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Abstract: Age-related decline in testosterone is known to be associated with various clinical symptoms
among older men and it is possible that the accompanying decline in muscle mass and strength might
lead to a decline in motor and physical functions. Sarcopenia is an important pathophysiological
factor associated with frailty in older adults and is diagnosed in older adults as a decrease in muscle
strength, muscle mass, and walking speed, which can lead to a significant decline in the quality of
life and shortened healthy life expectancy. Testosterone directly interacts with the androgen receptor
expressed in myonuclei and satellite cells and is also indirectly associated with muscle metabolism
through various cytokines and molecules. Currently, significant correlations between testosterone
and frailty in men have been confirmed by numerous cross-sectional studies. Many randomized
control studies have also supported the beneficial effect of testosterone replacement therapy (TRT) on
muscle volume and strength among men with low to normal testosterone levels. In the world’s aging
society, TRT can be a tool for preventing the onset of sarcopenia in older-adult men. This narrative
review aims to show the relationship between the decline in testosterone with age, sarcopenia, and
frailty, as well as the effects of testosterone replacement therapy on muscle mass and strength.
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1. Introduction

The aging of the population has been become a worldwide problem and maintaining
and even improving the quality of life (QOL) of middle-aged and older-adult men has
become an important issue. As the population ages, healthy life expectancy becomes
increasingly more important than mean life expectancy. Life expectancy refers to the
period from birth to death and includes periods requiring long-term care, while healthy
life expectancy indicates the period without significant health issues in daily life. In many
developed countries, the difference between the mean life expectancy and the healthy
life expectancy tends to be greater and extending healthy life expectancy has become a
clinical concern.

In men, serum testosterone levels decrease with age by 2–3% annually, a decline
associated with specific symptoms of late-onset hypogonadism (LOH) syndrome [1], whose
various clinical signs and symptoms include decreased libido and sexual desire, muscle
weakness, increased visceral fat, obesity, osteoporosis, deterioration of insulin resistance,
and dyslipidemia, which are significantly associated with aging [1–4]. These clinical signs
and symptoms can often impair the QOL of middle-aged and older-adult men and are
becoming a serious issue in the present aging society. Testosterone replacement therapy
(TRT) is a widely accepted tool for improving these clinical conditions in hypogonadal men
and its clinical use has increased substantially over the past several years [1].

Sarcopenia is an important pathophysiological factor of frailty in older adults and
is diagnosed with a decrease in muscle strength, muscle mass, and low physical perfor-
mance [5]. Sarcopenia and frailty are significantly associated with an increased risk of
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falls and fractures in older-adult men, which can lead to a serious decrease in QOL and
shortening of healthy life expectancy [6,7]. Preventive measures are, therefore, required.

Testosterone is an important hormone for maintaining skeletal muscle mass and
strength in men and numerous previous studies have suggested that testosterone deficiency
is significantly associated with the onset of sarcopenia. The present review summarizes
the current evidence on the relationship between testosterone and sarcopenia/frailty. The
review also investigated whether TRT for hypogonadal men with sarcopenia can improve
muscle mass, strength, and physical function.

2. Materials and Methods

A review of the PubMed, MEDLINE, and EMBASE databases was conducted to search
for original articles, systematic reviews, and meta-analyses under following keywords:
“testosterone” or “hypogonadism” or “sarcopenia” or “frailty” or “muscle”. There were
no limitations in terms of language, publication status, or study design. Papers published
between January 1990 and October 2020 were collected. We also checked the references
of systematic reviews and meta-analyses carefully to identify additional original articles
for inclusion. Two reviewers screened the search results and the data were collected in
June 2022.

The papers suitable for the topic “testosterone and sarcopenia” from the journal
databases were chosen for the present analysis. For “efficacy of testosterone replacement
therapy in sarcopenia”, we reviewed papers published since 2010.

