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Multiple myeloma (MM) is a clonal plasma cell malignancy that develops primarily

in the bone marrow (BM), where reciprocal interactions with the BM niche foster

MM cell survival, growth, and drug resistance. MM cells furthermore reshape the

BM to their own needs by affecting the different BM stromal cell types resulting in

angiogenesis, bone destruction, and immune suppression. Despite recent advances

in treatment modalities, MM remains most often incurable due to the development of

drug resistance to all standard of care agents. This underscores the unmet need for

these heavily treated relapsed/refractory patients. Disruptions in epigenetic regulation

are a well-known hallmark of cancer cells, contributing to both cancer onset and

progression. In MM, sequencing and gene expression profiling studies have also

identified numerous epigenetic defects, including locus-specific DNA hypermethylation

of cancer-related and B cell specific genes, genome-wide DNA hypomethylation and

genetic defects, copy number variations and/or abnormal expression patterns of various

chromatin modifying enzymes. Importantly, these so-called epimutations contribute to

genomic instability, disease progression, and a worse outcome. Moreover, the frequency

of mutations observed in genes encoding for histone methyltransferases and DNA

methylation modifiers increases following treatment, indicating a role in the emergence

of drug resistance. In support of this, accumulating evidence also suggest a role for

the epigenetic machinery in MM cell plasticity, driving the differentiation of the malignant

cells to a less mature and drug resistant state. This review discusses the current state

of knowledge on the role of epigenetics in MM, with a focus on deregulated histone

methylation modifiers and the impact on MM cell plasticity and drug resistance. We also

provide insight into the potential of epigenetic modulating agents to enhance clinical drug

responses and avoid disease relapse.

Keywords: multiple myeloma, epigenetics, histone methyltransferases, histone demethylases, MM cell plasticity,

drug response

INTRODUCTION

Multiple myeloma (MM) is a plasma cell (PC) malignancy that mainly resides in the bone
marrow (BM). The malignant PCs produce an excess amount of monoclonal antibodies (M-
proteins), detectable in serum and/or urine of the patient. The expansion of malignant cells
interferes with the normal function of the BM, resulting in anemia, cytopenia, fatigue, and bone
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pain (1). The BM microenvironment plays a central role in
the pathogenesis of MM. This includes a cellular compartment
composed of many different cell types (e.g., fibroblasts,
mesenchymal stem cells, osteoblasts, osteoclasts, adipocytes,
endothelial cells, myeloid-derived suppressor cells, and
macrophages) and a non-cellular compartment, including
soluble growth factors (e.g., IL-6, IGF-1, VEGF, bFGF, BAFF,
APRIL, and SDF-1), adhesion molecules and exosomes.
Functional, bi-directional interactions between the MM cells
and the different BM compartments foster not only MM
cell survival, proliferation and migration, but also contribute
to the development of drug resistance, osteolysis, increased
angiogenesis and immune suppression (2–5).

MM accounts for more than 10% of all hematological
malignancies and is consistently preceded by a premalignant
condition known as monoclonal gammopathy of undetermined
significance (MGUS). MGUS evolves to symptomatic myeloma
with a rate of 1% per year. Symptomatic myeloma is diagnosed
by the presence of ≥10% clonal PCs in the BM, the presence of
M-protein in the serum and/or urine and evidence of end-organ
damage (including hypercalcemia, renal failure, anemia and
bone lesions, commonly referred to as the CRAB criteria)
(6). Over the past 15 years, advances in therapy have doubled
life expectancy of MM patients using novel agents, including
proteasome inhibitors (PIs) (bortezomib and second generation
inhibitors like carfilzomib) and/or immunomodulatory drugs
(IMiDs) (lenalidomide and pomalidomide), in combination
with autologous stem cell transplantation, alkylating
agents (melphalan) and/or glucocorticoids (prednisone and
dexamethasone) (7). In addition, novel classes of agents were
introduced in the treatment regimens including epigenetic
modifying agents, such as the histone deacetylase (HDAC)
inhibitor panobinostat, and monoclonal antibodies, namely
elotuzumab and daratumumab. Unfortunately, despite the
important gain in survival, most patients will ultimately relapse
and develop non-responsive disease. Myeloma thus remains
incurable for the majority of patients, clearly demonstrating the
need for novel treatment options.

MM is a genetically and clinically highly complex and
heterogeneous disease, reflected by the presence of a high number
of non-recurrent genetic defects, a branching pattern of clonal
evolution and different patient outcomes. The accumulation
of genetic aberrations throughout the disease evolution has
an impact on numerous important pathways, thus affecting
prognosis and response to treatment.MMpatients can be divided
into 2 groups based on their karyotype; the hyperdiploid and
non-hyperdiploid group. Fifty to sixty percent of MM patients
display a hyperdiploid karyotype, characterized by trisomies
involving chromosomes 3, 5, 7, 9, 11, 15, 19, and 21 (3).
Common non-hyperdiploid defects include monosomy 13, gains
of 1p or recurrent translocations involving the immunoglobulin
heavy chain (IgH) locus. The most frequent translocations are
t(11;14)(q13;q32) and t(4;14)(p16;q32); the former dysregulates
the CCND1 gene and the latter upregulates FGFR3 (fibroblast
growth factor receptor 3) and MMSET genes. Next to these
primary events, MM is characterized by secondary events which
occur during disease progression and lead to the formation of

different subclones, thus adding to the complexity of the disease.
These aberrations include, amongst others, MYC overexpression,
mutations in members of the NFkB pathway, activation of
oncogenes including RAS family members (NRAS, KRAS, and
BRAF) and CCND1; and inactivation of tumor suppressor genes
like p53, RB1, CDKN2A, and CDKN2C (3, 8).

Next to the above-mentioned role of the BM
microenvironment and genetic alterations in MM pathogenesis,
it has become increasingly clear that the epigenetic machinery
also plays a crucial role in MM. Like in other cancers, the
epigenetic landscape is completely disturbed in MM cells.
Intergenic regions are often hypomethylated leading to genomic
instability, while promoter-associated CpG islands of tumor
suppressor genes and miRNAs are hypermethylated and/or
deacetylated leading to a loss-of-function (9). Moreover, genetic
defects in-, and overexpression of several chromatin modifying
enzymes have been described in MM. Importantly, these
epimutations are often associated with genomic instability,
emergence of drug resistance, MM progression and short
progression free survival. In addition, the epigenetic machinery
is also linked with MM cell plasticity, driving the differentiation
of the malignant cells to a less mature and drug resistant
state (10). Recently, it has become clear that next to the well
described importance of aberrant DNA methylation and histone
acetylation in MM, abnormal histone methylation also plays
an important role in MM pathogenesis, as evidenced by the
high number of mutations found in histone methyltransferases
(HMTs) and -demethylases (HDMs) (11, 12). Here we review
the current state of knowledge on the role of epigenetics in
MM, with a focus on the deregulated HMTs and HDMs and
their contribution to clonal heterogeneity, plasticity and drug
response in MM.

