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Abstract

Background: Yersinia outer protein (Yop) H is a secreted virulence factor of Yersinia enterocolitica
(Ye), which inhibits phagocytosis of Ye and contributes to the virulence of Ye in mice. The aim of
this study was to address whether and how YopH affects the innate immune response to Ye in
mice.

Results: For this purpose, mice were infected with wild type Ye (pYV*) or a YopH-deficient Ye
mutant strain (AyopH). CD1 Ib* cells were isolated from the infected spleen and subjected to gene
expression analysis using microarrays. Despite the attenuation of AyopH in vivo, by variation of
infection doses we were able to achieve conditions that allow comparison of gene expression in
pYV*and AyopH infection, using either comparable infection courses or splenic bacterial burden.
Gene expression analysis provided evidence that expression levels of several immune response
genes, including IFN-y and IL-6, are high after pYV* infection but low after sublethal AyopH infection.
In line with these findings, infection of IFN-yR--and IL-6-- mice with pYV* or AyopH revealed that
these cytokines are not necessarily required for control of AyopH, but are essential for defense
against infection with the more virulent pYV*. Consistently, IFN-y pretreatment of bone marrow
derived macrophages (BMDM) strongly enhanced their ability in killing intracellular Ye bacteria.

Conclusion: In conclusion, this data suggests that IFN-y-mediated effector mechanisms can
partially compensate virulence exerted by YopH. These results shed new light on the protective

role of IFN-y in Ye wild type infections.

Background

Yersinia enterocolitica (Ye) is an enteropathogenic bacte-
rium which causes gastrointestinal disorders such as,
enteritis, enterocolitis and extraintestinal manifestations
such as lymphadenitis, reactive arthritis, erythema nodo-
sum, uveitis and septicaemia [1,2]. Pathogenic Ye strains

carry a 70-kb plasmid (pYV), which is essential for the
pathogenicity and encodes a type III secretion system
(TTSS), Yersinia outer proteins (Yops) and YadA [3]. The
TTSS enables extracellularly located yersiniae to translo-
cate at least six effector Yops directly into host cells [3].
The Yops interfere with different signaling pathways
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involved in the regulation of the actin cytoskeleton,
phagocytosis, apoptosis and in the inflammatory
response, thus favoring survival of the bacteria in an extra-
cellular tissue compartment [3]. YopH, YopE, YopT, and
YopO/YpkA disturb cytoskeletal dynamics and thereby
inhibit phagocytosis by polymorphonuclear leukocytes
and macrophages [4-7]. YopH, a tyrosine phosphatase,
causes disruption of focal adhesion complex structures
and inhibits the oxidative burst [7,8]. Among others, the
host cell targets of YopH in epithelial cells are the focal
adhesion proteins Crk-associated substrate (p130Cas)
and focal adhesion kinase (FAK) and in macrophages
p130Cas, Fyn-binding protein (Fyb) and SKAP-HOM [8-
12]. YopH mutants, which are unable to bind p130Cas,
do not localize to focal complex structures in infected cells
[13]. These YopH mutants showed reduced virulence in
mice, suggesting that binding to p130Cas and/or Fyb is
biologically relevant in Yersinia infections. Other func-
tions of YopH include the inhibition of the phosphatidyl-
inositol 3 kinase (PI3K)/Akt signaling pathway which is
activated in macrophages upon interaction with Yersinia
[14], and downstream effects such as expression of the
chemokine monocyte chemoattractant protein-1 (MCP-1,
CCL2), an important chemotactic factor for macrophages
[14].

The phosphatase activity of YopH inhibits the ability of T
cells to produce cytokines and proliferate, as well as the
ability of B cells to express the B-cell co-stimulatory recep-
tor CD86, possibly by dephosphorylating critical tyrosine
residues on signaling proteins involved in T- and B-cell
activation [14-17]. The biological relevance of YopH is
underlined by different reports demonstrating that the
lack of YopH results in reduced virulence of Yersinia in
mice [18-21].

In this study, we addressed whether and how YopH might
affect the innate immune response in mice. Upon infec-
tion with Y. enterocolitica O8 strain WA-314 (pYV+) or a
YopH deletion mutant (AyopH) alterations in gene expres-
sion in CD11b+* cells was analyzed. These cells include
mostly granulocytes and macrophages and to a lower
extent dendritic cells and NK cells. CD11b+ cells were cho-
sen because they are the most important spleen cell sub-
populations involved in innate immune responses. The
data reported herein provide strong evidence that IFN-y
and IL-6 are not necessarily required for clearance of Y.
enterocolitica AyopH and that IFN-y compensates YopH-
mediated immune evasion mechanisms in macrophages.

