given instance of data (q , q(·|xn), as defined above).
Third, notice that DKL(pθ ||q) can also be viewed as the expected log-loss regret, where
the expectation is with respect to a future sample, DKL(pθ ||q) = Ex∼pθ

(l(x, q)− l(x, pθ))
and l(x, q) = − log(q(x)) is the logarithmic loss. This means that while (1) focuses on the
expected loss with respect to the given samples, (2) considers the expected performance of
future samples. We further discussed these points in Sections 5, 6 and 8.

In practice, one of the major challenges in applying any minimax formulation is the
choice (or design) of the parametric class. Specifically, using the notations of (2), choosing a
larger class Θr is more likely to include the true model θ, but may also include unreasonable
worst-case models (for example, Θr = R in the unknown normal mean example above).
On the other hand, choosing a more restrictive Θr may violate our assumption that θ ∈ Θr.
Therefore, a trade-off between the two seems inevitable. In the following, we focus on the
design and characterization of a set Θr that depends on the given samples, Θr(xn). In other
words, we use the train-set xn to construct a minimal-size restricted model class Θr(xn) that
contains the true parameter θ with high confidence. Then, we solve the minimax problem
(2) with respect to it and attain an estimator that minimizes the maximal divergence in the
class (or equivalently, the expected log-loss regret for future samples).

Designing and Controlling the Restricted Model Class

Our first objective is to construct a minimal-size Θr(xn) such that θ ∈ Θr(xn) with
high confidence. For this purpose, we turn to classical statistics and construct a confidence
region for the desired parameter θ. A confidence region of level 100(1− α)% is defined as a
region T such that P(θ ∈ T ) = 1− α. Notice that T is random and depends on the samples
xn, while θ is an unknown (non-random) parameter. Further, notice that a confidence region
T is data-dependent and does not require knowledge of the true parameter θ. Obviously,
there are many ways to define T to satisfy the above. We are interested in a confidence
region that has a minimal expected volume. For example, consider n i.i.d. samples from
N (θ, 1), as discussed above. Let x̄ be the sample mean. Then, the minimal-size 100(1− α)%
confidence interval is [x̄±z α

2
1√
n ], where zα is the upper 100α percentile of a standard normal

distribution [24].
Given the restrictive model class, we would like to solve the minimax problem defined

in (2). A general form of this problem was extensively studied over the years, mainly in the
context of universal compression and universal prediction [15]. There, DKL(pθ ||q) is the
expected number of extra bits (over the optimal code-book), required to code samples from
pθ using a code designed for q. The celebrated redundancy-capacity theorem demonstrates
a basic connection between the desired formulation (2) and channel capacity theory. Let
T ∼ π be a source variable, X be a target variable and P(Θr) be the set of transition
probabilities from X to T. In other words, T is a message, transmitted through a noisy
channel, characterized by P(Θr). The received (noisy) message is denoted by X. Let
I(T; X) be the mutual information between T and X, and C(Θr) , supπ I(T; X) be the
corresponding channel capacity. The redundancy-capacity theorem [25–27] suggests that
for C(Θr) < ∞, the minimax formulation presented in (2) is equivalent to

sup
π(θ)

∫
θ∈Θr

π(θ)DKL(pθ ||qπ)dθ = sup
π

I(T; X) , C(Θr) (3)

where π(θ) is a weight function for every θ ∈ Θr and qπ =
∫

θ∈Θr
π(θ)pθdθ is a mixture

distribution. In words, solving (2) is equivalent to solving a channel capacity problem.
Furthermore, the source distribution which maximizes the mutual information between
the source and the target (and henceforth achieves the channel capacity) is a mixture over
P(Θr). This solution is quite similar to the solution of (1); in both cases, we obtain a Bayes
estimator over the given class, while the least favorable prior (or equivalently, the capacity
achieving prior), if such exists, attains the maximal average risk (the channel capacity). See
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examples in Sections 5 and 6 for further detail. It is important to emphasize that while θ is
a fixed and unknown parameter, π(θ) is a weight function for every θ ∈ Θr, and qπ is a
weighted average over P(Θr).

The redundancy-capacity theorem shows that the solution to the minimax problem (2)
is achieved by solving the channel capacity problem (3). We apply the capacity-redundancy
theorem to our suggested class Θr(xn) to attain the desired solution. Theorem 1 below
summarizes our parametric inference approach.

Theorem 1. Let xn ∼ pn
θ be a collection of n i.i.d. samples, drawn from an unknown distribution

pθ . Let Θr(xn) be a 100(1− α)% confidence region for the parameter θ. Assume that C(Θr(xn)) <
∞. Then, with probability 1− α (over the samples), C(Θr(xn)) is the minimal worst-case divergence
and qπ is the corresponding minimax estimator, denoted as the mixture model.

Theorem 1 establishes a PAC-like generalization bound for parametric inference. It de-
fines the worst-case expected performance of future samples (with respect to a logarithmic
loss, as discussed above), at a confidence level of 1− α over the drawn samples. Specifically,
with probability 1− α we have that Ex∼pθ

(l(x, qπ)− l(x, pθ)) ≤ C(Θr(xn)) for the entire
parametric class. It is important to emphasize that the resulting minimax estimator qπ is
data-dependent, as it is a mixture over the data-driven restricted model class.

Solving the channel capacity problem is, in general, not an easy task. However, there
exist several cases where the solution to (3) holds a closed-form expression, or an efficient
computational routine. We demonstrate basic examples in Sections 5 and 6.

4. A Generalized Inference Scheme beyond the Restricted Class

In the previous section, we derive a minimax solution to (2) under the assumption
that pθ ∈ P(Θr) (equivalently, θ ∈ Θr), with high confidence. Unfortunately, it does not
provide any guarantee for the event where pθ /∈ P(Θr). We now consider a general setup
where pθ is not necessarily in P(Θr) as well as introduce a more robust approach which
addresses this case.

Let P(Θ) be a (non-restricted) model class that is known to contain the true parametric
model pθ . Here, we define Θ as the set of all possible parameter values, such that θ ∈ Θ.
For example, P(Θ) is a class of all normal distributions with an unknown mean and a unit
variance (Θ = R), in the normal mean example above. As before, we would like to find a
distribution q that minimizes DKL(pθ ||q). Simple calculus shows that

DKL(pθ ||q) = DKL(pθ ||pθ′) +
∫

pθ(x) log
pθ′(x)
q(x)

dx (4)

for any choice of pθ′ . Specifically, (4) holds for any model in the restricted model class,
pθ′ ∈ P(Θr). Notice that in this case, the first term of (4) is an error induced by the
restrictive model class, independent of the choice of q. The second term is the residual,
which depends on q. Notice that the first term only depends on pθ and the reference
distribution pθ′ ∈ P(Θr). This means that by choosing a model class P(Θr) that is too “far”
(or from the true distribution), we face a large overhead term that is independent of the
estimator q. On the other hand, the second term depends on q, and may be universally
bounded. In other words, we are interested in a universal bound of the form

min
q

sup
pθ∈P(Θ)

sup
pθ′∈P(Θr)

(∫
pθ(x) log

pθ′(x)
q(x)

dx
)

. (5)
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Interestingly, notice that (5) may be equivalently written as

min
q

sup
pθ∈P(Θ)

sup
pθ′∈P(Θr)

(∫
pθ(x) log

pθ(x)
q(x)

dx−
∫

pθ(x) log
pθ(x)
pθ′(x)

dx
)
= (6)

min
q

sup
pθ∈P(Θ)

(
DKL(pθ ||q)− inf

pθ′∈P(Θr)
DKL(pθ ||pθ′)

)
.