DNA METHYLATION

DNA methylation is by far the most studied epigenetic
modification and has a profound impact on genome stability
and gene expression patterns. A methyl group is added to the
carbon-5 position of a cytosine in a cytosine-phosphate-guanine
(CpG) dinucleotide, resulting in 5-methylcytosine (5 mC) (13).
DNA methylation at CpG dinucleotides has historically been
associated with stable and permanent gene repression. However,
it is now well-known that DNA methylation is a reversible
process. New DNA methylation patterns are established by the
de novoDNAmethyltransferases DNMT3A and DNMT3B, while
DNMT1 is responsible for maintaining methylation patterns
upon replication (13). In contrast, demethylation is initiated by
the TET (Ten-eleven translocation) enzymes; TET1, TET2, and
TET3. These enzymes use molecular oxygen as a substrate to
convert 5mC to 5-hydroxymethylcytosine (5hmC) and 5hmC to
5-formylcytosine (5fC) and 5-carboxycytosine (5caC). Thymine-
DNA glycosylase (TDG)-mediated base excision repair (BER)
of 5fC and 5caC can then regenerate unmethylated cytosine
nucleotides (active demethylation). Moreover, the oxidized states
of cytosine hinder DNMT1 binding, leading to a loss of
methylation during replication (passive DNA methylation) (14).
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In healthy cells, around 60–80% of the CpGs in the
human genome are methylated. These methylated CpGs are
mainly located in gene bodies and genome-stabilizing repetitive
elements. In contrast, around 10% of the CpGs are grouped
in CG dense regions called CpG islands. These islands are
mostly located in close proximity of transcription start sites
and are often unmethylated, thus permitting gene expression. In
cancers cells, including MM cells, global DNA hypomethylation
and gene-specific promoter hypermethylation is often observed
(15). In MM patients, the repetitive elements LINE-1, Alu,
and SAT-a are hypomethylated compared to healthy controls,
correlating with genomic instability, disease progression and
poor prognosis (16–18). Next to this global hypomethylation,
MM is also characterized by the silencing of several cancer-
related genes through hypermethylation, including but not
limited to p73, p53, p15, p16, E-CAD, DAPK1, BNIP3,
RB1, DIS3, CDKN2A, and CDKN2C (19). Notably, promotor
hypermethylation of p16, BNIP3, DAPK1, and E-CAD has
furthermore been associated with poor prognosis (19–23).
Only very recently, we demonstrated that RASSF4 is also
silenced through promotor methylation duringMM progression,
correlating with a bad prognosis. RASSF4 is a member of
the Ras-Association Domain Family (RASSF), responsible for
mediating the anti-tumoral effects of RAS. We found RASSF4
loss to unleash the pro-mitogenic activity of RAS in MM.
Treatment with epigenetic modifying agents restored RASSF4
expression, thereby sensitizing MM cell to the clinically relevant
MEK1/2 inhibitor trametinib (24). Although rare, promotor
hypomethylation also plays a role in (early) disease pathogenesis.
The NOTCH ligand JAG2 for example was shown to be
overexpressed in malignant PCs from MGUS and MM patients.
This JAG2 overexpression was due to hypomethylation of the
JAG2 promoter and enhanced the secretion of the growth
factors IL-6, VEGF, and IGF-1 in stromal cells (25). In addition,
the expression level of the so-called breast cancer resistance
protein (BCRP/ABCG2), a membrane drug efflux pump, was
demonstrated to be increased upon chemotherapy through
promotor demethylation, thus promoting drug resistance (26).

Importantly, genome-wide analysis of DNA methylation
patterns revealed that these patterns change during MM
progression. In 2011, Walker et al. published genome-wide
methylation microarray data from different MM stages, showing
that hypomethylation is already present in the early stages
of MM development, and the methylation levels further
decrease during disease progression. In contrast, gene-specific
hypermethylation is rather a rare event (17, 27). Nevertheless,
this promotor methylation increases during MM progression,
reaching its maximum in the plasma cell leukemia stage (PCL)
(17). Walker et al. furthermore reported that the highest
frequency of hypermethylated genes was present in the t(4;14)
translocation subgroup, present in 15-20% of theMMpopulation
and associated with a bad prognosis (17, 28). Moreover, an
overlap of hypermethylated genes was found between the
t(4;14) subgroup and PCL samples, further suggesting the
contribution of the gene-specific hypermethylation to disease
progression and aggressiveness (17). Importantly, in B cell
tumors, DNA hypermethylation is mainly present in polycomb

repressed/bivalent regions. In normal precursor cells, these
regions are often hypomethylated. In B cell malignancies,
however, the H3K27me3 marks are often replaced by DNA
methylation, referred to as “Polycomb repression-associated
DNA methylator phenotype” or PRAMP. This epigenetic
switching is suggested to reduce regulatory plasticity of key
regulatory genes (29–32). In the study of Aggire et al., the
DNA methylome was recently analyzed on a broader level,
including promotors, gene bodies, and intergenic regions of
normal PC, MGUS, and MM patients. Interestingly, they found
that hypermethylation in MM patients is not only restricted to
promotor associated CpG islands, but is also present in intronic
enhancer regions of B cell specific genes and transcription factors
leading to the downregulation of B cell associated transcription
factors such as PAX5, BATF, and STAT5 (33). The exact
mechanisms underlying these aberrant methylation patterns in
MM remain to be elucidated. A possible explanation might be
the downregulation of miR-29b, which targets DNMT3A and
DNMT3B, resulting in an aberrant methylation profile (34, 35).
In addition, increased levels of DNMT1 and DNMT3A have
been reported and miR-22 upregulation results in the inhibition
of TET2. Lastly, mutations in methylation modifying enzymes
including TET1/2/3, IDH1/2 and DNMT1/3A/3B have been
described in MM (10).

DNA methyltransferase inhibitors (DNMTi) are often used
to revert aberrant DNA methylation patterns in cancer cells.
Two DNMTi commonly used in preclinical and clinical settings
are the cytidine analogs 5-azacytidine (AZA) and 5-aza-
2′deoxycytidine (decitabine; DAC). Upon incorporation into
DNA, these analogs will covalently bind DNMTs resulting in
the degradation of the enzymes and thus passive demethylation.
In addition, these agents mediate direct cytotoxic effects, as
evidenced by the induction of a DNA damage response (36).
AZA and DAC are currently approved for the treatment
of myelodysplastic syndromes (37). In MM, we and others
have also confirmed the anti-myeloma activity of AZA and
DAC and this both in vitro and in vivo (38–42). In short,
we showed that DAC induces DNA damage in MM cells,
resulting in cell cycle arrest and apoptosis. Moreover, using the
5T33MMmodel, we demonstrated that DAC also displays potent
in vivo anti-myeloma activity. Mechanistically, in vivo DAC
treatment was found to deregulate genes involved in immune
regulation, regulation of gene expression and metabolism (40).
DNMTi are also valuable prognostic tools. We and others
constructed gene expression (GEP)-based risk scores to predict
sensitivity of MM cells to pan-DNMTi. In 2012, Moreaux et al.
developed a gene-expression based DNA methylation score to
predict DAC sensitivity in MM cells. The score allowed the
identification of high-risk MM patients who could benefit from
DNMTi treatment (43). We recently validated this work in vivo
using the murine 5T33MM model. By analyzing the in vivo
transcriptional response of 5T33MM cells toward DAC and the
histone deacetylase inhibitor (HDACi) quisinostat, we identified
a DNA methylation and histone acetylation score predictive for
overall survival of MM patients. A high score correlated with
a highly proliferative and immature phenotype of MM cells
and a bad prognosis (39). Currently, clinical trials are ongoing
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with DNMTi as monotherapy or combined with lenalidomide or
dexamethasone in MM (44).

HISTONE MODIFICATIONS

Chromatin consists of repeating units of nucleosomes, each
consisting of 146 bp of DNA wrapped around a histone
octamer composed of 4 histones (H2A, H2B, H3, H4) and
the linker histone H1. Histone proteins have N-terminal
tails protruding from the nucleosome, which are prone to
reversible modifications, including methylation, acetylation,
phosphorylation, ubiquitination, sumoylation and deamination
at lysine, arginine, threonine, and serine residues. These so-
called post-translational histone modifications alter the structure
and density of the chromatin, which in turn influences the
accessibility of the DNA for the transcription machinery and
many other DNA related processes like DNA repair, replication,
and recombination (45, 46).