Results

YopH deletion attenuates Yersinia enterocolitica in mice
In this study, we addressed how the virulence factor YopH
affects the early innate immune responses to Yersinia ente-
rocolitica in vivo. For this purpose, we defined the inocula
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leading to sublethal and lethal infection after intravenous
infection with pYV+ and AyopH. Infection of C57BL/6
mice with 5 x 103 pYV*or 5 x 104 AyopH caused a suble-
thal infection, while 5 x 10% pYV* or 5 x 10¢ AyopH
resulted in a lethal course of infection (Figure 1A). Suble-
thal infection with pYV* resulted in significantly higher
bacterial counts in the spleen at day 1 p.i. compared with
AyopH, while lethal infection with pYV* or AyopH resulted
in comparable bacterial splenic counts (Figure 1B).

To address whether the sublethal and lethal infection with
pYV* and AypopH affect the cells involved in innate
immune responses, the number of macrophages
(CD11b+F4/80+), granulocytes (CD11b*Ly6G+) and den-
dritic cells (CD11b*CD11c*) in the spleen was deter-
mined at day 1 p.i. The total number of macrophages was
significantly increased one day after the sublethal infec-
tion with both pYV+and AyopH compared with mock-
infected mice. In contrast, under lethal conditions a sig-
nificant increase in the number of macrophages was only
detected after infection with pYV+* (Fig. 1C). The number
of granulocytes was significantly increased after sublethal
as well as lethal infection with pYV+*but not after sublethal
or lethal AyopH infection (Fig. 1D). The number of den-
dritic cells was similar in all conditions one day after
infection (data not shown).

From this data we can conclude that by variation of the
inoculum for pYV+and AyopH infections, conditions can
be achieved that lead either to comparable infection
course (lethal or sublethal) or to comparable bacterial
burden in the spleen as well as to comparable alterations
in the composition of splenic cell populations. These
changes have to be considered when gene expression pat-
terns are compared in pYV*and AyopH infections.

Gene expression in CD 1 1b* cells after Yersinia infection
To analyse whether YopH affects gene expression in cells
involved in the innate immune response, splenic CD11b+*
cells were purified by MACS to 96-98% from mice one
day p.i. RNA was extracted and subjected to gene expres-
sion analysis using Affymetrix MG-U74Av2 microarrays.
First, we identified all genes which were more than 3-fold
higher or more than 3-fold lower expressed after infection
with either a sublethal or a lethal dose of pYV+ or AyopH
compared to uninfected mice resulting in 1428 probe sets.
These probe sets were used in the following analyses.

Gene expression analyses reveal differences between pYV*
and AyopH infection

Two approaches were selected, to help identify immune
response genes whose expression differs after infection
with pYV*and AyopH. In the first approach, gene expres-
sion of CD11b+ cells from mice after sublethal pYV+and
sublethal AyopH infection was compared. This method
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Infection of mice with pYV*and AyopH. (A) Survival curve of C57BL/6 mice upon i.v. infection with 5 x 103 or 5 x 0%
pYV*, or with 5 x [04or 5 x 106 AyopH (B) The bacterial numbers in the spleen of mice and total number of (C) macrophages
and (D) granulocytes in the spleen was determined 24 h after infection. The data were from two independent the means +
standard deviation of at least ten mice per group. Asterisks indicate significant differences (p < 0.05, A and B, logrank test; C,
Wilcoxon rank test, D and E, One-Way ANOVA with Dunnett test) between the compared groups.

was used to compare gene expression associated with sim-
ilar outcome of disease; however, the different bacterial
splenic counts and different composition of CD11b* sub-
populations has to be considered in subsequent compar-
ative analyses. In a second approach, we compared gene
expression of CD11b+ cells from mice with comparable
bacterial splenic counts after infection with pYV+ and
AyopH. To accomplish this, we compared mice after suble-
thal pYV* and lethal AyopH infection resulting in similar
splenic bacterial counts one day p.i. (~10> CFU) in the
spleen. In both approaches k-means cluster analysis was
carried out to characterize groups of co-expressed genes.
Genes which were more than 3-fold differentially
expressed between pYV+and AyopH infection are listed in
Additional file 1 and 2 and depicted as heat maps in Fig-
ure 2.

The immune response genes identified by approach I
(sublethal pYV+ infection versus sublethal AyopH infec-
tion) comprised genes which were more highly expressed
after both sublethal pYV+ and sublethal AyopH infection,
as compared with mock-infected mice. However, the
expression level of these genes was more than 3-fold

higher after sublethal pYV* infection (Table 1, column 1)
as compared with sublethal AyopH infection (Table 1, col-
umn 3). These genes were designated as Group 1 and
included genes encoding e.g. IFN-y, IL-6, histidine decar-
boxylase and iNOS (Table 1, Figure 2A, Cluster A1 and
Additional file 1).