This means that (5) is just a constrained variant of (2). Therefore, similarly to (2), we
would like to represent (5) as a (constrained) channel capacity problem.

Definition 1. Let pθ ∈ P(Θ) be an unknown probability distribution. Let P(Θr) be a restrictive
model class (that does not necessarily contain pθ). Assume that Θr is bounded. Define

F(Θ, Θr) , sup
π(θ)

∫
θ∈Θ

π(θ)

(
DKL(pθ ||qπ)− min

θ′∈Θr
DKL(pθ ||pθ′)

)
dθ = (7)

sup
π(θ)

(
I(T; X)−Eπ(θ) min

θ′∈Θr
DKL(pθ ||pθ′)

)
.

As in (2), I(T; X) is the mutual information between a source variable T ∼ π, and a
target variable X, that is characterized by the transition probabilities P(Θ). The constraint
is simply the expected divergence (with respect to π) between pθ and its closest projection
in Θr. The term qπ is a mixture distribution over P(Θ), according to the prior π. Notice that
here, the mixture is over the non-restricted model class, as opposed to (2), where the mixture
is over P(Θr). We denote this distribution, qπ , as the projected mixture distribution.

Theorem 2. Let pθ ∈ P(Θ) be an unknown probability distribution. Let P(Θr) be a restric-
tive model class (that does not necessarily contain pθ). Assume that Θr is bounded. Then, for
F(Θ, Θr) < ∞ the following holds:

min
q

sup
pθ∈P(Θ)

sup
pθ′∈P(Θr)

(∫
pθ(x) log

pθ′(x)
q(x)

dx
)
= F(Θ, Θr). (8)

A proof of Theorem 2 is provided in Appendix A. Theorem 2 establishes a redundancy-
capacity result, similarly to (2). It shows that (5) may be obtained by solving a constrained
channel capacity problem, and the distribution which achieves it is, again, a mixture distri-
bution. This result is further discussed in [28] in a different (asymptotic) setup.

In addition, notice that for a bounded Θr the formulation in (5) may be equivalently
written as

min
q

sup
pθ∈P(Θ)

∫
pθ(x) log

p∗θ (x)
q(x)

dx,

where p∗θ = argminpθ′∈P(Θr)
DKL(pθ ||pθ′). In other words, F(Θ, Θr) is also the optimal

universal minimizer of the second term of (4), for a specific (greedy) choice of pθ′ ∈ P(Θr)
that minimizes the first term. This result may be viewed as a “triangle inequality” for the
KL divergence: given a reference set P(Θr), the KL divergence DKL(pθ ||q) is bounded
from above by the closest projection in P(Θr) to pθ , plus an overhead-term F(Θ, Θr). It
is important to emphasize that F(Θ, Θr) is not new to the universal coding literature. In
fact, it was introduced in [17] as relative redundancy, in the context of robust codes for
universal compression. However, it was mostly studied in an asymptotic regime, where n
i.i.d. variables Xn are simultaneously compressed. However, it was mostly studied in an
asymptotic regime, where n i.i.d. variables Xn are simultaneously compressed [28].

Similarly to the channel capacity problem, the term F(Θ, Θr) holds a closed-form ana-
lytical expression only in several special cases. Therefore, we introduce a simple iterative
algorithm, which provides an optimal solution to it (as indicated in [28]). Our suggested
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routine is similar in spirit to the Blahut–Arimoto algorithm [21], which is typically applied
to intractable channel capacity problems.

Theorem 3. Let P(Θ) and P(Θr) be two model classes. Let F(Θ, Θr) follow the definition above.
Assume that Θr is bounded. Then, for F(Θ, Θr) < ∞ the following holds:

F(Θ, Θr) = sup
φ(θ),ψ(θ,x)

∫
θ∈Θ

∫
x

φ(θ)pθ(x) log
ψ(θ, x)

φ(θ)

p∗θ (x)
pθ(x)

dxdθ (9)

where φ(θ) and ψ(θ, x) are probability distributions (over the variable θ, for any given x), and
p∗θ (x) = argminθ′∈Θr

DKL(pθ ||pθ′). Further, the solution to (9) may be attained by the following
iterative projection algorithm:

1. For a fixed φ(θ), we set ψ(θ, x) = φ(θ)pθ(x)∫
θ∈Θ φ(θ)pθ(x)dθ

2. For a fixed ψ(θ, x), we set φ(θ) = ∏x ψ̃(θ,x)pθ (x)∫
θ∈Θ ∏x ψ̃(θ,x)pθ (x)dθ

where ψ̃(θ, x) = ψ(θ, x) p∗θ (x)
pθ(x) .

Finally, the distribution q that achieves F(Θ, Θr) is given by qΘ =
∫

θ∈Θ φ∗(θ)pθdθ, where φ∗(θ)
is φ(θ) at the final iteration of the algorithm.

A proof for this theorem is provided in Appendix B.
In many practical cases, the choice of a model class P(Θ) is not a trivial task. For

example, consider a real-world setup where a domain expert suggests that the underlying
model follows a Normal distribution with an unknown mean. However, we would like to
design a scheme that does not heavily rely on this assumption. Therefore, we may consider
the general case where P(Θ) is the simplex of all possible probability distributions. This
important special case described in the following section.

The Normalized Maximum Likelihood

Consider a model class P(Θ) = P = {p| p(x) ≥ 0,
∫

p(x)dx = 1}. Here, the solution
to (7) holds a closed form expression.