3. Sarcopenia: Definition and Etiology

One of the phenomena of human aging is the progressive decline in skeletal muscle
mass, which can result in negative effects on physical fitness and function. The prevalence
of sarcopenia is ~5–50% in older adults aged 65 years and older [8–10]. In 1989, Irwin
Rosenberg proposed the term “sarcopenia” (from the Greek “sarx” for flesh and “penia”
for deficiency) for age-related loss of muscle mass [11]. Currently, sarcopenia is defined
as age-related loss of skeletal muscle mass and strength. Various differing definitions of
sarcopenia have been proposed; however, there is still no widely accepted definition [12].
Baumgartner et al. first defined sarcopenia as a decline of less than 2 standard deviations
below the mean of a young reference group in appendicular skeletal muscle mass [13].
Since then, the algorithm proposed by the European Working Group on Sarcopenia in Older
People (the presence of both low muscle mass and low muscle strength or performance) [14]
and by the Foundation for the National Institutes of Health sarcopenia project (appendicular
lean mass adjusting for body mass index to define low muscle mass) [15] have been
generally used for diagnosing sarcopenia. Recently, the Asian working group for sarcopenia
suggested an alternative algorithm (Figure 1) [16]. This Asian consensus has plenty in
common with the European consensus and the cases with decreased walking speed or
grip strength are defined as individuals with decreased muscle performance. Those cases
accompanied by decreased muscle mass are defined as having sarcopenia. According to
the Asian consensus, the reported prevalence for sarcopenia is 16.5% for men and 19.9% for
women in Japan [17], which is likely to be approximately similar to that reported previously
in other countries [18–20].

For certain cases, the cause of the sarcopenia can be clearly identified, whereas no clear
cause can be determined in other cases. Sarcopenia caused only by aging is classified as
“primary” (age related) and sarcopenia caused by activities of daily living, nutrition, and
illness is classified as “secondary sarcopenia” (Table 1). The most common cause of muscle
weakness in older adults is age-related muscle atrophy. In general, skeletal muscle decreases
by 25–30% and muscle strength decreases by 30–40% in individuals in their 70s when
compared with those in their 20s, with muscle mass decreasing by approximately 1–2%
every year after 50 years of age [21]. In addition, older-adult men have an increased risk
of developing sarcopenia through various factors, such as lifestyle changes, less exercise,
more physical illnesses (severe organ failure, neuromuscular disease, inflammatory disease,



J. Clin. Med. 2022, 11, 6202 3 of 13

malignant tumors, etc.), undernourishment, and appetite loss. Therefore, the etiology of
sarcopenia is often assumed to be multifactorial [22]. Sarcopenia develops concurrently
with changes in hormones (testosterone and growth hormones) and inflammatory cytokines
involved in the muscle metabolism due to these causes. In particular, testosterone is
significantly correlated with maintaining bone strength, muscle mass, and muscle strength
among men and it has been found that the pathogenesis of sarcopenia in men might be
associated with testosterone decline with aging.
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Table 1. Classification of sarcopenia by causes.

Primary Sarcopenia

Age-related No clear causes other than aging

Secondary Sarcopenia

Daily living-related Bedridden, lack of exercise, ataxia, weight loss

Nutrition-related Malabsorption, gastrointestinal disease,
appetite loss, lack of energy, low protein intake

Disease-related Severe organ failure, inflammatory diseases,
malignancies, endocrine diseases

4. Testosterone and Sarcopenia
4.1. Testosterone and Muscle Metabolism

More than 95% of serum testosterone is produced by the Leydig cells of the testes
through stimulation by LH from the pituitary gland in males [23]. Testosterone is mostly
bound to sex-hormone-binding globulin or albumin and 1–2% exists in free form; however,
it binds loosely to albumin and can easily become free form [24]. Free testosterone (FT)
is taken up into target cells through the cell membrane and binds to androgen receptor
(AR) in the cytoplasm. Testosterone bound to AR is converted to dihydrotestosterone
by 5α-reductase. Testosterone and DHT bind to the same AR to form a dimeric complex
and this dimer binds to specific sites on DNA and activates target genes, resulting in the
expression of androgenic actions [25]. In general, the length of the CAG repeats present
in the AR gene shows an inverse relationship, with AR susceptibility and length of their
repeats differing between the races, with the length increasing in the order of black people,
white people, and Asian people [26].