As the bacterial splenic load after sublethal pYV+infection
was lower than that after sublethal AyopH infection at day
1 p.i., we cannot exclude the possibility that the different
gene expression is due to the different bacterial load in the
spleen.

Therefore, in approach II we first compared expression of
Group 1 genes in mice after sublethal pYV+ (Table 1, col-
umn 1) and lethal AyopH infection (Table 1, column 4)
which resulted in similar splenic bacterial counts 1 day
p-i. The data revealed Group 1A, which included genes
with comparable expression after sublethal pYV+ and
lethal AyopH infection such as, IFN-y and histidine decar-
boxylase, and Group 1B, which included genes which
were expressed less after lethal AyopH infection as com-
pared with sublethal pYV+infection.
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Figure 2

Comparison of gene expression between mice infected with pYV*and AyopH. Microarray analysis of CDI Ib* cells
isolated from spleen of mice infected with pYV* or AyopH for one day. All probe sets are displayed whose SLR ratio between
infection with pYV*and AyopH for one day was > 1.49 or < -1.49. Heat maps indicate increased (red) or decreased (green)
expression of genes in CD1 Ib* cells one day after infection of mice compared to CD | Ib* cells from uninfected mice. The heat-
maps indicate genes differentially expressed and clustered in different groups: (A, approach |) sublethal pYV* infection versus
sublethal AyopH infection; (B, approach Il) sublethal pYV* versus lethal AyopH infection. (C) CD1 |b* cells were enriched from
uninfected mice and from mice infected for | day with pYV* or AyopH, and RNA was extracted. mRNA expression of IFN-y, IL-
6, IL-12p35 and MARCO was analysed and normalized to RPL8 mRNA expression. The data represent the fold induction of
mRNA expression compared to CD| Ib* cells from uninfected mice. Representative data for three independent experiments
are shown.
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Table I: Immune response genes differentially expressed after infection with pYV* compared to AyopH

pYV*(5 x 103)
fold expression
compared to

pYV*(5 x 10%)
fold expression
compared to

AyopH (5 % 104)
fold expression
compared to

AyopH (5 x 106)
fold expression
compared to

uninfected uninfected uninfected uninfected
Group |
A
CXCL2 39.4 75 36.8
CCL2 13 4.6 48.5
Histidine decarboxylase 35 1.2 4
IFN-y 12.1 3.0 13.3
IL-12A 21.1 1.2 8.6
TNF-a 9.9 4 10.6
B
IL6 19.7 9.2 5.2
INOS 4.6 . 1.3 1.7
ILTA 90.5 119.4 14.9 26.0
CXCLI 12.1 3 7
Group 2
A
SAA3 1.1 0.4 35
Lactotransferrin 0.4 0.3 2.8
LBP 0.8 0.5 2.8
MARCO 0.6 1.7 8.6
Orosomucoid 0.4 0.7 33
Peptidoglycan recognition 0.6 0.8 2.6
protein
B
CCLI17 2.1 1.2 6.5
IL10 1.2 2 8.6
Group 3
CXCL9 21.1 9.2 3.7
IIGPI 32 24.3 8.6
MX1 6.5 4 1.2
WARS 4.6 4.6 1.9
VEGFA 6.5 57 2.3

Approach 1II also revealed genes which were more highly
expressed after lethal AyopH infection compared to suble-
thal pYV+ infection (Table 1, Group 2, Figure 2B, Cluster
B2). While the expression of several of these genes (Group
2A) which include acute phase reactants such as serum
amyloid alpha 3 (SAA3), lipopolysaccharide binding pro-
tein (LBP) and other genes such as MARCO, peptidogly-
can recognition protein and lactotransferrin were
increased only after lethal infection with AyopH compared
to uninfected mice, others (Group 2B), e.g., IL-10 and
CCL17 increased only after lethal infection either with
pYV+or AyopH as compared to uninfected mice.

Furthermore, approach II revealed genes (interferon
induced genes such as interferon inducible GTPase 1
(IIGP1), CXCL9, as well as VEGF-a) which were highly
induced after Yersinia infection but which were lower
expressed after lethal AyopH infection compared to suble-
thal or lethal pYV+infection.

To ensure that the results obtained by microarray analyses
can be reproduced by other methods, mRNA expression
analyses for IFN-y, IL-6, IL-12p35 and MARCO were per-
formed by Real-time RT PCR. The results obtained were
comparable to those obtained by microarraray analyses
(Figure 2C).