Theorem 4. Let pθ ∈ P be an unknown probability distribution where P = {p| p(x) ≥
0,
∫

p(x)dx = 1}. Let P(Θr) be a restrictive model class. Assume that Θr is bounded and
Z ,

∫
maxpθ′∈P(Θr) pθ′(x)dx. Let Γ(Θr) , log(Z). For Γ(Θr) < ∞,

min
q

sup
pθ∈P

sup
pθ′∈P(Θr)

∫
pθ(x) log

pθ′(x)
q(x)

dx , Γ(Θr)

and the model q that achieves the minimum is the normalized maximum likelihood (NML) [29] ,
qnml(x) = maxpθ′∈P(Θr) pθ′(x)/Z

This theorem is an immediate application of Shtarkov’s NML result [29]. It suggests
that given a model class P(Θr) which does not necessarily contain the true model p, the
NML estimator qnml minimizes the worst-case regret over all possible distributions and
guarantees an overhead of at most Γ(Θr) bits, compared to the best model in the class
P(Θr), for any possible p. Further, it is shown that this result is tight, in the sense that
there exist probability distributions p ∈ P(Θ) and pθ′ ∈ P(Θr) that achieve the Γ(Θr)
term. Notice that for every P(Θ) and P(Θr) that satisfy the conditions above, we have
that C(Θr) ≤ F(Θ, Θr) ≤ Γ(Θr). This means that under more restrictive assumptions we
attain tighter worst-case performance guarantees, as expected. We now demonstrate our
suggested methods in synthetic and real-world problems.

5. The Normal Distribution

Let us first study the classical unknown mean problem in the Gaussian case. Consider
n i.i.d. samples, drawn from a d-dimensional multivariate normal distribution with an
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unknown mean µ and a known covariance matrix Σ. The 100(1− α)% confidence region
for µ isMr = {µ|(x̄− µ)TΣ−1(x̄− µ) ≤ 1

n χ2
d(1− α)}, where x̄ is the sample mean, and

χ2
d is a Chi-squared distribution with d degrees of freedom. First, we would like to solve

the minimax problem (2) with respect toMr. We apply the redundancy-capacity theorem
(3) and define a corresponding channel, X = M + Z, where M is a random vector, taking
values over the domainMr, while Z ∼ N (0, Σ), independent of M (see [30] for detail).
This formulation is also known as an amplitude-constrained capacity problem. We show
(Appendix C) that it is equivalent to the generic case where Z ∼ N (0, Id) and M ∈ M′

r
where M′

r = {µ|µTµ ≤ 1
n χ2

d(1 − α)}. Notice that the domain of M is now restricted
to a d-dimensional ball (defined by M′

r) and our goal is to find the capacity achieving
distribution of M. It has been shown [31] that the solution to this problem is achieved
when M is supported on a finite number of concentric spheres. Recently, the authors of [32]
studied the necessary conditions under which the solution is a single sphere, centered at
the origin. Specifically, they derived the largest radius rd for which the capacity achieving
distribution is uniform on the sphere of the d-dimensional ball. This means that if the
radius defined by M′

r is smaller than rd, then the solution to our minimax problem is
immediate. Applying Dytso et al. analysis to our problem, we attain the following result.

Theorem 5. Let xn be a collection of n i.i.d. samples from a d-dimensional multivariate normal
distribution with an unknown mean µ and a known covariance matrix Σ. LetMr be a 100(1− α)%
confidence region for µ. Let rd be the largest radius for which the capacity achieving distribution is
uniform on the sphere of a d-ball, as defined in Table 1 of [32]. Then, for any n ≥ χ2

d(1− α)/r2
d,

the solution to the minimax problem (2) over the confidence regionMr is attained by a uniform
mixture of Gaussians with means on the confidence region, qπ ∝

∫
µ∈O(Mr)

N (µ, Σ)dµ where

O(Mr) = {µ|(x̄− µ)TΣ−1(x̄− µ) = 1
n χ2

d(1− α)}.

For example, let α = 0.05 and d = 2. We have that rd = 2.454 (as appears in Table 1
of [32]), and the solution to (2) overMr is given by qπ ∝

∫
µ∈O(M)N (µ, Σ)dµ, for every

n ≥ 1. The left chart of Figure 1 illustrates the shape of qπ in this case. This Gaussian
mixture shape may seem counterintuitive at a first glance, as xn are known to be drawn
from a normal distribution. However, the reason is quite clear. Our inference criterion
strives to control a set of Gaussian models. Therefore, the optimal solution is not necessarily
the most likely model in the set, but a mixture of models.

Figure 1. The shape of our suggested solutions in the unknown normal mean problem. (Left)—the mixture distribution qπ

for d = 2. (Right)—all methods for d = 1 and an example confidence interval of [−1.5, 1.5].
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Let us now turn to the projected mixture distribution and the NML. The right chart of
Figure 1 demonstrates the shape of these estimators for d = 1 andMr = [−1.5, 1.5].

First, we notice that the projected mixture is again a Gaussian mixture, with means
outside of the confidence interval. On the other hand, the NML solution is not a Gaussian
mixture; simple calculus shows that

qnml(x) ∝


1√
2π

exp(− 1
2 (x + a)2) x < −a

1√
2π

−a ≤ x ≤ a
1√
2π

exp(− 1
2 (x− a)2) x > a

(10)

for a symmetric confidence interval [−a, a].
Let us illustrate the performance of our suggested methods. We draw n i.i.d. samples

from a standard normal distribution pµ ∼ N (0, 1) where the mean µ = 0 is unknown and
the variance is known. We apply our suggested methods (with α = 0.05) and evaluate
the KL divergence from the true distribution, DKL(pµ||q(·|xn)). We compare our results
with the performance of the MLE, DKL(p||qmle(xn)), where qmle(xn) = N (x̄, 1). Notice
that the MLE is also known to be the minimax solution to (1) in this setting. We repeat
this experiment k = 10,000 times, for different sample sizes n. For each n we evaluate the
mean Exn∼pn

µ
DKL(pµ||q(·|xn)), the variance varxn∼pn

µ
DKL(pµ||q(·|xn)) and the worst-case

maxxn∈Xk DKL(pµ||q(·|xn)), where Xk is the set of k random draws of xn from pn
µ. Figure 2

demonstrates our results. Notice that we lose some accuracy, on the average, with all
of our methods, compared to the MLE. On the other hand, the variance of the MLE is
significantly greater, which suggests that it is less reliable for a given instance of data.
Finally, we notice a significant gain in the worst-case performance. This behavior is not
surprising: our approach strives to control the worst-case performance for each given draw.
In this sense, we may view our approach as an “insurance policy”—we pay a small cost on
the average, but attain a more stable estimator and gain significantly if “something bad
happens” (that is, we observe xn that do not represent the true model well enough). Notice
that this phenomenon is more evident when the inference problem is more challenging
(smaller n’s). As we compare our suggested models to each other, we notice that the
mixture distribution is the most conservative (that is, smallest cost and smallest gain),
while the projected mixture is the least conservative. The reason is quite clear: in about
(1− α) of the draws, the true parameter lies within the confidence region, and the mixture
distribution is closer to it. This implies better performance on the average and worse
performance in the extremes. Interestingly, the NML behaves as a compromise between
the two. This is mostly as the NML does not assume that µ ∈ Mr (better than the mixture
in the worst-case). However, it also unnecessarily controls non-Gaussian models (worse
than the projected mixture).