There are numerous ARs in muscle tissue and testosterone plays an important role
in maintaining muscle mass and strength. It is, therefore, logical to assume that age-
related testosterone decreases are closely associated with the onset of sarcopenia in men.
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Conversely, the anabolic effects of testosterone on muscle hypertrophy have been well
established [27].

In human studies, testosterone directly interacts with AR expressed in myonuclei
and satellite cells [28,29], which is a major source for the establishment of hypertrophying
muscle fibers (Figure 2). Testosterone has a potential effect on myogenesis and muscle
hypertrophy by increasing protein synthesis and inhibiting protein degradation in muscle
cells [30,31] and then promoting mitotic activity and differentiation of satellite cells [29,32].
Numerous in vitro studies have demonstrated the anabolic actions of testosterone through
increases in insulin-like growth factor-1 expression [33,34], beta-catenin and T-cell factor-4
pathway signaling [35], regulation of peroxisome proliferator-activated receptor-gamma
coactivator 1 alpha, and p38 mitogen-activated protein kinases [36] and stimulating the
hypertrophy of L6 myoblasts in a signal cascade dependent on Ark and mammalian target
of rapamycin [37]. The mechanism by which low testosterone levels cause muscle atrophy
is also being clarified. The catabolic action of testosterone has been described through
the enhancement of muscle atrophy-F-box (atrogin-1) and muscle RING-finger protein-1
expression [38]. Moreover, an increase in hypertrophied visceral fat due to testosterone
decline contributes to an increase in certain inflammatory cytokines, such as interleukin-6
and tumor necrosis factor (TNF-α), which have catabolic effects on skeletal muscle [39].
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Figure 2. Molecular mechanisms in the development of sarcopenia. IGF-1, insulin-like growth factor–
1; mTOR, mammalian target of rapamycin; TCF-4, T-cell factor-4; PGC-1α, peroxisome proliferator-
activated receptor-gamma coactive tor 1 alpha; MAPK, p38 mitogen-activated protein kinases; TNF-α,
tumor necrosis factor; IL-6, interleukin-6; MuRF-1, muscle atrophy-F-box (atrogin-1) and muscle
RING-finger protein-1. An upward red arrow indicates “increase”, whereas a downward one
indicates “decrease”.

4.2. Clinical Effects of Testosterone for Muscle

Androgen deprivation therapy (ADT) for prostate cancer can result in decreased
muscle mass and muscle weakness. A prospective study that included 79 patients with
prostate cancer and employed a 12-month ADT reduced the participants’ lean body mass
by 3.8% and increased their body fat percentage by 11% [40]. According to a report
examining 39 patients with prostate cancer, the muscle mass of the rectus femoris, sartorius,
and quadriceps estimated using computed tomography after ADT for 14–20 weeks was
21.8% and 15.4%, and 16.6%, respectively [41]. In general, patients with prostate cancer
who undergo ADT are reported to have 3.0–6.0% lower muscle mass and 15–17% lower
muscle strength than healthy individuals of the same age [42]. These findings suggest that
testosterone decline with age is a trigger for muscle loss among older-adult men.
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Several studies have demonstrated an association between serum testosterone levels
and muscle mass and strength in men [43–49]. Appendicular muscle mass was significantly
correlated with serum FT levels in non-Hispanic white men in a cross-sectional study
from the New Mexico Aging Process Study [43]. In 403 men from The Netherlands,
bioavailable testosterone and luteinizing hormone had a significant correlation with grip
and leg extensor strength [44]. The MINOS cohort study that included 845 French men
also found that the group with the lowest appendicular muscle mass had a significantly
lower FT level [45]. A previous National Health and Nutrition Examination Survey study
of men revealed that higher testosterone levels at physiologic levels were associated with
higher body lean mass and lower body fat mass [46]. A cross-sectional study that included
922 men aged over 60 years found that weaker muscle strength was observed in the men
within the lowest tertile of FT compared with those in the highest tertile (adjusted odds
ratio: 2.28; 95% CI 1.33–3.91) [47]. A recent study that investigated the association between
serum testosterone levels and body composition among 3875 men in China found a positive
correlation between testosterone levels and appendicular lean mass index [48]. A recent
systematic review also reported that testosterone could have a potential effect on muscle
mass and strength [49]. Although there are a few studies that failed to identify an effect for
testosterone on muscle strength [50,51], current evidence has likely established a positive
correlation between testosterone and muscle condition.