IFN-y and IL-6 are not necessarily required for clearance of
Y. enterocolitica AyopH

The data presented above revealed that in self-limiting
infections (sublethal), the expression of both IFN-y and
IL-6 in CD11b* cells increased significantly less in AyopH
infection compared to pYV+ infection, suggesting that
these cytokines might be necessary for control of pYV+but
not of AyopH. From earlier studies, it is known that IFN-y
and IL-6 are crucial for clearance of Ye wild type infection
[22,23]. To investigate whether these cytokines are in fact
dispensable for the early defense against Ye lacking the
virulence factor YopH, wild type (C57BL/6), IFN-yR+/-, and
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IL-6-/- mice were infected with AyopH or pYV*+and the bac-
terial numbers in the spleen were determined. As shown
in Figure 3, upon infection with pYV+ the bacterial burden
was higher at all investigated time points than in AyopH
infected IFN-yR+/-, IL-6-/- or wild type mice. 72 hours p.i.,
the bacterial burden was significantly higher (p < 0.05) in
spleens of IFN-y-R/- and IL-6"/- mice compared to wild
type mice after infection with pYV*. In contrast, a similar
bacterial burden was found in IFN-yR/- and IL-67/- mice
compared to wild type mice after infection with AyopH.
From this data, we conclude that IFN-y and IL-6 are not
necessarily required for the control of AyopH infection at
least in the early phase of infection.

IFN-y pretreatment compensates YopH mediated
inhibition of bacterial killing by BMDM

To address whether the importance of IFN-y, in counter-
acting Ye infection, could be linked to the defense against
YopH mediated virulence, we investigated whether YopH

http://www.biomedcentral.com/1471-2180/8/153

may counteract the killing of yersiniae by BMDM. In addi-
tion, we tested whether IFN-y improves the killing of yers-
iniae by BMDMs. For this purpose, BMDM were cultured
with and without IFN-y for 24 h and subsequently
infected with either pYV+ or AyopH. The number of bacte-
ria was determined 0.25 hours after the infection of
BMDM; alternatively BMDM were treated after 0.25 hours
with gentamicin and the intracellular survival of bacteria
was determined 3 and 5 hours after infection.

At 0.25 hours after the infection, the number of bacteria
associated with BMDM was comparable in all groups (Fig-
ure 4) suggesting that neither pretreatment of BMDM with
IFN-y nor YopH affects association of Ye with BMDM. At
three hours p.i., 7 % of pYV+and 2.1% of AyopH were via-
ble in BMDM cultured without IFN-y indicating that kill-
ing of AyopH by BMDM cultured without IFN-y was
significantly more effective than killing of pYV* (p <0.01).
Interestingly, pretreatment of BMDM with IFN-y signifi-

B
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i IL-67- |

|
C57/BL-6
~ :I"'
N6 X
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Em pYV*
Figure 3

IFN-yR and IL-6 are not necessarily required for the control of Ye AyopH infection. IFN-yR-- (A) or IL-6-- (B) mice
as well as C57BL/6 mice were infected intravenously with 5 x 104 pYV* (black bars) or 5 x 104 AyopH (white bars). The bacte-
rial number was assessed in spleens 24 and 72 hours after infection. Values represent the average log,, CFU per spleen with

the standard errors of the means indicated by error bars (5-10 mice per group). Asterisks indicate significant differences (p <
0.05, Wilcoxon Rank test) between the compared groups. Two further independent experiments showed comparable results.
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3 5
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Survival of bacteria in BMDM. BMDM were either pretreated or not pretreated with IFN-y (50 ng/ml) for 24 h and subse-
quently infected with pYV* or AyopH with a MOI of 5 (C) for 0.25 or three hours as described in Material and Methods. Num-
bers of bacteria were determined by a CFU assay. The data represent the CFU + standard deviation of three independent
experiments. All groups were compared for one point in time and asterisks indicate significant differences between the com-
pared groups (p < 0.05, one-way ANOVA with Bonferroni correcctions).

cantly increased the killing of both pYV+and AyopH by
more than 60 %. This data indicates that the killing of
pYV*by BMDM, pretreated with IFN-y, is as effective as the
killing of AyopH by BMDM culture without IFN-y, suggest-
ing that IFN-y- mediated mechanisms are not necessarily
required for AyopH infection but contribute to an effective
immune response to pYV+.

Discussion and conclusion

YopH is one of the most important virulence factors of Ye,
which promotes colonization and survival of Ye in lym-
phoid tissues of mice. This capability appears to be attrib-
uted to its ability to inhibit phagocytosis [5,24]. and T cell
activation through the intracytoplasmic action of YopH in
phagocytes and T cells, respectively [15-17].

