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Abstract: In this study, cellulose acetate (CA) mixed-matrix membranes were fabricated through
the wet-phase inversion method. Two types of montmorillonite (MMT) nanoclay were embedded
separately: sodium montmorillonite (Na-MMT) and organo-montmorillonite (O-MMT). Na-MMT
was converted to O-MMT through ion exchange reaction using cationic surfactant (dialkyldimethyl
ammonium chloride, DDAC). Attenuated total reflectance-Fourier transform infrared (ATR-FTIR)
and X-ray photoelectron spectroscopy (XPS) compared the chemical structure and composition
of the membranes. Embedding either Na-MMT and O-MMT did not change the crystallinity of
the CA membrane, indicating that the nanoclays were dispersed in the CA matrix. Furthermore,
nanoclays improved the membrane hydrophilicity. Compared with CANa-MMT membrane, CAO-MMT

membrane had a higher separation efficiency and antifouling property. At the optimum concentration
of O-MMT in the CA matrix, the pure water flux reaches up to 524.63 ± 48.96 L·m−2·h−1·bar−1

with over 95% rejection for different oil-in-water emulsion (diesel, hexane, dodecane, and food-oil).
Furthermore, the modified membrane delivered an excellent antifouling property.

Keywords: montmorillonite; mixed-matrix membrane; ultrafiltration; oil–water separation; cellu-
lose acetate

1. Introduction

Oily wastewater is one of the major contributors to water pollution globally. It is
a type of wastewater mixed with oil with various range of concentrations and types of
oil such as fats, hydrocarbons, food oil, diesel, gasoline, and kerosene. Large volumes of
oily wastewater are produced from various industrial sources such as food processing,
general metalworking, transportation, and oil and gas production [1–3]. The wastewater
produced by the oil industry discharges not only oil and grease, but it also contains toxic
components such as harmful chemicals and dissolved minerals, which can harm aquatic
resources and human health [4–6]. Industrial oily wastewater can be categorized into three
types: free-floating oil, which can be removed by mechanical gravity separation; unstable
oil and water mixture that can be broken by mechanical and chemical separation; and
stable oil and water emulsions that require sophisticated treatment [7].

Membranes 2021, 11, 80. https://doi.org/10.3390/membranes11020080 https://www.mdpi.com/journal/membranes

https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0002-8624-1803
https://orcid.org/0000-0002-2371-4095
https://doi.org/10.3390/membranes11020080
https://doi.org/10.3390/membranes11020080
https://doi.org/10.3390/membranes11020080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/membranes11020080
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/2077-0375/11/2/80?type=check_update&version=2


Membranes 2021, 11, 80 2 of 12

Traditional methods for oil–water separation like gravity separation, skimming, and
flotation, are only useful for free-floating oil mixtures with an oil droplet size of >150 µm
and dispersed oil size range of 20–150 µm, but cannot be used to treat oil and water
emulsion with <20 µm droplet size [8]. However, these methods have low efficiency and
high operational costs. Combination of the following methods has been reported to treat the
oily wastewater, including small droplet size: floatation, coagulation, biological treatment,
and membrane separation technology [6].

Advanced membrane technology is a promising method to remove oily wastewater
with small droplet size. Membrane separation has become the key process to treat oily
wastewater [9]. The membrane serves as the semipermeable barrier between two phases
that regulate the transportation of liquid between those two phases [10]. Certain types of
membrane technology can be used for oil–water separation: microfiltration, ultrafiltration,
nanofiltration, and reverse osmosis.

Ultrafiltration (UF) is the most suitable for the oil–water separation process due
to its high efficiency in removing micron-sized oil droplets, ease in operation, and low
energy consumption [9]. Polymeric materials have been used for the fabrication of UF
membranes since it is inexpensive, and easy to fabricate and modify. Polymers such
as polyethersulfone [4,11,12], polysulfone [9,13,14], polyvinylidene fluoride [15–17], and
CA [18–22] are used as the matrix to fabricate UF membranes. CA is a biodegradable
polymer that is usually used for aqueous-based separation, i.e., reverse osmosis and UF
techniques [23]. Compared to other polymers, CA produced higher separation efficiency
and has better affinity with water. Moreover, CA has an excellent chlorine resistance and
is also inexpensive because it can be obtained from sustainable resources [24]. However,
because of the intrinsic property of the CA membrane, it cannot meet the demand in terms
of productivity and efficiency. Improving the hydrophilicity and antifouling property
of CA membranes provides a way to prevent the deposition of the oil in the membrane
surface and to improve the water transport through the membrane [25].