Histone Acetylation
One of the best studied post-translational histone modifications
is histone acetylation. This process is mediated by two different
enzyme families: histone acetyltransferases (HATs) and histone
deacetylases (HDACs). HATs transfer an acetyl group from
the donor acetyl-CoA to lysine residues of histone tails. This
leads to a neutralization of the positive charge of the histones
and a more open configuration and therefore correlates with
active transcription. In contrast, HDACs will remove these
charge-neutralizing acetyl groups, leading to a more condensed
chromatin structure and transcriptional silencing. Thus far, the
HDAC family consists of 18 members, divided into four classes.
The Zn2+-dependent HDACs include Class I (HDAC 1–3 and 8),
IIa (HDAC 4,5,7, and 9), IIb (HDAC 6 and 10) and IV (HDAC
11), and the NAD-dependent HDACs form the class III enzymes
(SIRT1 to 7). Apart from histones, these enzymes also have
several other, non-histone substrates including transcription
factors such as p53, DNA repair enzymes and chaperones (47).
In MM, the expression of several HDAC members (mainly class
I HDACs) is upregulated, correlating with a poor prognosis
(48). As a result, diverse pan-HDAC inhibitors have been
(pre)clinically tested for their therapeutic value in MM. In the
PANORAMA trials, the effect of the pan-HDACi panobinostat
in combination with bortezomib and dexamethasone was
investigated in relapsed and/or refractory MM. Results showed
a significant improvement in the progression free survival of
patients who received prior treatment with both bortezomib
and an IMiD. (49, 50). Based on these results, panobinostat
was FDA approved for the treatment of relapsed/refractory MM
patients, who received 2 prior treatment regimens including
bortezomib and IMiDs (51). However, panobinostat was only
approved with a Risk Evaluation and Mitigation Strategy due to
the high risk of high grade (non)hematological toxicities, thus
limiting the broad application of this pan-HDACi. The use of
more selective HDAC inhibitors could reduce the rather severe
side effects observed upon panobinostat treatment. A possible
candidate is HDAC6, which is involved in autophagy-mediated
degradation of misfolded proteins. Aggrosomal degradation is an

alternative to the proteasome for protein degradation. Blocking
both pathways using bortezomib or carfilzomib and the HDAC6
selective inhibitor ricolinostat (ACY1215) synergistically induced
anti-MM effects both in vitro and in vivo (52–54). A phase I/II
clinical trial recently showed ricolinostat to be well tolerated in
combination with bortezomib and dexamethasone in relapsed
and refractory MM patients, with an overall response rate
of 29 and 14% in respectively all patients and bortezomib-
refractory patients (55). Moreover, ongoing studies are currently
also evaluating ricolinostat in combination with IMiDs and
dexamethasone in relapsed and refractory patients (44). In
the phase Ib dose-escalation study examining ACY-1215 in
combination with LEN-DEX (ACE-MM-101), the combination
was also found to be well-tolerated and preliminary assessment
showed an overall response rate of 55% (56). The results from
these early phase studies indicate clinical benefit of selective
HDAC6 inhibition, but confirmation is warranted in phase III
studies. Next to the deregulated expression of HDACs, mutations
in the HATs EP300 and CREBBP were also identified in MM
patients. Interestingly, the frequency of CREBBP mutations
further increased in relapsed patients, thus suggesting a role in
drug resistance (11).

Histone Methylation
Histone methylation is a more complex post-translational
histone modification than histone acetylation. Methylation
mainly occurs at lysine or arginine residues of histones H3
and H4 and is mediated by HMTs and HDMs. The effect of
the addition of a methyl group on gene expression depends
on the residue that is methylated and the number of added
groups (mono-, di- or tri-methylation for lysine residues, mono-
and di-methylation for arginine residues) (57, 58). In general,
methylation of H3K4, H3K36, and H3K79 is associated with
gene activation, while H3K9, H3K27, and H4K20 methylation
is associated with gene silencing. Adding to the complexity,
the outcome of methylation marks is furthermore dependent
on the genomic distribution (57). There are over 30 lysine
histone methyltransferases (KMT) belonging to 8 families
(KMT1-8). Based on their structure they can be divided
into 2 main classes; one class containing a SET domain,
the other class containing a DOT1L domain (58). Protein
arginine N-methyltransferases (PRMTs), responsible for the
addition of methyl groups to arginine residues of histone
tails, can be subdivided into 3 subtypes (type I–III) based on
the type of arginine methylation that is formed: ω-NG, NG–
asymmetric dimethylarginine (ADAM), ω-NG,N’G–symmetric
dimethylarginine (SDMA), and ω-NG- monomethylarginine
(MMA). There are currently 9 PRTMs described. The enzymes
responsible for demethylation of the lysine residue are the histone
lysine demethylases (KDMs). These KDMs can be divided into
2 subgroups based on their mechanism of action. KDM1 family
members depend on flavine adenine dinucleotides (FAD) as co-
factors for the demethylation of H3K4me1/2 or H3K9me1/2
residues. The other KDM members contain a Jumonji C
(JmjC) domain and depend on Fe(II)- and 2-oxoglutarate
oxygenases as co-factors. They are further subdivided into
different classes (KDM2, KDM3, KDM4, KDM5, KDM6 and
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other, less studied enzymes like KDM7) (59). Less is known
regarding methylarginine demethylases (RDMs). It was recently
shown that some members of the KDM family, like KDM3A
and KDM6B, can demethylate arginine residues aswell (60). Next
to histones, the histone-methylation enzymes also target non-
histone proteins, thereby influencing important cellular signal
pathways, including NFkB, RAS, PI3K/Akt, Wnt/β-catenin, P53
and ERα pathways (61). An overview of the enzymes catalyzing
histone (de)methylation and their histone targets is provided in
Figure 1.

Aberrant expression or mutations of HMTs (writers), HDMs
(erasers) and methyl-binding proteins (readers) are increasingly
linked with cancer (10, 12, 62). In MM, whole-exome sequencing
analysis of 463 newly diagnosed MM samples revealed that
mutations in a wide range of epigenetic regulators, so-called
epimutations, are present in 50% of the MM patients. When
comparing sequencing data from diagnosis with later stages of
the disease, an increase in the presence of these epimutations
was observed, suggesting a role in MM progression. In addition,
a higher mutational burden in histone methyltransferases and
DNA methylation encoding genes (such as NSD1, MLL2-3,
SETD2, and DNMT3A) was observed upon relapse, indicating a
role in drug resistance to current therapies (11, 12, 63). Below we
will discuss the recent findings on the role of HMTs and HDMs
in MM pathogenesis.

HISTONE METHYLATION ENZYMES AND
MULTIPLE MYELOMA

Histone Methyltransferases in Multiple
Myeloma
One of the best studied HMTs in MM is the lysine
methyltransferase MMSET (also known as WHSC1 or NSD2).
The t(4;14) translocation, resulting in the fusion of MMSET
to the IgH locus, results in the overexpression of MMSET and
FGFR3 and is present in 15–20% of patients with MM. This
translocation is associated with a shorter event-free and overall
survival, but bortezomib treatment is able to overcome this
poor prognosis (64). Moreover, an MMSET gain-of-function
mutation E1099K has been identified in lymphoid malignancies,
including MM (65). MMSET mainly catalyzes the dimethylation
of H3K36 and di- and trimethylation of H4K20. InMM,MMSET
overexpression results in the accumulation of H3K36me2 levels,
causing transcriptional activation of oncogenes and promoting
oncogenic transformation of primary cells (45, 58, 66, 67). In
addition, MMSET overexpression results in the genome-wide
redistribution of the SET lysine methyltransferase EZH2 and the
associated H3K27me3 mark (68). Gene expression profiling and
pathway analysis revealed affected genes to be mainly involved
in cell cycle (e.g., Cyclin E2), apoptosis and p53 pathway (e.g.,
BAX and Bcl2), DNA repair (e.g., ATM and GADD45A), and
integrin mediated signaling (e.g., CDC42) (66). In concordance,
MMSET loss of function experiments indicated anti-MM effects
such as cell cycle arrest and induction of apoptosis (66, 69). More
recently, MMSET was shown to methylate Aurora kinase A
(AURKA) resulting in the proteasomal degradation of p53, thus

increasing proliferation in solid tumors (70). Moreover, MMSET
was also shown to act as a co-activator for the NFkB pathway
(71). Furthermore, MMSET was demonstrated to interact
with epigenetic repressors such as sin3a, HDAC1-2 and the
lysine specific H3K4 demethylase LSD1/KDM1A, thus forming
transcriptional repressor complexes. For example, repression
of the microRNA miR-126 by a complex formed by MMSET,
KAP1, and HDACs was shown to increase c-MYC levels,
thus stimulating MM proliferation (72, 73). Finally, MMSET
has been shown to play a role in the DNA damage response.
In mammals, MMSET is recruited to double strand breaks,
where it mediates methylation of H4K20, thus stimulating
p53-binding protein (53BP1) recruitment and DNA repair
(74, 75). In myeloma, MMSET high cells were shown to repair
melphalan induced DNA damage at an enhanced rate and
continued to proliferate, while MMSET low cells accumulated
DNA damage and entered cell cycle arrest. Moreover, MMSET
silencing increased sensitivity toward melphalan treatment
in vivo (76). Together, these findings suggest that the enhanced
DNA damage repair potential of MMSET overexpressing MM
cells is a possible resistance mechanism, making these MM
patients less sensitive toward treatment with DNA-damaging
agents. This notion is further supported by the observation
that t(4;14) patients experience rapid relapse upon treatment
with DNA damage-inducing agents such as melphalan (64, 77).
Collectively, MMSET represents an interesting therapeutic target
in MM. So far, however, no potent specific MMSET inhibitors are
commercially available yet. LEM-06 is a small molecule inhibitor
of MMSET, but lacks potency and efficacy (IC50 = 800 uM).
Recently, by means of high-throughput screening, 5 possible
MMSET inhibitors were identified. Further work is needed in
order to validate these inhibitors in MM (78).