The goal of this study was to investigate whether and how
YopH might interfere with the innate immune response in

vivo. To this end, the gene expression profiles prior to and
after infection with pYV+ or AyopH were analyzed in
CD11b+ cells from the spleen of infected mice. CD11b+*
cells were chosen because they represent the most impor-
tant spleen cell subpopulation involved in innate
immune responses such as granulocytes, macrophages,
and dendritic cells and have been demonstrated to be
involved in or targeted by Ye infection.

The major problem with in vivo studies using Ye mutants
is that mutations in major pathogenicity factors such as
YopH affect virulence of Ye in vivo. Consequently, infec-
tion of mice with the same infection dose of wild type and
mutant Ye ultimately results in different bacterial burden
in infected organs. This gives rise to (i) different immune
stimulation by Ye compounds and, as demonstrated
herein, (ii) different recruitment of inflammatory cells
and hence (iii) different composition of CD11b+ spleen

Page 7 of 12

(page number not for citation purposes)



BMC Microbiology 2008, 8:153

cell subpopulations. As a result, the differences in gene
expression between wild type and mutant Ye might reflect
both direct and indirect effects of virulence factors such as
YopH. As an alternative, mice can be infected with differ-
ent doses of wild type and mutant Ye, which will lead to
comparable bacterial burden in infected organs such as
the spleen. In this study we used both approaches and
compared gene expression in mice infected with identical
doses of wild type and mutant Ye (leading to different
bacterial burden and clinical outcome) and variable doses
(leading to comparable bacterial burden and clinical out-
come). However, in the latter approach we could not rule
out effects in gene expression that may result from differ-
ent spleen cell subpopulations. Additional comparisons
were performed, such as comparison of sublethal
wildtype with lethal wildtype infection, as well as suble-
thal AyopH with lethal AyopH infection because the infor-
mation obtained was mostly redundant to those already
received with the comparisons discussed below.

We focused on the differences in genes known to be
involved in immune responses. Sublethal pYV+and lethal
AyopH infection results in the same bacterial burden in the
spleen but shows some differences in the composition of
the cell populations expressing CD11b such as granulo-
cytes, macrophages and dendritic cells. However, compar-
ison of the expression between sublethal pYV+and lethal
AyopH infection reveals that acute phase reactants and
other genes involved in innate immune response such as
the antimicrobial component lactoferrin and MARCO
(playing a role in clearance of pneumococcal infections)
[25] are increased after AyopH infection compared to
pYV+infection. Since acute phase reactants are predomi-
nantly constitutively expressed, the differences in gene
expression after sublethal pYV+and lethal AyopH infection
may be due to changes in the composition of the cell pop-
ulations which express CD11b but nevertheless may be
also associated with lethal course of AyopH infection.

IL-10 and CCL17 were found to be higher expressed after
sublethal pYV+versus lethal pYV+infection as well as after
sublethal versus lethal AyopH infection, respectively. Since
each of these conditions was associated with a compara-
ble composition of the cell populations expressing
CD11b in the spleen we conclude that increased expres-
sion of IL-10 and CCL17 is not due to differences in the
composition of CD11b+ cells. Previous studies suggested
that the secreted Ye protein LcrV of O8 strains binds to
TLR2 and triggers increased IL-10 secretion in macro-
phages [26]. In line with this, it was shown that infection
with an inocolum of pYV+ which is lethal for wildtype
mice can be survived by IL-10/- mice [27] indicating that
IL-10 is a marker for lethal or sublethal course of infec-
tion. However, this might not be a general observation for
all Yersinia strains or species since TLR2 activity and prob-

http://www.biomedcentral.com/1471-2180/8/153

ably IL-10 secretion induced by LcrV vary due to a hyper-
variable region in the N-terminus of LcrV [28]. In
addition, the highest TLR2 activity was found for O8
strains as used in this study. Likewise, CCL17, a chemok-
ine which attracts Th2 and regulatory T cells [29-31].
could also be involved in driving infections in direction of
a lethal course; this, however, has to be more thorougly
investigated in further studies.