Several methods are proposed to improve the separation performance and longevity
of the polymeric membranes for oil–water separation. These methods are surface modifica-
tion [26,27], blending another hydrophilic polymer [28–30], and embedding nanoparticles
in the polymeric matrix. Mixed-matrix membranes or polymer-inorganic membranes are
fabricated by adding nanoparticle additives into the polymer matrix [31]. Nanoparticles
such as graphene oxide [12,32–35], silica [22,36], titanium dioxide [37–39], nanoclay [40–42],
halloysite nanotubes [43], nanowires [44], and silver nanoparticles [45] had been used to
embed in the polymeric matrix. For example, Wan Ikshan et al. [43], synthesized halloysite
nanotube-hydrous ferric dioxide through chemical precipitation. When they embedded it
into polyethersulfone matrix, membrane hydrophilicity, and antifouling property was en-
hanced. Abdalla et al. [34] functionalized graphene oxide using aspartic acid. The aspartic
functionalized graphene oxide was embedded into the polysulfone matrix. In their an-
tifouling test, aspartic functionalized graphene oxide modified polysulfone membrane had
higher flux recovery than that of their pristine membrane. Lai et al. [46] prepared a mixed
matrix membrane of polyethersulfone containing dual-nanofiller. The dual-nanofillers
used in their work were manganese oxide and titanium dioxide. At the optimal ratio of
manganese oxide and titanium dioxide in the membrane, the modified membrane deliv-
ered higher separation efficiency and better antifouling property than pristine membrane.
Pang et al. [47] also added two types of nanofiller in the polyethersulfone, multiwalled
carbon nanotube and zinc oxide. Incorporating the multiwalled carbon nanotube improved
the membrane porosity, whereas the zinc oxide enhances the antibacterial property of
the membranes.

Nanoclay is a 2-D nanoparticle, which can be obtained naturally. It is abundant and
easy to process. MMT is a type of nanoclay that is abundant in nature with hydrophilic
oxides groups. It is a layered silicate composed of silica tetrahedral and alumina octahedral
sheets. MMT can be incorporated into polymer nanocomposites because of its high surface
area, unique two-dimensional nanostructures, and programmable layer response. It is easy
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to modify through the ion-exchange reaction with the cationic monomer or polymers. The
organic modification of MMT can improve its capability of dispersing, gelling, adsorption,
and nanocomposite in the organic systems [36]. Modified MMT enhances the mechanical
properties, thermal properties, water permeability, porosity, and antifouling properties of a
membrane.

Cellulose acetate membranes have been modified in a number of ways in previous
studies. In this present study, different types of montmorillonite were embedded in them for
the first time, with the main goal of conducting a comparative analysis of the contribution
of the montmorillonite in effectively improving the composite membrane performance for
oil–water separation. Moreover, the montmorillonite used was kind of unique, as it was
obtained from a native mountain in the Philippines.

2. Materials and Methods
2.1. Materials

Philippine Na-MMT was supplied by Material Science Division, Industrial Technol-
ogy Development Institute of the Department of Science and Technology, Taguig City,
Philippines. Dialkyldimethyl ammonium chloride (DDAC), as modifier of Na-MMT, was
a received from Hoechst Altiengesellschaft, Frankfurt, Federal Republic of Germany. CA
394-60 S powder was obtained from Arkema Colombes, France. N-Methyl-2-pyrrolidone
(NMP), and dodecane were bought in Tedia High Purity, Fairfield, OH, USA. Sodium Do-
decyl Sulfate (SDS) as surfactant of oil–water emulsion, was provided by Showa Chemical
Industry Co. Ltd., Tokyo, Japan. Anhydrous ethanol and n-hexane were procured from
Echo Chemical Co. Ltd., Miaoli, Taiwan. Food-grade oil was manufactured by Weiyi Enter-
prises Company Ltd., Kaohsiung, Taiwan. Diesel oil was purchased from CPC Corporation,
Kaohsiung, Taiwan.

2.2. Synthesis of Organo-Montmorillonite

Organo montmorillonite was synthesized according to the work of Favre and La-
galy [48]. DDAC (=1.5 times of CEC of Na-MMT) was mixed with 100 g Na-MMT for
30 min in a blunger. The mixture was transferred to a stoppered glass container, where
DDAC could react with Na-MMT for 72 h at 70 ◦C. The unreacted DDAC was removed
through washing it several times using deionized water. Afterwards, it was dried at 80 ◦C
for 24 h. The dried O-MMT was sieved using a 200-mesh. Na-MMT and O-MMT were
stored in vacuum desiccator before used. The properties of Na-MMT and O-MMT can be
found in our supporting information (Figures S1 and S2).