The enhancer of Zeste Homologue 2 (EZH2) is the catalytic
subunit of the polycomb repressor protein complex 2 (PRC2).
EZH2 can mediate the 3 methylation states of H3K27, however,
the most investigated action of EZH2 is gene silencing through
trimethylation of H3K27 (H3K27me3) (79, 80). EZH2 mediated
trimethylation of H3K27 recruits canonical PRC1 and other
corepressive factors to the DNA by serving as a docking
site. PRC1 will then catalyze monoubiquitylation of H2A on
lysine 119 (H2AK119), leading to a more compact state of
the chromatin associated with gene silencing (80, 81). In
addition, EZH2 can also methylate non-histone proteins like
STAT3, leading to enhanced STAT3 activity and an increase in
tumorigenic potential of glioblastoma stem-like cells (82). Lastly,
EZH2 also functions as a co-activator for several transcription
factors, thus activating pathways such as the NFkB signaling
cascade (83).

Importantly, several studies identified polycomb group
genes, including EZH2, as crucial factors mediating stem cell
pluripotency and self-renewal (79, 84, 85). EZH2 overexpression
is described in various solid cancers and hematological
malignancies, including lung, breast, and pancreatic cancer
and diffuse large B cell lymphoma, and is often linked to a
more aggressive phenotype and unfavorable prognosis (83, 86).
Moreover, activating EZH2 mutations disturb normal B cell
differentiation and have been linked to the development of diffuse
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FIGURE 1 | Histone methyltransferases and demethylases and their targets. Lysine (K) and arginine (R) residues of histone 3 (H3) and histone 4 (H4) are shown.

Histone methyltransferases and demethylases are grouped based on the specific histone tail residue that they target. Lysine residues can be mono-, di- or

tri-methylated, arginine residues can be mono- and di-methylated. Enzymes known to play a role in MM pathogenesis are depicted in bold.

large B cell and follicular lymphomas (86). However, in some
cancers like myelodysplastic syndrome, mutational inactivation
of EZH2 is linked to a bad prognosis, indicating that the function
of EZH2 in cancer may be cell-context dependent (87).

Recently, EZH2 has also become a hot topic in MM, as
evidenced by the high number of publications that emerged
during the last years. Gene expression profiling revealed an
upregulation of EZH2 levels during MM progression, together
with an elevated expression in the high risk proliferative
molecular subgroup (86, 88, 89). EZH2 overexpression is
associated with an inferior progression-free and overall survival,
and this independently from the treatment used (86, 90). Notably,
EZH2 overexpression in MM has been linked to stimulation of
the IL-6R, c-MYC activation, and miR26a downregulation (10).
In line with the EZH2 overexpression, Kalushkova et al. identified
a common silenced gene signature in MM patients enriched
for H3K27me3-regulated polycomb target genes (89). Later on,
Agarwal et al. elaborated on this finding by performing a genome-
wide profiling study investigating H3K27/4me3 marks in MM.
Again, a common set of active (H3K4me3 enriched) and inactive
(H3K27me3 enriched) genes specific for MM samples was
identified. Importantly, the MM unique H3K27me3 mediated
gene silencing was found to correlate with disease progression
and prognosis (91). More recently, Binder et al. identified a
IL6/STAT3-induced long non-coding RNA (lncRNA) termed
STAiR18 that was shown to be associated with H3K27me3,
suggesting that STAiR18 might be an epigenetic regulator
involved in transcriptional silencing in MM (92). In support
of this, accumulating evidence has revealed that some lncRNAs
can operate as an interface between the epigenetic modification
machinery and DNA, enabling the recruitment of chromatin

regulators to specific genomic loci (93, 94). A prominent example
of such an epigenetic-related lncRNA is HOX transcript antisense
RNA (HOTAIR). HOTAIR is well-known to influence chromatin
compactness by serving as a molecular scaffold for PRC2, thereby
recruiting and affecting PRC2 occupancy on genes genome-
wide (95, 96). Importantly, HOTAIR overexpression has been
reported in several solid tumors and hematological malignancies,
including AML and diffuse large B cell lymphoma, and has been
positively correlated with initiation, progression, drug resistance,
and poor prognosis (95–99). In MM, however, no aberrant
expression of HOTAIR in MM cells so far has been reported
(100). Moreover, HOTAIR circulating levels inMM patients were
found to be even lower than healthy controls (101). Nevertheless,
Binder et al. showed similar enrichment of HOTAIR and
STAiR18 by H3K27me3 pulldown in IL-6-treated INA-6 cells.
Hence, further studies investigating STAiR18 and/or HOTAIR
binding with PRC2 in MM cells are of interest (92). Lastly,
EZH2 was also reported to be involved in MM associated bone
disease. Previously, it was shown that myeloma cells induce the
transcriptional repressor GFI1 in osteoblast precursors, resulting
in RUNX2 silencing and suppression of osteoblast differentiation.
In a later study, this GFI1-mediated RUNX2 silencing was shown
to be dependent on the recruitment of HDAC1, LSD1 (KDM1A),
and EZH2 (102). Hence, pharmacological EZH2 inhibition using
the EZH2 specific inhibitors UNC1999 and GSK343 induced
anti-MM effects by reactivating genes involved in differentiation,
cell cycle and apoptosis. Pawlyn et al. also demonstrated the
anti-MM effect of 2 additional EZH2 inhibitors (EZH2i), namely
EPZ005687 and UNC2400, using HMCL and primary samples
derived from heavily pretreated patients. Of note, while a
previous study demonstrated an increase in EZH2i sensitivity
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in MMSET-overexpressing MM cells, Pawlyn et al. found no
correlation between high MMSET levels and EZH2i sensitivity
(68, 103). This discrepancy should be further investigated. More
recently, Alzrigat et al. showed that UNC1999 restores the
expression of miR-125a and miR-320c, causing the subsequent
downregulation of MM-associated oncogenes, such as IRF-4,
Xbp-1, Blimp-1, and c-MYC (104). Moreover, EZH2 mRNA
expression levels were found to inversely correlate with miR-29b
levels and EZH2 targeting restored miR-29b expression levels
and downregulated MM promoting factors like CDK6, MCL-
1, HDAC4, and DNMT3A/B (105). The above clearly supports
the oncogenic role of EZH2 in MM and its potential use as
a therapeutic target. Different EZH2i, such as GSK-926, GSK-
343, EPZ-005687, EPZ-6438 (tazemetostat), EI1 and CPI-169,
are currently under clinical investigation in solid tumors and in
lymphomas, both as single agents and in combination strategies.
One of the most investigated inhibitors is EPZ-6438, which
showed promising results in clinical trials in lymphoma patients
with minimal toxicity problems (79, 106). In MM, disappointing
results of a clinical trial investigating the use of GSK2816126 as a
single agent so far halted the further development of this agent.
However, the identification of relevant biomarkers could improve
the clinical benefit of these agents. Concerning this, Herviou et al.
recently created a gene-expression based EZ-score, enabling the
prediction of EZHi-sensitivity in HMCL and primary MM. The
development of such tools could facilitate the identification of
patients who could greatly benefit from EZH2i treatment (107).