4.3. Evidence of Testosterone Decrease in Frailty/Sarcopenia

Numerous cross-sectional studies have confirmed significant correlations between
testosterone and frailty in men [52–54]. A Massachusetts cohort study that included
646 men aged 50–86 years investigated the relationship between testosterone and frailty
and its components [52]. Although no association was observed between total testosterone
(TT) or FT levels and the frailty phenotype, there was a significant association between TT
levels and the frailty components of grip strength and physical activity. Cross-sectional
data from the Toledo Study for Healthy Aging that included 552 men showed that the risk
of frailty decreases linearly with testosterone levels (adjusted OR 2.9 (95% CI 1.6–5.1) and
1.6 (95% CI 1.0–2.5) in TT and FT, respectively) [53]. Another cross-sectional study based
on data from the Longitudinal Aging Study Amsterdam (LASA) that included 623 men
also suggested a potential correlation between low TT or bioavailable testosterone levels
and impaired mobility and low muscle strength in men [54]. In a study of 461 individuals
aged 60 years and older, a low FT value (<243 pmol/L) was a significant risk factor for
developing frailty [55]. A recent meta-analysis that included 11 studies reported that TT
(OR 1.37, 95% CI 1.09–1.72) and FT (OR 1.55, 1.06–2.25) were significantly associated with
frailty in older men [56].

A number of longitudinal studies have found an equivocal future risk for developing
frailty and sarcopenia due to low baseline testosterone [57–59]. A longitudinal study that
included 957 community-dwelling adult men in Japan demonstrated that low calculated
FT (OR 2.14, 95% CI 1.06–4.33) and FT (OR 1.83, 95% CI 1.04–3.22) were associated with
the onset of sarcopenia [57]. Another report that included 1445 men from the Framingham
Offspring Study revealed that low FT levels were significantly associated with the incidence
of mobility, limiting its progression, but was not associated with subjective health, usual
walking speed, or handgrip strength after 6.6 years of follow-up [58]. A longitudinal
study that included 486 men from LASA and 1071 well-functioning men from the Health,
Aging and Body Composition study demonstrated that baseline FT was not associated
with changes in physical performance, walking speed, or muscle strength after 3 years of
follow-up [59]. Further studies are needed to conclude whether low testosterone levels
predict the progression and development of incident frailty and sarcopenia.
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5. Efficacy of Testosterone Replacement Therapy for Sarcopenia
5.1. Indication of Testosterone Replacement Therapy

The indication of TRT requires the presence of low serum testosterone level. However,
the cut-off value of serum testosterone for a diagnosis of hypogonadism is still controversial,
with multiple international societies’ recommendations [60]. The diagnosis of hypogo-
nadism for the recommendation of TRT in the guidelines of the Consensus Committee of
the American Urological Association (AUA) is TT ≤ 3.0 ng/mL [61]. On the other hand,
according to the International Society for Sexual Medicine (ISSM), the International Society
for the Study of Aging Males (ISSAM), and the European Association of Urology (EAU),
serum TT levels above 12 nmol/L (346 ng/dL) are normal and TT levels below 8 nmol/L
(231 ng/dL) indicate hypogonadism, meaning that TRT may be appropriate [3,4,62–64]. In
cases with borderline TT values of 8–12 nmol/L, hypogonadism should be diagnosed with
calculated FT values.