2.3. Preparation of Nanocomposite Membranes

The nanoclay was dispersed in NMP for 60 min using an ultrasonicator. After dis-
persing the nanoclay in NMP, it was moved to the magnetic mixer to stabilize the solution
temperature at 80 ◦C and stirred at 80 rpm. The CA powder was added to the nan-
oclay/NMP solution with a total concentration of 15 wt% CA/NMP. Concentration of
the Na-MMT and O-MMT was fixed at 0.2 wt% (based on the total amount of CA). The
concentration of the preferred nanoclay was varied from 0–0.3 wt%. Controlled membrane
was also prepared without adding nanoclay in the polymer solution. When the CA was
completely dissolved in NMP, it was removed at the magnetic stirrer and degassed for 6 h
at 30 ◦C.

The CA/nanoclay/NMP solution was cast (casting knife gap = 200 µm) on the glass-
plate (A4-sized) covered with non-woven polyester. Afterwards, it was immediately
immersed in water bath for phase-separation. Water was changed 4–5 times to completely
removed the excess NMP. It was stored in distilled water before being used. CAX represents
the modified membranes, where X is Na-MMT or O-MMT.
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2.4. Characterization of Montmorillonites and Membranes

The chemical analysis of the nanoclays and membranes was analyzed using an at-
tenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (Perkin
Elmer Spectrum 100 FTIR Spectrometer, Waltham, MA, USA) and X-ray photoelectron
spectroscopy (XPS, VG Kalpha ThermoFisher Scientific, Inc., Waltham, MA USA). Field
emission scanning electron microscopy (FESEM, S-4800, Hitachi Co., Tokyo, Japan) and
atomic force microscopy (AFM, NanoScope® V, Bruker, Billerica, MA, USA) were used
to describe the membrane morphology and surface roughness. X-ray diffraction (XRD,
Model D8 Advance Eco, Bruker, Billerica, MA, USA) determined the crystallinity of the
MMTs and membranes. The wettability properties of the membranes were obtained using
an interfacial tensiometer (PD-VP Model, Kyowa Interface Science Co. Ltd., Niiza-City,
Saitama, Japan).

The bulk porosities of membranes (ε, %) were determined through gravimetric analy-
sis [49,50]. Wet membranes were cut into a certain size. The weight of the wet membrane
(mw, g) was measured. Afterwards, the membranes were dried in vacuum for over 24 h.
Then the weight of dry membrane (md) was recorded. The porosity of the membrane was
calculated using the following equation:

ε =
mw − md
A × l × ρ

(1)

where A (m) and ρ (kg·m−3) were referred to the surface area and density of the membrane,
respectively, and l (m) was the thickness of the membrane.

The mean pore radius (rm) was calculated using the Guerour–Elford–Ferry equation,
as follows:

rm =

√
(2.9 − 1.75ε)8ηlQ

εA∆P
(2)

where η (kg·m−3·s−1) was the viscosity of the water, Q (m3·s−1) was the permeate volu-
metric flowrate and ∆P (Pa) was the transmembrane pressure.

2.5. Evaluation of Membrane Performance

A crossflow filtration device was used to evaluate the filtration performance of each
membrane. Four membranes were tested simultaneously. The membrane was placed in a
steel cell with an effective membrane area (A) of 12.57 cm2. The flow rate was maintained
to 0.6–0.7 L·min−1. The membranes were prepressurized at 1.5 bar for 60 min. The pressure
was lowered at 1 bar to determine the pure water flux (J, L·m−2·h−1). The pure water flux
was calculated using the following equation:

J =
m

ρAt
(3)

where m was the mass of the permeate (g) at a certain time (t, s), and ρ was the density of
the water (1 kg·L−1).

After measuring the pure water flux of each membrane, the feed was changed into
oil–water emulsion. The oils used were diesel, hexane, dodecane, and food oil. The weight
ratio of oil in water was 1:99 with 0.09 g·L−1 of SDS. The system was stabilized for 10 min
before sampling. The feed and permeate concentration were determined using a total
organic carbon (TOC) analyzer, Vario TOC select (Elementar, Langenselbold, Germany).
The oil rejection was calculated using the following equation:

R =
C f − Ci

C f
× 100% (4)

where Cf (ppm) was the concentration of oil in the feed and Ci (ppm) was the concentration
of the oil in permeate.
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2.6. Evaluation of Antifouling Property

Antifouling property of the membrane was accessed similar to our previous work [51].
The membrane was placed in the crossflow filtration setup. Then it was prepressurized at
1.5 bar for 1 h. Sample permeates were taken every ten minutes for 3 times and measured
as Jw1. The feed was change into an emulsion solution. The flux when the feed was an
emulsion was recorded as Jo. After sampling for 5 times, every 10 min, the membrane
underwent backwashing for 20 min. This cycle was repeated twice. The pure water flux
was determined again after 2 cycles and recorded as Jw2.