The nuclear KMT1 members G9a (EHMT2) and GLP (G9a-
like protein/EHMT1) mediate mono-, di- and trimethylation
of H3K9. G9a and GLP are highly homologous interaction
partners and their binding seems to be crucial for their
methyltransferase activity, especially in vivo. G9a furthermore
acts as a scaffolding protein via its ankyrin-repeats containing
domain and interacts with other chromatin-associated proteins
like heterochromatin protein 1 (HP-1). This will lead to the
subsequent recruitment of DNMT1, resulting in methylation
of nearby DNA sites, thus reinforcing transcriptional silencing
(108). Notably, G9a expression was shown to mediate the
repression of oct-3/4 genes linked to pluripotency and thus
plays a crucial role in embryogenesis. Next to histone proteins,
G9a/GLP also methylate non-histone targets such as p53 and
SIRT1 (109). Overexpression of G9a has been reported in
different cancers, correlating with tumor suppressor silencing
(such as p53, CDH1, RUNX3, and E-cadherin), metastasis and
a worse prognosis (108, 110–112). Importantly, G9a was shown
to be upregulated in cancer under hypoxic conditions, resulting
in the downregulation of HIF-1α responsive genes and increased
cell motility and migration, thus demonstrating a key role for
G9a in stimulating cell survival under hypoxic stress (95, 100).
Two of the best described G9a/GLP inhibitors are BIX-01294
and UNC0638. Interestingly, both pharmacological and genetic
G9a/GLP targeting have been shown to inhibit proliferation
and migration of cancer cells and is often associated with
the induction of autophagy and the re-expression of tumor
suppressor genes (108, 113–115). In MM, GLP was found
to be upregulated in smoldering myeloma patients compared
to normal BM samples (108, 110). Moreover, using a siRNA

screening approach, G9a was identified as a potential target
in hematological malignancies such as acute lymphoblastic
leukemia, acute myeloid leukemia (AML), lymphoma and MM
cell lines. In concordance, BIX-01294 and UNC0638 were shown
to inhibit proliferation and induce apoptosis in these cell lines
(116). These data indicate a potential role for G9a/GLP targeting
in MM patients.

The KMT1 SUV39H1 was also found to be differentially
expressed between normal BM PCs and MM PCs. SUV39
mediates the trimethylation of H3K9, which is a binding site for
the adaptor molecule HP-1 (117, 118). This repressive mark is
associated with the silencing of tumor suppressor genes in AML
and SUV39H1 inhibition was shown to restore the expression
of the epigenetically silenced p15INK4B and E-cadherin genes
in AML cell lines (117, 119). SUV39H1 was also found to
bind to a central repression domain in RUNX1 (also known
as AML1), a frequently disturbed gene in AML (120). In MM,
high SUV39H1 levels are associated with a bad prognosis. Knock
down experiments resulted in a decrease in proliferation and
an increase in apoptosis, ROS production, and DNA damage.
The SUV39H1 inhibitor chaetocin also exhibited anti-MM effects
both in HMCL and primary samples (121). These results identify
SUV39H1 as a possible target for MM therapy.

The KMT2 orMLL (mixed lineage leukemia) family members
exhibit enzymatic activity toward H3K4, thus promoting
transcriptional activation (122). The MLL members MLL1-5
were shown to be mutated in up to 7% of MM patients. However,
these mutations did not have an impact on progression free
nor overall survival (12). Hence, the functional role of these
methyltransferases in MM still needs to be elucidated.

PRMT5 is a type II arginine methyltransferase that catalyzes
the symmetric methylation of histones and non-histone proteins
on arginine residues. PRMT5-mediated histone arginine
methylation is involved in transcriptional repression and
activation in a context dependent manner (123). Moreover,
PRMT5 is overexpressed in hematological and solid cancers
(124). PRMT5 is functionally involved in differentiation,
proliferation, homologous recombination and cell migration
(124–126). Silencing or inhibition of PRMT5 appears to have
anti-tumor effects in several cancers, including mantle cell
lymphoma, mixed lineage leukemia and colorectal cancer
(127–129). Gulla et al. recently described PRMT5 as a prognostic
factor and therapeutic target in MM. PRMT5 was found to be
upregulated in MM patients compared to healthy controls and
this was associated with a worse clinical outcome. Moreover, BM
stromal cell-conditioned medium was shown to increase PRMT5
expression in MM cells. PRMT5 targeting using both siRNA and
the recently developed PRMT5 inhibitor EPZ015666 negatively
affected cell cycle progression and induced apoptosis in HMCL
and primary samples, even in the presence of BM stromal
cells or BM stromal cell-conditioned medium. Moreover, oral
administration of EPZ015666 also decreased tumor burden in a
xenograft mouse model. In contrast to the previously described
role of PRMT5-mediated p53 methylation in lymphoma
pathogenesis, the observed anti-MM effects of PRMT5 inhibition
were found to be p53 independent (130). Instead, TRIM21 was
identified as a PRMT5 binding partner in MM cells, resulting in
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TRIM21-dependent inhibition of the canonical NFkB signaling
pathway (131).

The type I PRMT4, also known as coactivator-associated
arginine methyltransferase 1/CARM1, mediates methylation
of H3R2me2a, H3R17me2a, H3R26me2a, and non-histone
proteins, thus functioning as a transcriptional activator.
Deregulated PRMT4 expression can be observed in various
malignancies, including breast and prostate cancer (62). In 2017,
Drew et al. investigated for the first time the role of PRMT4 in
MM pathogenesis. EZM2302, a selective PRMT4 inhibitor, was
shown to exhibit anti-MM effects both in vitro and in a myeloma
xenograft setting (132). Similarly, Nakayama et al. demonstrated
in vitro anti-proliferative effects for the PRMT4 specific inhibitor
TP-064 in MM (133).

Histone Demethylases in Multiple Myeloma
KDM1A, also known as LSD1, functions as a transcriptional
repressor by demethylating H3K4 mono- and dimethylation.
However, under specific conditions, KDM1A can also remove
methyl groups of H3K9 mono- and dimethylation marks which
results in transcriptional activation. Moreover KDM1A also
associates with other epigenetic regulator complexes such as
the NuRD complex, SIRT1, CoREST/HDAC, MMSET and
the SIN3A/HDAC complex (72, 134). Adding further to the
complexity, KDM1A also targets non-histone proteins (135, 136).
An interesting non-histone target of KDM1A is the tumor
suppressor p53. KDM1A will inhibit p53 function, thereby
promoting apoptosis (136). KDM1A overexpression has been
reported in several solid tumors and hematological malignancies
and has been linked to a bad prognosis (137–139). Inhibition of
KDM1A in cancer cells induces cell cycle arrest and a decrease
in migration and invasion potential, as shown in different
in vitro studies. In ovarian cancer for example, LSD1 knock out
reduced proliferation and increased sensitivity toward cisplatin
(136, 140–143). Based on these recent findings, 3 different
KDM1A small molecule inhibitors, namely tranylcypomine,
GSK-LSD1, and ORY-1001, are currently in phase I/II clinical
studies for AML and small cell lung carcinoma (140). The
role of KDM1A/LSD1 in MM is still controversial. In line
with the above described studies, higher expression levels of
LSD1 were found in patients with symptomatic MM and PCL
compared to less aggressive MM states. LSD1 knockdown
reduced migration, invasion and wound healing in MM cell
lines, together with a decrease in E- and N-cadherin and
vimentin levels. These results indicate that LSD1 inhibition
negatively impacts epithelial-mesenchymal transition in MM.
LSD1 targeting was also found to inhibit osteoclastogenesis
and to increase MM sensitivity toward HDAC inhibitors (144).
Furthermore, as mentioned above, LSD1 forms a corepressor
complex with MMSET in MM, thus further supporting the
oncogenic function of LSD1 in MM (72). However, more
recently, Wei et al. showed that germline mutations in KDM1A
play a role in predisposition toward MM development. Siblings
with familial early onset MM were found to harbor truncating
mutations in the KDM1A gene. This higher mutation level was
also observed in non-familial MM patients compared to controls.
Moreover, KDM1A was found to be downregulated during MM

development, with lower KDM1A levels in MGUS and MM
compared to normal PC samples. Of interest, KDM1A mutated
cells were enriched for MYC target genes. In concordance, the
KDM1A inhibitor GSK-LSD1 was demonstrated to promote the
development of MGUS in mice as evidenced by the expansion
of the PC population, a secondary immune response and an
increase in the amount of detectable serum M-protein. KDM1A
inhibition furthermore increased proliferation of the MM cell
line U266 and primary MM samples (145). Together, these
data support a tumor suppressive role for KDM1A in MM. In
agreement, Kerenyi et al. found KDMA1 to be necessary for
normal hematopoietic differentiation, by repressing enhancers
and promotors of stem and progenitor cell genes. The authors
observed a decrease in the formation of white and red blood
cells upon LSD1 knockout (146). Thus, it is clear that further
efforts are needed to elucidate the role of KDM1A/LSD1 in
MM.