5.2. Efficacy of Testosterone Replacement Therapy for Sarcopenia

The randomized controlled trials (RCTs) published since 2010 are summarized in
Table 2 [50,65–82]. Their results varied by target population, type of testosterone formula-
tion, and testosterone dosage. Many of the RCTs investigated the effects on muscle of TRT
among men with low to normal testosterone levels and 15 of 19 RCTs supported certain mer-
its of TRT on muscle volume [50,67–70,72–77,79–82]. The other four studies, however, failed
to demonstrate that TRT contributes to improving muscle mass or strength [65,66,71,78]. In
one of the RCTs, the study population consists of patients with opioid-induced hypogo-
nadism, which was a specific population differing from the LOH syndrome [65]. The other
three studies investigated the efficacy of exercise and/or diet added to TRT on muscle
mass and strength but did not study the direct effects of TRT in isolation [66,72,78]. These
findings suggest that monolithic TRT for hypogonadal men can contribute to improving
muscle mass and strength. However, certain clinical interventions, such as exercise and diet
added to TRT, are likely to be the most important factor for maintaining muscle function
among older-adult men.

Table 2. Randomized control trials to investigate the effects of testosterone replacement therapy (TRT)
on muscle (published since 2010).

Author Year Subjects Number TRT Regimens
(Add-on Therapy) Effects Ref.

Kolind
(Denmark) 2022

Hypogonadal men
with opioid-treated

chronic pain
(TT < 12 nmol/L)

41 TRT 20
placebo 21

TU 1000 mg,
intramuscular
for 24 weeks

TRT did not improve muscle function
(leg-press maximal voluntary contraction,

leg extension power and
handgrip strength).

[65]

Barnouin
(USA) 2021

Hypogonadal men
with obesity

(TT < 10.4 nmol/L)
83 TRT 42

placebo 41

T gel daily
for 6 months

(diet + exercise)

TRT might attenuate the weight
loss–induced reduction in muscle mass.
There was no significant difference in

muscle strength between the two groups.

[66]

Chasland
(Australia) 2021

Men with obesity
and low-normal

serum TT
(TT 6–14 nmol/L)

80 TRT 40
placebo 40

T gel 100 mg/day
for 23 weeks

(exercise)

TRT increased total, leg, and arm lean
mass but did not affect aerobic capacity

(Vo2peak) and muscle strength.
[67]

Glintborg
(Denmark) 2020

Men with
opioid-induced
hypogonadism

(TT < 12 nmol/L)

41 TRT 20
placebo 21

TU 1000 mg,
intramuscular
for 24 weeks

TRT increased lean body mass. [68]

Gagliano-
Juca

(USA)
2018

Older men with
mobility limitations
(TT < 350 ng/dL or

FT < 50 pg/mL)

99 TRT 46
placebo 53

T gel 100 mg/day
for 6 months

TRT improved muscle strength and
physical function (assessed by loaded

stair-climbing power).
[69]



J. Clin. Med. 2022, 11, 6202 7 of 13

Table 2. Cont.

Author Year Subjects Number TRT Regimens
(Add-on Therapy) Effects Ref.

Storer
(USA) 2017

Eugonadal and
hypogonadal men
(TT 100–400 ng/dL
or FT < 50 pg/mL)

256 TRT 135
placebo 121

T gel 75 mg/day
for 3 years

TRT strengthened chest-press strength
and power, and leg-press power. [70]

Ng Tang
Fui

(Australia)
2016

Hypogonadal men
with obesity

(TT < 12 nmol/L)
100 TRT 49

placebo 51

TU 1000 mg
intramuscular

for 56 weeks (diet)

TRT did not increase muscle volume but
did attenuate the reduction in lean mass

by diet compared with the controls.
[71]

Dias
(USA) 2016 Hypogonadal men

(TT < 350 ng/dL) 39
TRT 13

placebo 9
other 13

T gel 50 mg/day
for 12 months

TRT improved knee strength and fast gait
at 12 months compared with baseline. [72]