Let us now illustrate our suggested approach in a high-dimensional setting, p = N (1, Id).
Figure 3 compares the mixture estimator (which demonstrates a reasonable compromise
between mean and worst-case performance) with the MLE and the James–Stein (JS) estima-
tor. As we can see, the JS estimator slightly outperforms MLE on the average (as discussed
in [3]), while the mixture distribution is very close to them. However, as we focus on
the variance and the worst-case performance, the mixture distribution demonstrates a
significant improvement, as expected. It is important to mention that in a zero mean
case, the JS estimator achieves a significantly lower mean error (as discussed in [2]) and a
remarkable increase in variance and worst-case performance. These results are omitted for
brevity.
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Figure 2. Mean, variance, and worst-case performance in the Gaussian unknown mean problem. We draw n samples from
pµ ∼ N (0, 1) and compute DKL(pµ||q(·|xn)). We repeat this experiment 10,000 times and evaluate the mean (left), variance
(middle), and worst-case (right) performance.

Figure 3. Mean, variance, and worst-case performance in high-d Gaussian unknown mean problem. In each experiment
we draw n = 20 samples from p = N (1, Id) and compute DKL(p||q(·|xn)). We repeat this experiment 10,000 times and
evaluate the mean (left), variance (middle), and worst-case (right) performance.

6. The Multinomial Distribution

We now turn to an additional important example of finite alphabet distributions. Let xn

be n i.i.d. draws from a multinomial distribution over an alphabet size m. Notice that here,
the parametric family spans the entire simplex. Therefore, we omit the parametric subscript
θ to avoid an overload of notation, and regard p as the unknown vector of parameters. As
discussed above, we would first like to construct a minimal-volume confidence region for
p, denoted as Pr. Unfortunately, there exists no closed-form solution in the multinomial
case. Therefore, we turn to an approximate confidence region suggested in [33]. As
many other approximation techniques [34,35], Sison and Glaz derive a rectangular region
Psg = {p| pl(i) ≤ p(i) ≤ pu(i) ∀i = 1, . . . , m} which demonstrates a smaller expected
volume compared to alternatives. Our first step is to define a subset of Sison and Glaz
region, Pr ⊂ Psg, which corresponds to valid probability distributions, Pr = {p|p ∈
Psg, ∑ p(i) = 1}. Notice that Pr is a convex set, and denote its set of vertexes as V(Pr). We
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show (Appendix D) that the solution to (2) over Pr is attained by solving (3) over V(Pr).
This means that instead of considering the entire class Pr, we only need to focus on the
discrete set V(Pr).

Unfortunately, there exists no closed-form solution to (3) in this setting. However,
as the cardinality of π is finite (as we optimize over V(Pr)), we may apply the Blahut–
Arimoto algorithm [21] and attain a numerical solution, at a relatively small computational
cost. Finally, we derive the projected mixture and the NML. As mentioned above, the
parametric family spans the entire simplex. This means that the two methods are identical,
and obtained by applying the NML over Pr.

We now demonstrate our suggested approach. Let xn be i.i.d. draws from a Zipf’s
law distribution over an alphabet size m = 5 and a parameter s = 1.01, p(i) ∝ i−s. The
Zipf’s law distribution is a commonly used benchmark distribution, mostly in modeling of
natural (real-world) quantities. It is widely used in physical and social sciences, linguistics,
economics, and many other fields [36–38]. As in Section 5, we compare our suggested
methods to the MLE. In addition, we consider the popular Laplace estimator, which adds a
single count to all events, followed by a MLE. In our experiments we focus on an enhanced
variant of Laplace [39], which adds 1/2 to all events, qlap(ni) ∝ ni + 1/2, where ni is the
number of appearances of the ith symbol in xn. This variant holds important universality
properties and is widely known as the Krichevsky–Trofimov estimator [39,40].

We repeat each experiment k = 10,000 times and report the estimated mean, variance,
and worst-case performance, as in the Gaussian case. Figure 4 demonstrates the results
we achieve. We omit the MLE as it typically results in an unbounded divergence (in cases
where at least a single symbol fails to appear).

Figure 4. Multinomial inference. In each experiment, we draw n samples from a Zipf’s law distribution with m = 5 and
s = 1.01. We evaluate DKL(p||q(·|xn)) for different estimators. We repeat this experiment 10,000 times and report the mean
(left), variance (middle), and worst-case (right) performance.

As in the unknown normal mean problem, we notice that in more challenging setups
(small n), our worst-case gain is quite remarkable. This gain narrows down as n increases,
and all the estimators converge to the same solution. In addition, we observe a significant
gain in expectation when n is small. It is important to emphasize that when the underlying
distribution is easier to infer (all p(x) are bounded away from zero, as with the uniform
distribution), the advantage of using the minimax approach is less evident (similarly to the
large n regime in the Zipf’s law example).
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7. Large Alphabet Probability Estimation

In the large alphabet regime, we study a multinomial distribution where m >> n.
This problem has been extensively studied over the years, with many applications ranging
from language processing to biological studies [41]. Here, traditional methods like MLE are
typically ineffective, as they assign a zero probability to unseen events. Several alternatives
have been suggested over the years. In his seminal work, Laplace [42] suggested to add
a single count to all events, followed by a maximum likelihood estimator. The work of
Laplace was later generalized to a class of add-constant estimators [39], with the important
special case of the Krichevsky–Trofimov estimator (as discussed in Section 6). A significant
milestone in the history of large alphabet probability estimation was established in the
work of Good and Turing [43]. Their approach suggests that unseen events shall be
assigned a probability proportional to the number of events that appear once. To this day,
Good–Turing estimators are the most commonly used methods in practical problems (see,
for example, Section 1.4 in [41]). Despite the great interest in large alphabet estimation,
provably-optimal schemes remain elusive [41]. Moreover, the accuracy of existing methods
do not allow us to construct practical confidence regions. In fact, Paninski [44] showed that
in the large alphabet setup, the minimal expected worst-case divergence is unbounded,
and grows like log(m/n). Therefore, it is quite difficult to define a small enough restrictive
model class that contains p with high confidence. In this case, we introduce an alternative
approach for the design of Pr, followed by an NML estimator.

The Leave-One-Out Hypothesis Class

Define the convergence rate of q(·|xn) as ∆p(n) = E(DKL(p||q(·|xn)) − DKL(p||q
(·|xn+1))). We say that an estimator q(·; xn) is proper if it satisfies, for every p,

A. EDKL(p||q(·|xn)) < ∞ for all n ≥ 0
B. ∆p(n) ≥ 0 for all n ≥ n0
C. ∆p(n) is monotonically non-increasing for all n ≥ n0

The first condition states that the expected loss is finite for any n. The second condition
indicates that asymptotically, adding more samples only improves the expected accuracy.
The third condition says that the rate of the improvement is non-increasing in the number
of samples. For example, the improvement from 100 to 101 samples is greater than the
improvement from 1000 to 1001 samples, on the average. We now define the leave-one-out
model class. Let xn−1

[−i] = {x1, ..., xi−1, xi+1, ..., xn} be the leave-one-out set of xn, excluding

the ith sample. Let q(·|xn−1
[−i] ) be the corresponding proper estimate. The leave-one-out

(loo) model class is defined as Ploo = {q(·|xn−1
[−i] )}

n
i=1. Theorem 6 below establishes that on

the average, the accuracy of the best model in Ploo is bounded from above by accuracy of
q(·|xn), plus an additional vanishing overhead term.