The KDM3/JMJD1C lysine demethylase family consists of
3 members; KDM3A, KDM3B, and JMJD1C. Under normal
circumstances, KDM3A and KDM3B mediate the demethylation
of H3K9me1/2 and have a role in spermatogenesis (147). In
addition, KDM3A is also involved in stem cell renewal and
adipogenesis (148). Several studies show the involvement of
KDM3A in cancer (149–151). Overexpression of KDM3A in solid
tumors, such as colorectal and breast cancers, correlates with
a bad prognosis (152, 153). Recently, Ohguchi et al. described
the importance of the KDM3A-KLF2-IRF4 axis in MM cell
survival and homing. KDM3A levels were demonstrated to be
increased in MGUS and MM patient samples compared to
normal PCs, indicating a role in tumor initiation. KDM3A
knockdown resulted in clear anti-MM effects, both in vitro
and in vivo. Gene expression profiling of cells transduced with
shRNA for KDM3a revealed a downregulation of KLF2 and
IRF4. KLF2 is a transcription factor belonging to the Kruppel
zinc finger family and plays a role in supporting normal B-
and PC functions (154–156). IRF4 is a PC specific transcription
factor which is activated during PC maturation and has been
shown to be essential for MM oncogenesis (157–159). Thus,
in MM cells, KDM3A maintains KLF2 and IRF4 expression
and hence survival through H3K9 demethylation. Only very
recently, Ikeda et al. demonstrated that KDM3A is upregulated
in MM cells cultured in chronic hypoxic conditions and knock
down of this KDM induced apoptosis under these circumstances.
The hypoxia-mediated KDM3A upregulation was found to be
controlled by the transcription factor HIF1α and was shown
to induce expression of the long noncoding RNA MALAT1,
resulting in the upregulation of glycolytic genes and anti-
apoptotic pathways. Interestingly, MALAT expression is also
upregulated during MM progression (160, 161). These results
identify the HIF1α-KDM3A-MALAT1 as a potential target in the
hypoxic MM cell niches. In conclusion, both studies demonstrate
the oncogenic function of KDM3A in MM and underline the
importance of the development of a specific KDM3A inhibitor
(162). Notably, KDM3A has a different structure then other
KDM members, which could facilitate the development of
specific small molecule inhibitors and limit off target effects
(155).
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KDM5 (JARID1) family members (KDM5A-D) mediate the
removal of methyl groups from H3K4me1-3, with the highest
affinity toward H3K4me3. They function as transcriptional
repressors and often associate with other repressors such as
HDACs and HMTs. Overexpression of KDM5A and KDM5B is
described in several cancers including melanoma, breast, and
lung cancer (163, 164). Recently, KDM5A, and to a lesser extent
KDM5B, knockout was found to induce apoptosis in AML
(165). In MM, survival analysis in 3 independent patient cohorts
of newly diagnosed MM patients identified KDM5B as a bad
prognostic factor. Treatment of the MM cell line MM1s with
KDOAM-25, a recently developed pan-KDM5 inhibitor, resulted
in a G1-phase arrest and a reduction in cell viability. ChIP-
sequencing analysis showed that this was accompanied with an
increase in H3K4 trimethylation (59). Another promising KDM5
inhibitor, namely compound 33, was recently identified, however
this compound was not yet tested in MM (166).

KDM6A (also known as UTX) andKDM6B (JMJD3) mediate
the demethylation of the repressive H3K27me2/3 mark (147).
KDM6A/UTX works in concert with other epigenetic modifiers
like the HMTs MLL2/3 and HATs P300/CBP, thus mediating
transcriptional activation (11). Malignancies can be associated
with increases as well as decreases of H3K27 methylation levels
and these gains/losses are due to mutations in methyltransferases
(like EZH2), demethylases (like UTX), mutations in histone
H3 or changes in associated chromatin marks (like MMSET)
(103). Loss of UTX, observed in both hematological cancers and
solid tumors, is often linked to cell proliferation. In contrast,
UTX overexpression in breast cancer has pro-tumoral effects by
inducing proliferation and invasion. Therefore, the functional
role of UTX seems to be cell context dependent (103). Mutational
loss of UTX expression is found in 10% of primary MM
samples (12, 167). In HMCL, which are often derived from more
aggressive patient cases like extramedullary MM and PCL, the
incidence of UTX mutations reaches levels up to 30–40%. To
analyze the functional role of UTX in MM, a loss of function
study was performed by Ezponda et al. UTX silencing was
shown to promote proliferation, clonogenicity, adhesion and
tumorigenicity of MM cells. Interestingly, UTX loss was also
shown to sensitize MM cells toward EZH2 inhibition. This
increased sensitivity was suggested to be linked with reactivation
of BCL6 and subsequent repression of IRF4 and c-MYC. Hence,
this research suggests a clinical benefit for EZH2i therapy
in MM patients harboring an UTX mutation (103). Ohguchi
et al. found KDM6B/JMJD3 to be highly expressed in MM
and loss of function experiments resulted in the induction of
apoptosis (168). In this study, NFkB signaling was suggested to
activate KDM6B, which in turn upregulates expression ofMAPK-
pathway related genes, including ELK and FOS, thus conferring
MM survival and growth. Importantly, the KDM6B mediated
MAPK pathway activation was found to be demethylase-
independent (168). In contrast, KDM6B was recently identified
as a tumor suppressor gene that cooperates with TP53 in high-
risk patients with a hemozygous deletion of 17p13 (169). Here
the tumor suppressive properties of KDM6B were also suggested
to be demethylase-independent. Thus, the functional role of
KDM6B in MM remains to be further investigated.

ROLE OF EPIGENETIC CONTROL IN
NORMAL PLASMA CELL
DIFFERENTIATION, MM CELL PLASTICITY
AND DRUG RESPONSE

The differentiation of hematopoietic stem cells (HSC) toward
antibody producing PCs is also tightly regulated by epigenetic
mechanisms and flaws in this epigenetic control can result in
various B cell related disorders. In MM, the tumor clone is
composed out of different subclones, which differ in maturation
stage, clonogenic capacity, and drug sensitivity. Interestingly, a
certain plasticity between these subpopulations has been reported
and is likely to be controlled by epigenetic mechanisms. Below we
will discuss the role of epigenetics in normal PC differentiation,
MM cell plasticity and the impact on drug sensitivity.

Role in Normal Plasma Cell Differentiation
Normal PCs arise from pluripotent HSC, which are present in
the adult BM and differentiate into pro-B cells, as illustrated
in Figure 2. Maturation of these pro-B cells into naïve
B lymphocytes occurs due to heavy and light chain gene
rearrangements. Mature B cells from the BM will then migrate
toward secondary lymphoid organs, like the lymph nodes and
the spleen (170). Upon antigen encounter, these mature B
cells will enter the germinal center (GC) and undergo affinity
maturation and class switch recombination, forming centroblasts
or short-lived PCs. Subsequent maturation and selection cycles
in the germinal center give rise to plasmablasts and memory
B cells. Upon re-entering the BM, plasmablasts undergo their
terminal differentiation toward mature non-dividing and long-
living PCs. Their main function is the production and secretion
of immunoglobulins (Ig) (171–173). Importantly, B cells with a
different maturation status can be distinguished from each other
by the presence of specific markers. Both memory B cells as well
as plasmablasts express CD19, whereas CD38 is expressed from
plasmablast stage onwards. Pre-PCs are characterized by lack of
CD19 expression, together with a low expression of CD138 and
Xbp1s.