Since a high number of genes showed a lower expression
after sublethal AyopH infection we focused predominantly
on this aspect. Within this group several proinflammatory
response genes dependent on TLR signaling such as IL-12,
CXCL1, CXCL2 and TNF-a but also IFN-y were predomi-
nantly found. Since cytokines and chemokines act as
secreted proteins the overall expression levels may be of
more relevance than the subpopulation of cells which
expresses these genes. In addition, histidine decarboxylase
was found in this group of genes. The expression of histi-
dine decarboxylase seems to reflect the importance of his-
tamine signaling for control of Ye infection [32]. The
improved reduction of the bacterial burden as found after
infection with a sublethal dose of AyopH is associated with
a lower expression of such genes. The weaker immune
response found after infection with AyopH may reflect the
more effective clearance of bacteria but may also raise the
possibility that components of this immune response are
no longer required to control the infection. Previous data
suggested that IL-12, IL-18 and TNF-o may not be
required for clearance of AyopH infection [19]. In line with
these findings we have shown that IFN-y and IL-6 may
also not be required for clearance of a AyopH infection.
Thus, clearance of infection in the spleen is comparable in
C57BL/6 and congenic IFN-yR/- mice. Similar experi-
ments were performed using IL-67/- mice, indicating that
IL-6 is not necessarily required for clearance of AyopH
infection.

Other groups found that oral infection of BALB/c mice
with a Y. pseudotuberculosis yopH mutant resulted in a sim-
ilar bacterial burden in the spleen five days after infection
of IFN-y/- and IFN-y*/+ mice [20,21]. Interestingly, by co-
infection of Y. pseudotuberculosis wild type and yopH
mutant it has been demonstrated that in the presence of
IFN-y the yopH mutant is more efficiently killed in com-
parison to wild type. On the contrary, in the absence of
IFN-y the survival advantage of the wildtype Y. pseudotu-
berculosis compared to the yopH mutant is much weaker
[20]. This data supports the view that IFN-y is required for
clearance of wildtype Yersinia [22] but plays a minor role
for clearance of AyopH mutant and would explain at least
in this case similarities between Y. pseudotuberculosis and
Ye infection of mice.
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There is substantial knowledge about IFN-y mediated
effector mechanisms in host defense against pathogens,
such as promotion of TH1 responses, induction of expres-
sion of 47 kDa GTPases [33], oxidative burst or antigen
presentation [34]; however, the exact effector mechanisms
induced by IFN-y for clearance of a Yersinia infection are
not yet defined. By determining killing of BMDM upon
infection with Ye we demonstrate that killing of yersiniae
by BMDM is quite efficient. However, in contrast to
AyopH, pYV+is less efficiently cleared by BMDM indicating
that YopH inhibits killing of yersiniae to some extent. In
addition pretreatment of BMDM with IFN-y bypasses
indirectly or directly YopH mediated resistance of killing
of yersiniae. This data further supports the idea that IFN-y
is not necessarily needed to defeat Yersinia lacking YopH.
However, YopH may also exert other immune evasion
mechanisms. In fact, YopH also inhibits T cell activation
[15-17]. Previous data demonstrates that infection of ath-
ymic, T cell deficient C57BL/6 nude mice leads to an
increased bacterial number in the spleen starting only
three days after infection compared to infection with
C57BL/6 mice suggesting that T cell responses are already
involved in the early phase of Ye infections [35].

Taken together, the data presented herein show that IFN-
y bypasses or compensates for immune evasion mecha-
nism of YopH. Moreover, we provide evidence that
improvement in killing of bacteria by macrophages may
represent part of the effector functions of IFN-y to com-
pensate for immune evasion mechanisms provided by the
interplay of the effector Yops of the Ysc-Yop type three
secretion system and that deletion of YopH enables the
immune defense to work efficiently without the presence
of IFN-y. However, further studies need to define whether
alterations in the immune response against YopH dele-
tion mutant are solely due to the phosphatase activity of
YopH or whether they also may be due to changes in the
secretion of some of the other Yops (e.g. YopT, YopP)
[36]. Moreover, future studies are needed to define the
crucial mechanisms important for clearance of Yersinia
infection in vivo and to elucidate which IFN-y induced
genes are important to bypass Yersinia mediated inhibi-
tion of yersiniae killing. However, since beside IFN-y
other genes such as IL-6, TNF-a, IL-12, IL-18 are not nec-
essarily required for clearance of Ye infection with AyopH,
it can be speculated that YopH does not counteract the
effector functions of one of those genes specifically but
rather a proinflammatory response in general.