Theorem 6. Let q be a proper estimator. Then,

E
(

min
i

DKL

(
p||q

(
·|xn−1

[−i]

)))
≤ E(DKL(p||q(·|xn))) + o

(
1
n

)
. (11)

A proof for this Theorem is provided in Appendix E. Notice that the inequality is
due to the convexity of the different operators. This means that typically, we expect the
inequality to be strict. In other words, given a proper estimator q, Theorem 6 shows that on
the average, there exists at least a single model in Ploo that is better than q(·|xn), up to a
vanishing overhead term of o

(
1
n

)
. In Appendix F we show that any add-constant (Laplace)

estimator satisfies (11). Further, our experiments indicate that the same property holds
for the Good–Turing estimator. This motivates the use of these estimators in the design of
Pr = Ploo, as suggested by (4).

Let us now demonstrate our suggested scheme. In each experiment, we draw n
samples from a multinomial distribution over an alphabet size m = 1000. We apply the
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Krichevsky–Trofimov estimator, q(ni) ∝ ni + 1/2, and a Good–Turing estimator, following
the implementation of Gale [45]. We compare these estimators to our suggested scheme;
we construct a loo model class using Good–Turing, followed by an NML estimator. In
addition, we compare the NML with a simple uniform average over the loo model class.
A comprehensive description of our suggested scheme is provided in Appendix G. To
emphasize the difference between the suggested schemes, we compare each estimator
with a natural oracle pnat(xn); an estimator who knows the true model p, but is restricted
to assign the same probability to symbols that appear the same number of times in xn.
The performance of this oracle serves as a lower bound [41]. Figures 5 and 6 demonstrate
the results we achieve for a Zipf’s law distribution p(i) ∝ i−s with a parameter value of
s = 1.01 (left) and s = 1.5 (center). In addition, we consider a geometric distribution
p(i) = (1− s)i−1s with s = 0.05 (right). We report the expected difference (regret) between
DKL(p||q(·|xn)) and DKL(p||pnat(·|xn)) in Figure 5, while the worst-case regret is presented
in Figure 6. We omit the uncompetitive performance of the Krichevsky–Trofimov estimator.
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Figure 5. Large alphabet probability estimation- the expected regret (difference) between DKL(p||q(·|xn)) and the perfor-
mance of the natural oracle, DKL(p||pnat(·|xn)).

Figure 6. Large alphabet probability estimation—the worst-case regret between DKL(p||q(·|xn)) and the performance of the
natural oracle, DKL(p||pnat(·|xn)).
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As we observe Figure 5, we notice that our suggested NML method outperforms
Good–Turing when the alphabet size is relatively small. As n increases, the improvement
becomes less evident as the restrictive model class converges to q(·|xn). Further, we notice
that a uniform average over the loo model class is also favorable, but demonstrates a
slighter improvement. Finally, we compare the worst-case performance in Figure 6. Here,
again, we notice a significant improvement as in the previous experiments. For example,
for n = 40 and a Zipf’s law distribution (s = 1.5), the Good–Turing results in a regret of
0.72 bits while the uniform mixture is 0.58 bits and the NML is only 0.43 bits.

8. Real-World Example

Let us now introduce a real-world example. The Wisconsin breast cancer study
(https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic), accesed
on 14 June 2021) considers 569 diagnosed tumors, of which 357 are benign (B) and 212 are
malignant (M) [46] . Each tumor is characterized by 32 features, including its size, texture,
surface, and more. We would like to study the radius of benign tumors and assess its
probability function. This probability is of high interest as it allows us, for example, to
control type-I error in a future hypothesis testing (the probability of deciding a tumor is
malignant, given that it is benign).

The medical domain knowledge suggests that the size of the tumor follows a normal
distribution, with different parameters for the B and M tumors. Therefore, the standard ap-
proach is to estimate the parameters from the given data. For simplicity, we assume the true
variance is known (estimated from the entire population) and focus on the unknown mean.

As in the previous sections, we study the performance of different estimation schemes.
We draw n samples from the B class, and apply the MLE and the suggested NML scheme.
Notice that we focus on the NML as it is the most robust approach for the modeling
assumption (and henceforth most suitable for such a clinical trail). We repeat this experi-
ment 10,000 times for every value of n and report the mean, variance, and worst-case KL
divergence between the “true empirical distribution” (based on all the B samples that we
have) and each estimator that we examine. Figure 7 demonstrates the results we achieve.
As we can see, our suggested approach attains a significantly better worst-case results.

It is important to emphasize that the MLE is the solution to the classical minimax
estimation scheme (1), under the assumption that the data is generated from normal
distribution (see Section 2). Our approach with the NML relaxes this strong restriction and
attains a significant improvement in the worst-case performance.

Figure 7. Breast cancer tumor study. Mean, variance, and worst-case performance of different estimators, based on
n samples.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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9. Discussion and Conclusions

In this work, we study a minimax inference framework. Our suggested scheme con-
siders a class of models, defined by the parametric confidence region of the given samples.
Then, we control the worst-case performance within this class. Our formulation relaxes
some strong modeling assumptions of the classical minimax framework and considers a
robust inference scheme for the complete unknown distribution. The attained solution
draws fundamental connections to basic concepts in information theory. We demonstrate
the performance of our suggested framework in classical inference problems, including
normal and multinomial distributions. In addition, we demonstrate our suggested scheme
on more challenging large alphabet probability estimation problems. Finally, we study
a real-world breast cancer example. In all of these settings we introduce a significant
improvement in the worst-case, at a typically low cost on the average. This demonstrates
an “insurance-like” trade-off; we pay a small cost on the average to avoid a great loss if
“something bad happens” (that is, the observed samples do not represent the true model
well enough).

It is important to emphasize that our suggested scheme is not limited to confidence
region model classes. In fact, in many cases, exact confidence regions are difficult to attain,
or result in model classes that are too large to control (for example, large alphabet problems
with many unseen symbols). In these cases, we consider alternative forms of “reasonable”
classes of models. One possible solution is the leave-one-out (LOO) class, discussed in
Section 7. Additional alternatives are bootstrap confidence regions, Markov Chain Monte
Carlo (MCMC) sampling and others.