For the evaluation of antifouling properties, flux recovery ratios (FRR) were calculated
using the formula:

FRR =
JW2

Jw1
× 100% (5)

The flux loss from irreversible fouling (Rir) and reversible fouling (Rr) were obtained
using the equations:

Rir =

(
Jw1 − Jw2

Jw1

)
× 100% (6)

Rr =

(
Jw2 − Jo

Jw1

)
× 100% (7)

3. Results and Discussion
3.1. Characterization of the Membranes
3.1.1. Membrane Chemical Property

Figure 1 represents the ATR-FTIR spectra of the CA, CANa-MMT, and CAO-MMT mem-
branes. The peak at 2941 cm−1 of all membranes was attributed to the aliphatic group
(C-H). Peaks at 1743, 1440, and 1362 cm−1 corresponded to C=O, O-H, and C-O groups,
respectively. The spectra of the MMTs (Figure S1) overlapped with the CA membranes,
thus there were no significant changes on the CA membrane spectra after embedding
MMTs. To further clarify the presence of the MMTS, XPS analysis (Table 1) validated the
surface chemical composition. CA membrane only had the C and O element, whereas
CANa-MMT and CAO-MMT had Si, N, Na, Fe, Ti, K, Ca, P, Al, and Mg elements from MMT.
CA-Na-MMT (5.34%) had more elements that came from MMT than the CAO-MMT (3.81%).
Two possible reasons could attribute to this difference: (1) the O-MMT was well-dispersed
in the CA matrix, thus less can be found on the surface; and (2) DDAC increased the
d-spacing between MMT of O-MMT, making some MMT undetectable on the surface,
because XPS only could detect up to 10 nm depth.
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Table 1. Surface elemental composition of the membranes using XPS analysis.

Element CA CANa-MMT CAO-MMT

C (%) 58.11 53 43.23
O (%) 41.89 41.66 52.94

Elements from Particle—Si, N, Na, Fe, Ti, K, Ca, P, Al, Mg (%) - 5.34 3.81

3.1.2. Membrane Morphology and Structure

Figure 2 shows the FESEM images of CA, CANa-MMT, and CAO-MMT. The pristine
and modified CA membranes had a pore size of approximately 10 nm; however, because
CA is prone to shrinkage when drying, this pore size is not their actual size. Therefore,
the pore sizes were validated using the gravimetric method. To obtain the mean pore
radius using flow–velocity filtration, the porosity of the membranes was also measured.
Figure 3 indicates the porosity, mean pore radius, and surface roughness of pristine and
modified membranes. CAO-MMT (88.83%) was the most porous membrane. This is because
O-MMT speed up the demixing rate of the CA membrane, leading to formation of the
porous structure. Furthermore, CAO-MMT had the largest mean pore radius (30.01 nm) and
roughest surface (5.47 ± 0.75 nm). Rougher surface indicated that the membrane surface
was more porous.

Figure 2a’–c’ present the cross-sectional FESEM images of the membranes. CA membrane
had no macrovoids, which is similar to our previous work [51]. The lacy structure of pristine
membranes was caused by the slow demixing rate of CA during phase separation. After
embedding Na-MMT or O-MMT, macrovoids appeared on the modified CA membranes.
The presence of macrovoids indicates that the solvent-nonsolvent exchange in modified
membranes was faster than pristine CA membrane. Adding hydrophilic nanoparticles
accelerated the demixing rate of the polymer solution with nonsolvent because hydrophilic
nanoparticles had a strong affinity with water. Furthermore, adding MMTs made the polymer
solution be thermodynamically unstable, resulting in a thicker membrane.
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3.1.3. XRD and Water Contact Angle

Figure 4a illustrates the XRD pattern of the membranes and MMT. Compared with
Na-MMT, O-MMT had a new peak at 5◦, indicating an increase in d-spacing when DDAC
modified the Na-MMT. When the nanoclay was embedded into the CA matrix, no change in
XRD spectra was observed. This is because the concentration of the MMT in the polymeric
matrix was low. Either using Na-MMT or O-MMT, both nanoclay could be well dispersed
in the CA matrix. Figure 4b presents the water contact angle of the membranes. Compared
with CA and CANa-MMT, CAO-MMT had the lowest contact angle of 51.27◦ ± 2.66◦. The
lower the contact angle, the more advantageous in an oil–water separation test.
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3.2. Membrane Performance and Antifouling Property