Konaka
(Japan) 2016 Hypogonadal men

(FT < 10.8 pg/mL) 334 TRT 169
control 165

TE 250 mg/4 weeks
for 52 weeks

TRT improved muscle volume and
grip power. [73]

Magnussen
(Denmark) 2016

Hypogonadal men
with DM

(BioT < 7.3 nmol/L)
43 TRT 22

placebo 21
T gel 50 mg/day

for 24 weeks TRT increased lean body mass. [74]

Sinclair
(Australia) 2016

Hypogonadal men
with cirrhosis

(TT < 12 nmol/L or
FT < 230 pmol/L)

101 TRT 50
placebo 51

TU 1000 mg/6–12
weeks intramuscular

for 12 months

TRT increased total lean body and
appendicular lean muscle mass. [75]

Borst
(USA) 2014 Hypogonadal men

(TT ≤ 300 ng/dL) 60 TRT 31
placebo 29

TE 125 mg/weeks
I intramuscular for

12 months
(finasteride)

TRT increased upper and lower body
muscle strength by 8–14% and fat-free

mass by 4.04 kg.
[76]

Giamatti
(Australia) 2014

Hypogonadal men
with type 2

diabetes mellitus
(TT ≤ 300 ng/dL or
BioT ≤ 70 ng/dL)

88 TRT 45
placebo 43

TU 1000 mg/6–12
weeks intramuscular

for 56 weeks
TRT increased lean body mass. [77]

Stout
(UK) 2012

Men with chronic
heart failure

(TT < 15 nmol/L)
28 TRT 15

placebo 13

Testosterone
100 mg/2 weeks

intramuscular
for 12 weeks

(exercise)

TRT could not improve the shuttle walk
test and hand grip strength compared

with placebo.
[78]

Behre
(Australia) 2012

LOH men
(TT < 15 nmol/L or
BioT < 6.68 nmol/L)

362 TRT 183
placebo 179

T gel 50–75 mg/day
for 6 months TRT increased lean body mass. [79]

Travison
(USA) 2011

Hypogonadal men
with mobility
limitation (TT

100–350 ng/dL or
FT < 50 pg/mL)

209 TRT 106
placebo 103

T gel 100 mg/day
for 6 months

TRT increased leg-press and chest-press
strength and stair-climbing power but

could not improve walking speed.
[80]

Atkinson
(UK) 2010

Hypogonadal
frail men

(TT < 12 nmol/L)
30 TRT 16

placebo 14
T gel 50 mg/day

For 6 months.

TRT helped preserve muscle thickness.
There was no significant effect of

treatment on fascicle length or
pennation angle.

[81]

Kenny
(USA) 2010

Hypogonadal
frail men

(TT < 350 ng/dL)
131 TRT 69

placebo 62
T gel 5 mg/day

for 12–24 months

There was an increase in lean mass in the
testosterone group but no differences in

strength or physical performance.
[50]

Srinivas-
Shankar

(UK)
2010

Hypogonadal frail
men (TT < 12 nmol/L
or FT < 250 pmol/L)

274 TRT 138
placebo 136

T gel 50 mg/day
for 6 months

Isometric knee extension peak torque was
improved, and lean mass was increased in

the TRT group.
[82]

TRT, testosterone replacement therapy; TT, total testosterone; FT, free testosterone; BioT, bioavailable testosterone;
TU, testosterone undecanoate; TE, testosterone enanthate.

A recent meta-analysis demonstrated that TRT produced an increase in lean body
mass of 2.54 kg (95% CI 1.27–3.80; p < 0.001) and an increase in handgrip strength of 1.58 kg
(95% CI 0.17–3.0; p = 0.03) and concluded that TRT showed a beneficial effect on sarcopenic
components, such as muscle mass and strength, as well as on physical performance in
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middle-aged and older adults [83]. Another recent systematic review also supports certain
beneficial contributions of TRT to muscle condition and function [84].