Finally, our suggested scheme may be generalized to a supervised learning framework.
For example, consider a linear regression problem. The standard approach is to estimate
the regression coefficients that best explain the data (typically by least squares analysis).
However, notice we may also construct confidence intervals for the sought coefficients.
This way, we can define a restricted model class (similarly to Section 3), and seek minimax
estimates with respect to it. This idea may be generalized to more complex learning
schemes such as deep neural networks. Specifically, we may construct a restricted model
class as the vicinity of some class of parameters that the network converges to, and control
the corresponding worst-case performance. We consider this direction for our future work.
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Appendix A. A Proof of Theorem 2

Let pθ ∈ P(Θ) be an unknown probability distribution. Let P(Θr) be a restrictive
model class that corresponds to a restricted set of parameters Θr. We would like to solve
the minimax problem

min
q

sup
θ′∈Θr

sup
θ∈Θ

∫
pθ(x) log

pθ′(x)
q(x)

dx = min
q

sup
θ∈Θ

(
DKL(pθ ||q)− fΘr (pθ)

)
, (A1)
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where fΘr (pθ) , infθ′∈Θr DKL(pθ ||pθ′). Let us now define an equivalent problem to (A1),

min
q

sup
π(θ)

∫
θ∈Θ

π(θ)(DKL(pθ ||q)− fΘr (pθ))dθ. (A2)

where π(θ) is a weight function satisfying π(θ) ≥ 0 and
∫

θ∈Θ π(θ)dθ = 1. Notice that the
equivalence holds since for a fixed q, a weight function which puts all probability mass on
the worst θ is a least favorable function. Let us now change the order of the minimum and
supremum, similarly to the redundancy-capacity theorem (3).

Let MΘ be the collection of all measures (on X) that can be obtained as mixtures of the
pθ measures. Let M̄Θ be the closure of MΘ. Define

ψ(q, π(θ)) =
∫

θ∈Θ
π(θ)(DKL(pθ ||q)− fΘr (pθ))dθ (A3)

V̄ = min
q

sup
π(θ)

ψ(q, π(θ))

V = sup
π(θ)

min
q

ψ(q, π(θ))

Ṽ = sup
π(θ)

min
q∈M̄Θ

ψ(q, π(θ)).

Notice that if F(Θ, Θr) < ∞, then Ṽ = F(Θ, Θr). This holds as for every π, the
mixture q ∈ M̄Θ, which minimizes ψ(q, π(θ)) is qπ (see, for example, [27]). Therefore, we
would like to show that V̄ = Ṽ. Here, we follow the steps of [27] and Sion’s minimax
theorem [47].

Theorem A1 (Sion’s Minimax Theorem [47]). Let U be a compact convex subset of a linear
topological space and V be a convex subset of a linear topological space. If f (u, v) is a real-valued
function on U × V with

1. f (u, ·) is upper semi-continuous and quasi-concave on V for all u ∈ U
2. f (·, v) is lower semi-continuous and quasi-convex on U for all v ∈ V
then, minu∈U supv∈V f (u, v) = supv∈V minu∈U f (u, v).

Let us first assume that P(Θ) is uniformally tight. In other words, for every ε > 0 there
exists a compact set K ⊆ X such that pθ(K) > 1− ε for all pθ ∈ P(Θ). Haussler showed
that if P(Θ) is uniformally tight, then it is totally bounded, and thus M̄Θ is compact [27].
Therefore, for Ṽ < ∞ we have that

V̄ =min
q

sup
π(θ)

ψ(q, π(θ))
(a)
≤ min

q∈M̄Θ

sup
π(θ)

ψ(q, π(θ))
(b)
= (A4)

sup
π(θ)

min
q∈M̄Θ

ψ(q, π(θ))
(c)
= sup

π(θ)

min
q

ψ(q, π(θ)) = V

where:

(a) follows from definition
(b) follows from Sion’s minimax theorem
(c) for every π(θ), the distribution q which minimizes ψ(q, π(θ)) is a mixture distribu-

tion [27]. Notice that fΘr (pθ) does not depend on q.

This means that V̄ ≤ Ṽ = V. On the other hand, it is easy to verify that V̄ ≥ V due to
the max-min inequality [48]. This means that V̄ = Ṽ as desired.

Let us now assume that P(Θ) that is not uniformally tight. Haussler showed that in
this case, supπ(θ) minq

∫
θ∈Θ π(θ)DKL(pθ ||q)dθ = ∞ (Lemma 4 in [27]). Therefore, given

that fΘr (pθ) < ∞ for all θ ∈ Θ (as Θr is bounded), we have that V = ∞. However, this
contradicts Ṽ < ∞.
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Appendix B. A Proof of Theorem 3

Assume that Θr is bounded. Let p∗θ (x) = argminθ′∈Θr
DKL(pθ ||pθ′). Then,

F(Θ, Θr) , sup
π(θ)

∫
θ∈Θ

π(θ)

(
DKL(pθ ||qπ)− inf

θ′∈Θr
DKL(pθ ||pθ′)

)
dθ = (A5)

sup
π(θ)

∫
θ∈Θ

π(θ)(DKL(pθ ||qπ)− DKL(pθ ||p∗θ ))dθ =

sup
π(θ)

∫
θ∈Θ

π(θ)

(∫
x

pθ(x) log
p∗θ (x)
qπ(x)

)
dθ.

Similarly to the channel capacity problem, this optimization does not hold a closed
form solution in the general case. Therefore, we introduce an alternating projection algo-
rithm, similar in spirit to the Blahut–Arimoto algorithm [49,50]. For this purpose, we apply
the well-known alternating maximization theorem (Lemma 9.4 and 9.5 in [51]).

Lemma A1 (The Alternating Maximization Theorem [51]). Let f (u1, u2) be a real, concave
and bounded-from-above function that is continuous and has continuous partial derivatives. Let U1
and U2 be two convex sets. Consider an optimization problem

sup
u1∈U1, u2∈U2

f (u1, u2) = f ∗. (A6)

Denote c2(u1) = supu2∈U2
f (u1, u2) and c1(u2) = supu1∈U1

f (u1, u2). The alternating
maximization algorithm is an iterative process where in each iteration k we maximize over one of
the variables. Let (u0

1, u0
2) be an arbitrary starting point in U1 × U2. For k ≥ 0 let (uk

1, uk
2) =

(c1(uk−1
2 ), c2(c1(uk−1

2 ))) and let f k = f (uk
1, uk

2). Assume that c2(u1) ∈ U2 and c1(u2) ∈ U1 are
unique for all u1 ∈ U1 and u2 ∈ U2, then limk→∞ f k = f ∗.