Methods

Bacterial strains and plasmids

For infection the Ye O:8 strain WA-314 (pYV+) [37], and
derivatives of this strain were used. The strain WA-C (pYV-
) lacks the pYV virulence plasmid and the strain WA-C
pYV yopH A17-455 (AyopH) lacks YopH [36].

http://www.biomedcentral.com/1471-2180/8/153

Mouse infections

The mouse strains used were C57BL/6j-1L-6"1Kopf (referred
as IL-6--) kindly provided by M. Kopf, ETH Ziirich, Swit-
zerland [38] C57BL/6]-Ifngrtm1agt IEN-yR/- [39] purchased
by Jackson laboratories and corresponding C57BL/6 wild-
type mice. Six- to eight-week-old female C57BL/6 mice
were infected intravenously with the indicated doses of Ye
strains from frozen stock suspensions. The administered
dose was determined by plating serial dilutions on Muel-
ler-Hinton agar for 36 h at 27°C. For kinetic analysis,
mice were asphyxiated using CO, at various time points
post infection. Spleens were aseptically removed and
homogenized in 5 ml HBSS-buffer (Hank's Balance solu-
tion supplemented with 2% FCS and 10 mM HEPES). To
determine the numbers of CFU/organ, serial dilutions of
homogenated organs were plated on Mueller-Hinton agar
plates. Infection experiments were approved according to
German law by the Regierungsprasidium Tiibingen (H2/
02).

Selection of splenic CD I Ib* cells

For the selection of splenic CD11b+ cells for further use in
microarray experiments five to ten mice per group were
sacrificed by CO,asphyxiation. The spleens were removed
and placed in ice-cold HBSS (Ca2+ and Mg?+ free Hanks'
balanced salt solution; BioWhittaker, Walkersville, MD),
supplemented with 2% FCS (HyClone, Logan, Utah) and
10 mM HEPES buffer. The spleens were forced with a 5 ml
syringe pestle through a 100 pm-pore nylon mesh cell
strainer (Falcon; BD Biosciences). Red blood cells were
lysed from spleen samples by incubating the cell suspen-
sions for 5 min at room temperature in erythrocyte lysis
buffer (170 mM Tris, 160 mM NH,CI, pH 7.4) followed
by two washes in ice-cold HBSS. CD11b+ cells from a pool
of five to ten mice per group were purified by positive
selection using magnetic activated cell sorting (MACS)®
CD11b MicroBeads (Miltenyi Biotec) according to the
manufacturer's instructions. To ensure enrichment values
of 96-98% purity, the magnetic separation was per-
formed twice. Cell viability and number were assessed by
trypan blue exclusion.

Flow cytometry

Splenic single-cell suspensions were obtained as described
above. 1 x 106cells were resuspended in 100 pl FACS
buffer and stained with surface marker-specific fluoro-
phore-conjugated antibodies (Abs). The following Abs
and secondary staining reagents conjugated with different
fluorophores were used for flow cytometric studies: rat
anti-mouse Ly-6G (Gr-1: RB6-8C5), rat anti-mouse CD4
(RM4-5), rat anti-mouse CD8a (53-6.7) or rat anti-mouse
CD45R/B220 (RA3-6B2); rat anti-mouse CD19 (1D3), rat
anti-mouse pan-NK-cell (DX5), rat anti-mouse CD3g
chain (145-2C11) and the hamster anti-mouse CD11c
(HL3), rat anti-mouse CD11b (M1/70), streptavidin-
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FITC, streptavidin-PE; all from BD Pharmingen, Heidel-
berg, Germany. The rat anti-mouse F4/80 (CI:A3-1) and
rat anti-mouse MARCO (ED31) from Serotec (Serotec,
Oxford, UK) were also used. The specificity of the staining
was verified by the use of isotype control mAbs. Samples
were analyzed on a FACSCalibur flow cytometer (BD
Immunocytometry Systems) with gating on the propid-
ium iodide-negative cells.

Isolation of total RNA and microarray analysis

Total RNA was extracted from CD11b+ cells derived from
a pool of five to ten mice per group using the RNAeasy
mini-kit following the manufacturer's instructions (Qia-
gen, Hilden, Germany). Generation of fragmented cRNA
was performed as recently described [40] and used for
hybridization onto MG-U74Av2 from Affymetrix
(Affymetrix, High Wycombe, UK). Genechips were
washed, stained with streptavidin-phycoerythrin and read
using a GeneChip Scanner 2500 (Affymetrix) at the IZKF
microarray facility, Tibingen.