However, there are limited data currently available regarding the direct effects of TRT
on preventing sarcopenia, which is diagnosed based on muscle mass, strength, and physical
functions, and the conclusions drawn from those data have been conflicting [50,69,72,80]. Two
RCTs demonstrated that TRT contributed to an improvement in both muscle mass/strength
and physical performance [69,72]. However, a previous study that included 209 hypogo-
nadal men with mobility limitations reported that 6 months of TRT could increase muscle
strength and stair-climbing power but could not improve walking speed [80]. Another
study observed a significant increase in lean mass in the TRT group, whereas there were no
differences in strength or physical performance between the control and TRT groups [50].
Furthermore, clinical studies targeted to Asian people, especially men, have been extremely
limited. Further studies with large numbers of participants and various races are likely to
reach a more definite conclusion regarding the effects of TRT on sarcopenia.

Studies have examined the dose-dependent effects of testosterone. A study that
included healthy male adult participants randomly assigned to a weekly administration
group (100 mg of testosterone enanthate weekly in an intramuscular injection) and a
monthly group (alternating months of 100 mg of testosterone or placebo) for 5 months
demonstrated that both groups had an increase in fiber diameter and peak power, with
the weekly treatment being five-fold more effective than the monthly treatment [85]. In
addition, a higher dose of testosterone can affect muscle mass and strength, not only for
hypogonadal men but also eugonadal older men and healthy young men [86]. These data
suggest that the anabolic effects of TRT are likely to be dose dependent to a certain extent.
However, higher doses are associated with a high frequency of adverse effects and caution
is required.

5.3. Other Systemic Effects of Testosterone Replacement Therapy

In general, TRT is rarely used to treat men solely for sarcopenia and is a widely ac-
cepted tool to improve various symptoms and clinical conditions occurred in hypogonadal
men, including decreased libido and sexual desire, depression, muscle weakness, obesity,
deterioration of insulin resistance, dyslipidemia, and osteoporosis [1–4]. Many RCTs and
systematic reviews demonstrate that TRT can improve libido and sexual function, mood
and energy, quality of life, anemia, bone density, cognitive function, body composition, in
addition to muscle mass and strength [1,2,87–90]. In addition, some recent studies have
supported the long-term use of TRT for 4 to 5 years to obtain beneficial effects for various
metabolic parameters, body composition, and erectile function [91–94].

5.4. Adverse Effects and Risks of Testosterone Replacement Therapy

It is widely known that TRT is significantly associated with some adverse effects,
such as erythrocytosis, gynecomastia, liver toxicity, testicular atrophy and infertility, acne,
exacerbate sleep apnea, and potential growth of prostate cancer [1,87,88,95]. In particular,
elderly men who are often candidates for TRT are originally at increased risk of prostate
cancer. Therefore, men who receive TRT should undergo prostate-specific antigen screening
regularly before and during treatment. On the other hand, there is no good evidence that
testosterone administration can convert subclinical prostate cancer to clinically significant
cancer and can increase risk of prostate cancer [87,95,96]. The association between TRT and
cardiovascular risk is still controversial. Some recent meta-analyses did not demonstrate a
significant association between TRT and any cardiovascular events [97,98].

6. Conclusions

Sarcopenia is an important pathophysiology factor of frailty in older adults and is
diagnosed in older adults with decreased muscle strength, muscle mass, and walking
speed, which can lead to a serious decrease in QOL. Testosterone directly interacts with
the androgen receptor expressed in myonuclei and satellite cells and is then also indirectly
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associated with muscle metabolism through various cytokines and molecules. Significant
correlations between testosterone and frailty in men have been confirmed by numerous
cross-sectional studies. In addition, numerous RCTs have supported the beneficial effect of
TRT on muscle mass and strength among men with low to normal testosterone levels. In
the world’s aging society, TRT can be a tool for preventing the development of sarcopenia
in older-adult men, although further RCTs are required.
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