Let us reformulate (A5) according to the requirements of Lemma A1. First, we multiply
the numerator and the denominator in the log by ψ∗(θ, x) = π(θ)pθ(x)

qπ(x) . We attain

sup
π(θ)

∫
θ∈Θ

π(θ)
∫

x
pθ(x) log

ψ∗(θ, x)
π(θ)

p∗θ (x)
pθ(x)

dxdθ. (A7)

Define the following maximization problem:

sup
φ(θ)∈A1

sup
ψ(θ,x)∈A2(x)

∫
θ∈Θ

φ(θ)
∫

x
pθ(x) log

ψ(θ, x)
φ(θ)

p∗θ (x)
pθ(x)

dxdθ (A8)

where A1 = {φ(θ)|
∫

θ∈Θ φ(θ)dθ = 1, φ(θ) ≥ 0} and A2(x) = {ψ(θ, x)|
∫

θ∈Θ ψ(θ, x)dθ =
1, ψ(θ, x) ≥ 0} are convex sets. We now show that (A8) satisfies the conditions of the
alternating maximization algorithm. First, we notice that our objective is real, concave, and
bounded from above (as F(Θ, Θr) < ∞). Lemmas A2 and A3 below show that there exists
a unique maximum for every φ(θ) ∈ A1 and ψ(θ, x) ∈ A2, similarly to the Blahut–Arimoto
algorithm for the channel capacity problem.

Lemma A2.

argmax
ψ(θ,x)∈A2(x)

∫
θ∈Θ

φ(θ)
∫

x
pθ(x) log

ψ(θ, x)
φ(θ)

p∗θ (x)
pθ(x)

dxdθ =
φ(θ)pθ(x)∫

θ′∈Θ φ(θ′)pθ′(x)dθ′
.
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Proof. Define w(x) =
∫

θ′∈Θ φ(θ′)pθ′(x)dθ′. Further, define ψ′(θ, x) = φ(θ)pθ(x)
w(x) . We

have that∫
θ∈Θ

φ(θ)
∫

x
pθ(x) log

ψ′(θ, x)
φ(θ)

p∗θ (x)
pθ(x)

dxdθ −
∫

θ∈Θ
φ(θ)

∫
x

pθ(x) log
ψ(θ, x)

φ(θ)

p∗θ (x)
pθ(x)

dxdθ = (A9)∫
θ∈Θ

φ(θ)
∫

x
pθ(x) log

ψ′(θ, x)
ψ(θ, x)

dxdθ =
∫

θ∈Θ

∫
x

w(x)ψ′(θ, x) log
ψ′(θ, x)
ψ(θ, x)

dxdθ =∫
x

w(x)DKL(ψ
′(θ, x)||ψ(θ, x)) ≥ 0

where the second equality follows from the definition of ψ′(θ, x) above.

Lemma A3.

argmax
φ(θ)∈A1

∫
θ∈Θ

φ(θ)
∫

x
pθ(x) log

ψ(θ, x)
φ(θ)

p∗θ (x)
pθ(x)

dxdθ =
∏x ψ̃(θ, x)pθ(x)∫

θ′∈Θ ∏x ψ̃(θ′, x)pθ′ (x)dθ′

where ψ̃(θ, x) = ψ(θ, x) p∗θ (x)
pθ(x)

Proof. We apply calculus of variations and attain the optimality condition. Define the
Lagrangian as

L =
∫

θ∈Θ
φ(θ)

∫
x

pθ(x) log
ψ(θ, x)

φ(θ)

p∗θ (x)
pθ(x)

dxdθ − λ

(∫
θ∈Θ

φ(θ)dθ − 1
)
= (A10)∫

θ∈Θ
φ(θ)

(∫
x

pθ(x) log
ψ(θ, x)

φ(θ)

p∗θ (x)
pθ(x)

dx− λ

)
dθ + λ

Then, the Euler–Lagrange condition requires that the partial derivative of the integrand
with respect to φ(θ) is zero. This yields∫

x
pθ(x)

(
log

ψ̃(θ, x)
φ(θ)

− 1
)

dx− λ = 0

where ψ̃(θ, x) = ψ(θ, x) p∗θ (x)
pθ(x) . Therefore, φ(θ) ∝ ∏x ψ̃(θ, x)pθ(x) as desired.

Appendix C

Let X ∼ N (µ, Σ) be a d-dimensional Gaussian vector where µ is unknown and Σ is
known. Let xn be a collection of n i.i.d. draws from X. Define a 100(1− α)% confidence
region for µ as a collection Mr = {µ|(x̄ − µ)TΣ−1(x̄ − µ) ≤ 1

n χ2
d(1 − α)}, as defined

in Section 5. As previously established (and shown in [30]), our minimax problem is
equivalent to a channel capacity problem X = M + Z where M ∈ Mr and Z ∼ N (0, Σ),
independent of M.

Let Σ = USUT be the singular value decomposition (SVD) of Σ and AT = S−0.5UT be
the diagonalizing transformation of Z, such that Cov(S−0.5UTZ) = Id. Define X′ = ATX =
AT M + ATZ. Notice that I(M; X) = I(AT M; ATX), given that A is invertible. Let us study
I(AT M; ATX). We have that Z′ = ATZ ∼ N (0, Id) and

(AT x̄− ATµ)T(AT x̄− ATµ) = (x̄− µ)T AAT(x̄− µ) = (x̄− µ)TΣ−1(x̄− µ) ≤ 1
n

χ2
d(1− α).

This means that µ′ = ATµ satisfies µ′ ∈ M′
r where

M′
r = {µ′|(AT x̄− µ′)T(AT x̄− µ′) ≤ 1

n
χ2

d(1− α)}.
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Therefore, the channel X′ = M′ + Z′ is again a standard amplitude constrained
Gaussian channel, where the input is now a sphere around AT x̄, instead of x̄.

Finally, we define X′′ = X′ − AT x̄ = M′ − AT x̄ + Z′. Let M′′ = M′ − AT x̄ and
µ′′ = µ′ − AT x̄. We have that M′′ ∈ M′′

r whereM′′
r = {µ′|µ′′Tµ′′ ≤ 1

n χ2
d(1− α)}. Further,

we have that I(M; X) = I(M′′; X′′). This means that our original minimax problem is
equivalent to a standard, centered, amplitude-constrained channel capacity problem.

Appendix D

Let qπ be convex combination of V(Pr). Assume that qπ satisfies DKL(pj||qπ) = c
for all pj ∈ V(Pr). Notice that every p∗ ∈ Pr can be described as a convex combination
of the vertexes V(Pr) (since Pr is a convex set). Therefore, we have that DKL(p∗||qπ) =
DKL(∑ aj pj||qπ) ≤ ∑ ajDKL(pj||qπ) = c. This means that qπ satisfies that optimality
conditions over the set Pr. In other words, the solution to the minimax problem (2) over
the confidence region Pr is attained by solving the capacity-redundancy problem (3) over
its finite set of vertexes V(Θr).

Appendix E. A Proof for Theorem 6

Let us first introduce the following Lemma.

Lemma A4. Let q be a proper estimator. Then, ∆p(n) ≤ o
(

1
n

)
.