Figure 5a describes the membrane performance of CA, CANa-MMT, and CAO-MMT. CA
membrane had a pure water flux of 398.74 ± 59.00 L·m−2·h−1. No significant changes
in pure water flux when Na-MMT was embedded, this was probably because CANa-MMT
had the thickest membrane. Although the membrane was more porous and contained
macrovoids, its thickness compensated the permeation flux of the membranes. Thus,
CANA-MMT had an almost similar pure water flux (409.18 ± 24.34 L·m−2·h−1) with the
pristine CA membrane. When O-MMT was incorporated to the CA matrix, the pure water
flux increased to 524.63 ± 48.96 L·m−2·h−1. Adding O-MMT in the CA matrix made
the membrane more porous, thinner, and more hydrophilic than when adding Na-MMT,
resulting in a higher pure water flux. Nonetheless, all membranes had a high rejection for
diesel oil (>98%).
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Figure 5b represents the antifouling test of the membranes for 290 min. From this
test, data from Figure 5c was calculated. CAO-MMT shows the highest flux recovery ratio
85.21%, whereas it also exhibited the highest reversible fouling of 68.28%. A membrane
with high reversible fouling had good antifouling property since it could be easily removed
with physical cleaning by backwashing the membrane with the use of water. Meanwhile, a
low irreversible fouling percentage corresponds to internal fouling on membrane pores,
which is difficult to clean or remove. Thus, CAO-MMT membrane had the highest mem-
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brane performance, and in the following section, the concentration of O-MMT in CA
was optimized.

3.3. Effect of O-MMT Concentration on Membrane Performance

Figure 6a shows the effect of O-MMT concentration of membrane performance. In-
creasing the concentration of O-MMT from 0 to 0.2 wt% in the CA matrix, the pure water
flux also increased from 398.74 ± 59.00 to 524.63 ± 48.96 L·m−2·h−1. However, more than
0.2 wt%, the pure water flux remained constant. At high concentration of O-MMT, O-MMT
could also act as a barrier for water. Even if O-MMT could improve membrane hydrophilic-
ity and porosity, when O-MMT acts as a barrier, this compensates the improvement in pure
water flux, leading to no change in pure water flux [49]. Moreover, a high concentration of
particle could also lead to aggregation of the nanoclays, leading to nonuniform distribution
of the O-MMT in the membrane structure [52]. However, a different concentration of the
O-MMT did not affect the oil separation using diesel (>98%). Figure 6b,c illustrates the
effect of O-MMT concentration on the antifouling property of the CA membranes. The
highest flux recovery ratio and reversible fouling were attained when the concentration of
the O-MMT was 0.2 wt%. At high concentration of O-MMT, the nanoclay tended to agglom-
erate into the membrane structure, thus giving poor membrane performance. Therefore,
0.2 wt% O-MMT is the optimum concentration.
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3.4. Membrane Performance Using Different Emulsion

Different oil–water emulsion had different droplet sizes (Figure S3). Aside from diesel,
hexane, dodecane, and food oil were also used (Figure 7). The CAO-MMT membranes
exhibited good separation performance for all the oil, where rejection was maintained more
than 99% oil rejection. These results indicated that the O-MMT improved the membrane
property at the optimum concentration of O-MMT. Furthermore, it can be used in different
types of oil.
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4. Conclusions

CA/nanoclay mixed-matrix membranes were fabricated through the wet-phase inver-
sion method. O-MMT was obtained through modifying of Na-MMT by the ion-exchange
reaction using DDAC. Incorporating nanoclay improved the demixing rate of the CA
polymer solution, resulting in the formation of macrovoids. Compared with Na-MMT,
embedding O-MMT into the CA matrix enhanced the membrane porosity, pore size, and
hydrophilicity. No effect on membrane crystallinity when the nanoclays were embedded
into the CA matrix. CAO-MMT exhibited higher membrane performance and antifouling
property than that of pristine CA and CANa-MMT. The optimum concentration of O-MMT
in CA was 0.2 wt% (based on the amount of CA). Furthermore, CAO-MMT delivered high
rate of rejections for different types of oil–water emulsion (diesel, n-hexane, dodecane, and
food oil).
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