The above described differentiation of mature B cells
to PCs is a complex multistep process, involving complex
regulatory networks (171). During PC maturation, B cell
specific transcription factors important for maintaining a B cell
phenotype, like PAX5 and BCL-6, are silenced, whereas PC
specific transcription factors like IRF4, Blimp-1 (B-lymphocyte-
induced maturation protein, also called PRDM1) and Xbp1
are activated (171, 172). Blimp-1, the so-called master of PC
generation, and its transcriptional target Xbp1, play a central
role in the development of the unfolded protein response
(UPR). Given the highly secretory nature of PCs, these cells
are susceptible to endoplasmic reticulum (ER) stress. ER stress,
caused by the accumulation of unfolded proteins in the ER,
activates the UPR pathway in order to cope with protein
accumulation. However, when ER stress exceeds the capacity of
the UPR, cells will undergo apoptosis (174). It was shown that
ectopic expression of Xbp1 can increase total protein synthesis,
the expression of genes involved in secretory pathways and the
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FIGURE 2 | Schematic representation of normal plasma cell differentiation and MM related cellular hierarchy with impact on proteasome inhibitor (PI) sensitivity. The

differentiation from pluripotent hematopoietic stem cell (HSC) toward mature, non-dividing and long-living plasma cells (PCs), is shown. The MM clone originates from

a post-germinal center long living PC and is believed to be composed of different subpopulations, including CD138+/Xbp1s+ mature PC (comprising the bulk of the

MM clone), CD138low/Xbp1slow PC, CD138−/Xbp1slow Pre-PC and plasmablasts. These MM cell subpopulations greatly differ in clonogenic capacity, transcriptional

profile, and drug sensitivity. The immature, Xbp1s−/low populations lack full secretory status, making them less vulnerable to ER stress and PIs. In MM patients, a

bidirectional transition between the CD138+ PC and Pre-PC has been proposed and was suggested to be attributed to epigenetic mechanisms, hence referred to as

epigenetic plasticity. Epigenetic modulating agents like HDACi have been shown to upregulate Xbp1 and CHOP expression, thus restoring PI sensitivity.

biogenesis of organelles important in a secretory cell including
the ER, mitochondria, and lysosomes. Together, these data
clearly demonstrate that Xbp1 expression is important in the
differentiation toward a professional secretory cell phenotype
(175). Apart from activating Xbp1, Blimp-1 will silence over 250
B cell specific genes, including PAX5 and BCL-6, thus shaping a
less proliferative cell population characterized by an increase in
Ig synthesis (171, 173).

To silence B cell expression programs, Blimp-1 will interact
with various co-repressors of the epigenetic machinery. It was
shown that Blimp-1 associates directly with HDACs, recruiting
them to the DNA and thereby silencing key B cell specific
genes. Blimp-1 and HDAC association was for example shown
to decrease histone 3 (H3) acetylation levels associated with
the c-MYC promotor, leading to the repression of c-MYC
(170, 176). Next to HDACs, Blimp-1 can also regulate gene
expression by interacting with HMTs and HDMs, such as
G9a and KDM1A/LSD1. Disrupting the interaction between

Blimp-1 and LSD1 or silencing of LSD1 reduces the antibody
production in secretory cells, thus affecting their functional
role (177). Blimp-1 will furthermore recruit G9a to the DNA,
leading to an increase in H3K9me3 and repressing several
genes, including PAX5 (45, 170, 178, 179). Finally, Blimp-1
was also shown to recruit and bind different complexes like
the BAF chromatin remodeling complex, the PRC2 complex,
the NuRD complex, the NCoR co-repressor complex and the
SIN3 co-repressor complex (180). Together, these data suggest
that Blimp-1 acts as a scaffolding protein, thereby recruiting
several chromatin and histone modifying components. Recently,
Guo et al. showed that EZH2 also plays a role in antibody
secreting PCs. EZH2 upregulation was observed in stimulated
B cells and especially in PCs, together with increased levels
of H3K27me3 in B cell specific promotors. EZH2 deficiency
was shown to negatively impact the differentiation into PCs. In
addition, these PCs could not repress mature B cell associated
transcription programs and produced less antibodies compared
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to EZH2 expressing counterparts. Furthermore, EZH2 deletions
hampered the upregulation of Xbp1 target genes, negatively
impacting the expression of the UPR pathway. Together, EZH2
deficiency was found to negatively impact both PC cell number
and functionality (86, 170, 181). These observations are in
contrast to previous reports stating that EZH2 overexpression
is only present in the highly proliferative pre-B and GC B
cells (centroblast stage) and suggest an additional functional
role for EZH2 in PC function (86, 182). Further supporting
the role of epigenetic mechanisms in B cell differentiation,
DNA methylation profiling revealed a global shift toward DNA
hypomethylation during B cell differentiation, and this occurs
mainly at intragenic and intronic regions (183–185). The DNA
hypomethylation shift was found to be primarily present in GC
B cells, and is suggested to underlie the capacity of these cells to
differentiate toward either memory B cells or PCs. Interestingly,
the methylation signature of memory B cells and PCs was
found to be fairly similar, in contrast to their very different
transcriptional profiles (170, 186). This similarity may explain
the observation that memory B cells can rapidly differentiate into
PCs upon subsequent encounters with the same antigen. Finally,
only very recently, RNA sequencing analysis of different stages
of PC differentiation, including memory B cells, preplasmablasts,
plasmablasts and PCs, identified epigenetic enzymes to be
consistently upregulated during PC differentiation, including
HMTs (e.g., PRDM1, PRDM15, PRMT7, and SETDB2), the de
novoDNAmethyltransferase DNMT3B, DNAdemethylases (e.g.,
IDH1, IDH2, and TET1) and DNA methylation readers (MBD1
and ZBTB38) amongst others (187).

Role in Clonal Heterogeneity, Tumor
Plasticity and Drug Response in Multiple
Myeloma
The MM cell population is thought to originate from a post-
germinal center long living PC which retained its capacity to
proliferate (10). The bulk of the MM cells consist of mature
CD19-, CD138+, and Xbp1s expressing cells (172). However,
emerging evidence has shown that within the MM population,
different subpopulations exist which differ in propagating
(clonogenic) potential, maturation stage, transcriptional profile,
and drug sensitivity (10, 172, 188–190). As shown in Figure 2,
these MM populations include both cells with a B cell and PC
phenotype. However, only the latter seem to have myeloma-
propagating properties. Clonogenic CD19+ B cells for example
are unable to propagate MM after implantation in vivo, in
contrast to the pre-PC (CD19-CD138-), CD138low and CD138+
PCs (172, 191). Interestingly, it was suggested that within
the clonotypic PC fraction differentiation programs might
be reversed: in xenograft models where CD138+ PCs were
engrafted, pre-PCs could be isolated and vice versa. This observed
bidirectional transition was suggested to be most likely regulated
through epigenetic mechanisms and was referred to as epigenetic
plasticity. In support of this, pre-PCs were shown to be enriched
in epigenetic regulators compared to PCs. These regulators
include HMTs belonging to the PRC2, components of the
MLL transcriptional activating complex, demethylases such as

KDM5C/D, HATs, and HDACs (188). Moreover, as previously
mentioned, Aggire et al. recently reported hypermethylation
of enhancer regions of B cell specific genes and transcription
factors such as PAX5, BATF, and STAT5, leading to their
downregulation. These enhancers are highly methylated in
stem cells, and demethylation occurs during normal B cell
differentiation into PCs (33). This suggests that MM cells either
regain stem cell like epigenetic features or that they are able to
retain the features of a MM stem cell progenitor.