Proof. Applying a simple mathematical induction,

EDKL(p||q(·|xn)) =∆p(n) +EDKL(p||q(·|xn+1)) = (A11)

∆p(n) + ∆p(n + 1) +EDKL(p||q(·|xn+2)) =

lim
m→∞

(
m

∑
k=n

∆p(k) +EDKL(p||q(·|xm))

)
< ∞

where the finiteness is due to Condition A. Therefore, we necessarily have that the series
∑m

k=n ∆p(k) < ∞ converges. Conditions B and C state that ∆p(k) is non-negative and
monotonically non-increasing. Therefore, simple calculus shows that limm→∞ m∆p(m) = 0,

which implies that ∆p(m) ≤ o
(

1
m

)
.

Now, define the leave-one-out model class as Ploo =
{

q
(
·|xn−1

[−i]

)}n

i=1
. We have that

E
(

min
i

DKL

(
p||q

(
·|xn−1

[−i]

)))
≤ min

i
E
(

DKL

(
p||q

(
·|xn−1

[−i]

)))
= (A12)

E
(

DKL

(
p||q

(
·|xn−1

)))
= E(DKL(p||q(·|xn))) + ∆p(n) ≤

E(DKL(p||q(·|xn))) + o
(

1
n

)
where the first inequality is due to Jensen inequality and the second inequality is due to
Lemma A4.

Appendix F

Define the expected convergence rate of an estimator q(·|xn) as

∆p(n) = E
(

DKL(p||q(·|xn))− DKL(p||q(·|xn+1))
)

. (A13)



Entropy 2021, 23, 773 20 of 22

The add-constant estimator follows q(i|xn) = q(ni) = ni+β
n+mβ where β is the added

constant. We have

EDKL(p||q(·|xn)) =E∑
i

p(i) log
p(i)

q(ni)
= (A14)

H(p)−∑
i

p(i)(E log(ni + β)− log(n + mβ)) =

H(p) + log(n + mβ)−∑ p(i)E log(ni + β).

For X ∼ Bin(n, θ) we have that E log(X + a) = log(θn + a)− 1−θ
2θn + O

(
1

n2

)
. Further,

ni = ∑n
j=1 1{xj = 1} ∼ Bin(n, p(i)). Therefore, E log(ni + β) = log(np(i) + β)− 1−p(i)

2np(i) +

O
(

1
n2

)
, leading to

EDKL(p||q(·|xn)) = H(p) + log(n + mβ)−∑ p(i) log(np(i) + β)+ (A15)

m− 1
2n

+ O
(

1
n2

)
.

Plugging this result to (A13), we obtain

∆p(n) =∑
i

p(i) log
(

n + mβ

np(i) + β
· (n + 1)p(i) + β

(n + 1) + mβ

)
+

m− 1
2n(n + 1)

+ O
(

1
n2

)
< (A16)

∑
i

p(i) log
(n + 1)p(i) + β

np(i) + β
+

m− 1
2n(n + 1)

+ O
(

1
n2

)
=

−∑
i

p(i) log
(

1− p(i)
(n + 1)p(i) + β

)
+

m− 1
2n(n + 1)

+ O
(

1
n2

)
≤

∑
i

p(i)
p(i)

(n + 1)p(i) + β
· (n + 1)p(i) + β

(n + 1)p(i) + β− p(i)
+

m− 1
2n(n + 1)

+ O
(

1
n2

)
=

∑
i

p2(i)
np(i) + β

+
m− 1

2n(n + 1)
+ O

(
1
n2

)
≤∑

i

p2(i)
np(i)

+
m− 1

2n(n + 1)
+ O

(
1
n2

)
=

1
n
+

m− 1
2n(n + 1)

+ O
(

1
n2

)
where the first inequality is due to n + mβ < n + 1 + mβ and the second inequality is
− log(1− x) ≤ x

1−x for all 0 < x < 1. Finally, we have

E
(

min
i

DKL

(
p||q

(
·|xn−1

[−i]

)))
≤ min

i
EDKL

(
p||q

(
·|xn−1

[−i]

))
= (A17)

EDKL

(
p||q

(
·|xn−1

))
= ∆p(n− 1) +EDKL(p||q(·|xn)) ≤

EDKL(p||q(·|xn)) +
1

n− 1
+

m− 1
2n(n− 1)

+ O
(

1
n2

)
where the first inequality is due to Jensen inequality, the first equality is since xn are i.i.d.
draws, and the last inequality is due to (A16).

Appendix G

One of the basic properties of most widely used finite alphabet estimators (MLE,
add-constant, Good–Turing, and others) is the natural assumption; symbols that appear the
same number of times are assigned the same probability estimate. This is not surprising, as
it is easy to show that natural estimators maximize the expected estimation accuracy for
a given set of samples (for example, see the work of Orlitsky and Suresh [41]). A natural
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estimator has k− 1 degrees of freedom where k is the number of symbols with a unique
frequency values ni (the cardinality of the frequency of frequencies, as denoted by Good [43]).

Our suggested estimation scheme is also in the natural domain. First, we choose
a natural estimator (for example, Good–Turing). Then, given a set of samples xn, we
identify sets of symbols with the same frequency values ni. Denote the number of
unique frequencies as k. Define the mass of all the symbols with the same frequency
r as pmass(r|xn) = ∑ni=r p(i) for r = 0, ..., k. We construct a leave-one-out (loo) model class
by first excluding a single sample at a time and applying our chosen estimator, q(i|xn−1).
Then, we set p̂mass

loo (r|xn) = ∑ni=r q(i|xn−1). In words, the loo estimator of the rth mass is
attained by excluding a single sample, applying the chosen estimator, and accumulating
the estimates of all the symbols of the original mass r. Finally, the estimate of a single
symbol in a mass simply p̂loo(i|xn) = p̂mass

loo (ni|xn)/ ∑j 1{nj = ni}. Notice that the size of
the model class is k (and not n).

For example, consider the set xn = {1, 1, 1, 2, 2, 2, 3, 3} and a maximum likelihood
estimator (which is simpler to illustrate then Good-Turing). We would like to find the loo
class given xn. We seek loo estimates for symbols that appear twice, pmass(r = 2|xn), for
x = 3, and three times, pmass(r = 3|xn), for x = 1, 2. We first remove the first symbol x1 = 1,
and get q(X = 1|xn−1

[−1]) = q(X = 3|xn−1
[−1]) = 2/7. This leads to p̂mass

loo (r = 2|xn) = 2/7
and p̂loo(r = 3|xn) = 5/7. Notice that we get the same estimates as we remove x4 = 2.
Finally, by removing x7 = 3 we attain q

(
X = 1|xn−1

[−7]

)
= q

(
X = 2|xn−1

[−7]

)
= 3/7, leading

to p̂mass
loo (r = 2|xn) = 1/7 and p̂mass

loo (r = 3|xn) = 6/7. Therefore, our corresponding loo
model class p̂loo consists of two estimates, [2.5/7, 2.5/7, 2/7]T and [3/7, 3/7, 1/7]T and its
cardinality is k = 2.
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