Microarray data analysis

Analysis of microarray data was performed using the
Affymetrix Microarray Suite 5.0, Affymetrix MicroDB 3.0
and Affymetrix Data Mining Tool 3.0. All array experi-
ments were scaled to a target intensity of 150, otherwise
the default values of the Microarray suite were used. Filter-
ing of the results was performed as follows: signal log,
ratios (SLR) of the experiments for each colonization con-
dition and time point was calculated. A median SLR
greater than 1.5 or less than -1.5 was considered as signif-
icant change. The absolute detection calls and change calls
were assigned using the detection p-values or the change
p-values. A detection p-value of < 0.04 was considered as
present (P), a detection p-value of > 0.04 and < 0.06 was
considered marginal (M) and a detection p-value > 0.06
was considered absent (A). A change call of increase (I)
was assigned with a median change p-value of < 0.0025
and a change call of marginal increase (MI) was assigned
at a median change p-value > 0.0025 to 0.003. Change
calls of marginal decrease (MD) were assigned at a median
change p-value of > 0.997 to < 0.998 and a change call of
decrease (D) was assigned at a p-value > 0.998. All others
were assigned no change (NC). Of the probe sets with a
significant SLR that had a change call other than NC in
comparison to uninfected and were not absent in both
compared groups were retained. Probe sets with an
increase but a detection call of A in the infected cells were
also discarded. Of the remaining probe sets only those
with a signal at least 3 times higher than the average noise
were used for further analysis. The magnitude and direc-
tion of expression changes were estimated as Signal Log
Ratio (SLR). Microarray data have been deposited in
NCBIs Gene Expression Omnibus (GEO, http://

www.ncbi.nlm.nih.gov/geo/ accession number (GSE

http://www.biomedcentral.com/1471-2180/8/153

11189). For each condition described here one microarray
was used.

Cluster analysis

For Cluster analysis we used Genesis, release 1.6.0 (Insti-
tute for Genomics and Bioinformatics, University of Tech-
nology, Graz, http://genome.tugraz.at). To analyze the
relationship between groups of genes we performed a k-
means clustering with a number of 10 clusters and a max-
imum of 200 iterations. Categorization was based on the
NetAffx database http://www.NetAffx.com.

Quantitative RT- PCR analysis

Total RNA from CD11b+ cells was extracted using the
RNeasy Mini Kit (Qiagen). 2 ng of RNA were reverse tran-
scribed as described [41]. Real-time RT-PCR was carried
out on a GeneAmp 5700 Sequence Detection System
(Applied Biosystems, Darmstadt, Germany). Each 20-ul
reaction contained 10 pl Platinum Quantitative PCR
SuperMix-UDG (Invitrogen, Karlsruhe, Germany), 0.4 pl
ROX Reference Dye (Invitrogen, Karlsruhe, Germany), 3.6
pl PCR grade water, 1 pl target gene specific Assay-on-
Demand Gene Expression Assay Mix Mm00446190_m1
for mouse IL-6, Mm00443258 m1 for mouse TNF-a,
MmO00434165_m1 for mouse IL-12 p35,
MmO00440265_m1 for mouse MARCO, or
MmO00657299_g1 for mouse RPL8 (including primers
and dye-labeled hybridization probes; Applied Biosys-
tems, Darmstadt, Germany), and 5 pl cDNA. Thermal
cycling conditions for all reactions were as follows: 2 min
at 50°C, 10 min at 95°C, then 40 cycles of 15 s at 95°C
and 1 min at 60°C. Results were quantified using the 2-
AC . method [42,43]. Cytokine mRNA expression levels
were normalized to the expression of the houskeeping
gene ribosomal protein L8 (RPL8). All PCR experiments
were performed in duplicate, and standard deviations
were calculated and displayed as error bars.

Analysis of intracellular survival by CFU assay

Intracellular survival was determined with modification
as previously described [44]. 2 x 105 BMDM resuspended
in DMEM (Invitrogen, Karlsruhe, Germany), containing
10% FCS (Sigma, Taufkirchen, Germany), supplemented
with Na-pyruvate at 1 mM (Biochrom, Berlin, Germany),
and 2 mM L-glutamine (Invitrogen, Karlsruhe, Germany)
were seeded into 24 well cell culture plates and incubated
overnight. Bacteria were grown overnight at 27°C in LB
medium and subcultivated for 2 h at 37°C. The bacteria
were washed twice with PBS and finally diluted as needed
in DMEM supplemented with 10% heat inactivated fetal
calf serum, 2 mM L-glutamine and 1 mM Na-pyruvate.
The bacterial number was diluted to a MOI of 5. After
addition of bacteria cell culture plates were centrifuged for
5 minutes at 200 x g to facilitate contact of bacteria. After
15 minutes of infection cells were washed twice with PBS.
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Some of the wells were used to determine initial number
of cell associated bacteria by a CFU assay. To the remain-
ing cells cell culture medium containing 8 pg per ml gen-
tamicin was added. After one hour the medium was
removed and complete cell culture medium was added
containing 4.5 mg/ml gentamicin. Three or five hours
after infection a CFU assay was performed as described
recently [44].

Statistics

The data shown in the figures are from representative
experiments. Differences between mean values were ana-
lyzed as indicated using either Wilcoxon Rank test, one
way ANOVA analyses or logrank test by using Graph Pad
Prism software http://www.graphpad.com/. A p value of <
0.05 was considered statistically significant.
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