Importantly, the pre-PCs and clonogenic B cell populations
are more quiescent and drug resistant than PCs and are thus
believed to play a role in clinical drug resistance and relapse
(172, 188). Leung-Hagesteijn et al. found that the immature
subpopulations are intrinsically PI resistant and persist in
bortezomib treated patients. As a possible mechanism for the
PI resistance, the authors proposed a lower activity of the IRE-
XBP1s axis in the plasmablasts, pre-PCs (CD19-CD138-) and
CD138low PCs. PIs create an accumulation of misfolded proteins
in the aggresome, causing lethal ER stress. This explains the
vulnerability of secretory cells toward these agents. However,
the immature Xbp1-/low cell populations are less proliferative
and lack full secretory status, making them less vulnerable to
lethal ER stress (172, 189). Together, these data give a possible
explanation for the failure of PI based therapy, both bortezomib
and carfilzomib, in curing MM (172, 189). Given the presumed
role of epigenetic mechanisms in the proposed bidirectional
pre-PC/PC transition, it might be plausible to assume that
epigenetic therapies might help overcome PI resistance inMMby
inducing epigenetic reprogramming of the CD138-/CD138low
subpopulations toward an Xbp1 positive state (172). In support
of this, HDAC1 was found to be highly expressed in CD138-
propagating cells causing Xbp1 and CHOP repression, thus
reducing sensitivity toward PIs (188, 189). Treatment of these
cells with HDAC inhibitors was shown to upregulate Xbp1 and
CHOP expression and therefore restore PI sensitivity (58, 192).
These data offer a possible explanation (apart from the effect
on HDAC6) for the favorable results of the aforementioned
PANORAMA (PANobinostat ORAl inMultiple myelomA) trials.
As shown in Figure 3, several studies have also implicated
EZH2 in mediating drug responses in MM. Nakagawa et al.
for example found EZH1/2 expression levels to be higher in
a MM side population thought to comprise MM stem cells,
suggesting that EZH1/2 expression plays a role in maintaining
MM stemness. The dual EZH1/2 inhibitor OR-S1 eradicated
these MM stem cells and activated canonical Wnt signaling,
thus inhibiting self-renewal and differentiation of HSC (193).
The elimination of stem cell-like MM cells upon EZH2 targeting
(both alone and in combination with bortezomib), was also
confirmed in a second study (194). Recently, Rastgoo et al.
reported the importance of a EZH2/miR-138 axis in MM
drug resistance. EZH2 overexpression was shown to confer
drug resistance toward anti-MM agents (including bortezomib)
and associate with a bad prognosis. Mechanistically, EZH2
overexpression was found to silence miR-138 and RBPMS (RNA-
binding protein with multiple splicing) in drug resistant cells
and increasing RBPMS levels by using EZH2i or miR-138
mimics restored bortezomib sensitivity. Moreover, combination

Frontiers in Oncology | www.frontiersin.org 11 December 2018 | Volume 8 | Article 566

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


De Smedt et al. The Epigenome in Multiple Myeloma

FIGURE 3 | EZH2 mediates drug responses in MM. The impact of EZH1/2 inhibition on MM sensitivity toward standard-of-care (SOC) agents, including

immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs), and histone deacetylase inhibitors (HDACi) is shown. Possible underlying mechanisms of action are

described if known. Len (lenalidomide), Bz (bortezomib), Cfz (carfilzomib), AZA (5-azacytidine).

therapy with bortezomib and the EZH2i EPZ-6438 significantly
delayed tumor growth in a xenograft model compared to
single agent therapy (195). Rizq et al. also found MM patients
with high EZH2 expression levels to be more resistant to
bortezomib treatment. In concordance, combining the dual
EZH1/2 inhibitor UNC1999 with bortezomib or carfilzomib
significantly enhanced the anti-MM effects of these PIs, both
in vitro and in vivo. Of note, these effects were superior to the
results observed when combining bortezomib with GSK126, a
selective EZH2 inhibitor, indicating that targeting EZH1 and
EZH2 simultaneously is more effective (196). Together, the
studies described above highlight the potential of EZHi in
eradicating MM stem cells and overcoming PI resistance. Next
to bortezomib, a recent study found that pretreatment with
EZH2i also sensitizes MM cells to the HDACi panobinostat
in vitro (197). In addition, pretreatment of MM cells with
the EZH2i EPZ-6438 restored sensitivity toward the IMiD
lenalidomide. As a possible underlying mechanism of action,
the significant decrease in IKZF1, IRF4, and MYC protein
levels upon combination treatment was suggested (107). In
support of this, we showed only very recently that HDACi and
DNMTi combination treatment decreases IRF4 and MYC levels
and induces a more mature BMPC gene expression profile in
myeloma cell lines. Moreover, we constructed a gene-expression
based score to predict patient outcome and MM sensitivity
toward HDACi/DNMTi combination treatment. Patients with

al low combo score were characterized by a mature BMPC
gene signature, whereas patients with a high combo score
were characterized by a proliferating and MYC-associated gene
signatures and worse overall survival. Nevertheless, these high-
risk patients were found to display a higher sensitivity of their
MM cells to HDACi/DNMTi combination treatment. Thus,
our data suggest a therapeutic benefit for combining IMiD
therapy with DNMTi/HDACi in high-risk MM patients with
a high combo score (198). Dimopoulos et al. also found that
simultaneous targeting of DNMTs and EZH2 overcomes IMiD
resistance in MM. IMiD resistant cells were characterized by
an increase in genome-wide DNA methylation levels and a
reduction in chromatin accessibility and gene expression levels.
Treatment with AZA and EPZ-6438 reversed these observed
changes in chromatin structure and resensitized the cells to
IMiDs independently of cereblon. Together, this study suggests
that IMiD-acquired resistance in MM is mainly epigenetically
mediated and that combination with specific epidrugs could
restore IMiD sensitivity (199). Finally, next to the above
described role of EZH2 in IMiD and PI resistance, it should
be mentioned that Kikuchi et al. also described a correlation
between phosphorylation-mediated inactivation of EZH2 and
cell adhesion-mediated drug resistance (CAM-DR) against
doxorubicin and the alkylating agent 4-OHCY in MM. IGF-1R
and PI3K/Akt inhibitors reversed this CAM-DR by blocking the
IGF-1 mediated EZH2 phosphorylation (200). However, in this
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study only in vitro data was included, performed on merely 2
HMCL.

CONCLUSION AND FUTURE
PERSPECTIVES

Although cancer is typically considered a genetic disease,
multiple lines of evidence have shown that defects in the
epigenetic machinery are equally as important in cancer onset
and progression. In fact, epigenetic lesions have been proposed
to contribute to many classical hallmarks of cancer, including
but not limited to genomic instability, sustained proliferation,
invasion and metastasis, evading the immune system and
metabolic dysregulation, and might even be considered as
a new, additional cancer hallmark. In MM, mutations in
DNA methylation and histone acetylation and methylation
modifiers and the associated alterations in chromatin states
have also repeatedly been shown to play prominent roles in
genomic instability, sustained proliferation and drug resistance.
Consequently, targeting these epigenetic regulators using e.g.,
pan-HDACi and EZH2i induce potent anti-MM effects both in
preclinical studies and clinical trials, especially in combination
with PIs and IMiDs. Recent evidence is also suggesting that
apart from inducing direct anti-tumor effects, these epigenetic
modulating agents might also reprogram the immature (Xbp1s-
/low) MM subpopulations toward a bulk of mature Xbp1s+

PCs with a higher drug sensitivity, thus limiting the survival
of drug resistant clones and chance to relapse. However,
although targeting epigenetic modifiers in MM therapy looks

promising, additional (pre)clinical studies are still mandatory

before these agents can be fully implemented into daily clinical
practice. Firstly, based on the findings that epidrugs might
induce maturation of the Xbp1s-/low populations, the efficacy
of combination therapies should also be evaluated in newly
diagnosed MM patients instead of relapsed/refectory MM
patients. Secondly, as the pan-HDACi and -DNMTi currently
used in clinic are often associated with high toxicity profiles,
new regimens combining more selective epigenetic modifying
agents, such as EZH2i and other specific HMTi, with standard
of care agents should be explored to improve tolerability,
while maintaining efficacy. Finally, given the high epigenetic
heterogeneity, MM patients could greatly benefit from combined
genetic and epigenetic profiling. Sequencing of patient samples
during disease progression (that is at the moment of diagnosis,
during therapy and upon relapse) could lead to the identification
of novel epigenetic targets and biomarkers and pave the way for
personalized treatment strategies.
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