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Investigation of large structural variants (SVs) is a challenging yet important task in understanding trait differences in highly

repetitive genomes. Combining different bioinformatic approaches for SV detection, we analyzed whole-genome sequenc-

ing data from 3000 rice genomes and identified 63 million individual SV calls that grouped into 1.5 million allelic variants.

We found enrichment of long SVs in promoters and an excess of shorter variants in 5′ UTRs. Across the rice genomes, we

identified regions of high SV frequency enriched in stress response genes. We demonstrated how SVs may help in finding

causative variants in genome-wide association analysis. These new insights into rice genome biology are valuable for under-

standing the effects SVs have on gene function, with the prospect of identifying novel agronomically important alleles that

can be utilized to improve cultivated rice.

[Supplemental material is available for this article.]

Genomics accelerates biotechnological discoveries and advances
in crops and livestock, particularly by identifying genetic markers
and characterizing molecular mechanisms behind desirable traits
that will aid in generating new varieties through marker-assisted
breeding and genome editing. This is of particular importance for
rice, which needs an estimated 26% increase in yield to meet the
global demand by the year 2030 under constraints such as less ara-
ble land, less water, and severe environmental stresses due to cli-
mate change (Seck et al. 2012).

To help address this yield gap, we intend to catalog all natural
variation that exists in cultivated and wild rice and utilize that in-
formation to identify genes and genomic regions that can be used
to drive the next generation of super crops. As an initial foray, we
resequenced 3010 rice genomes (3K RG) and discovered ∼20 mil-
lion SNPs upon alignment to the Nipponbare reference sequence
(Alexandrov et al. 2014; The 3000 rice genomes project 2014).
Further efforts expanded this database by integrating short inser-
tions and deletions (indels) into the data set (Mansueto et al.
2017). Recent studies, however, reveal that single-nucleotide poly-
morphisms (SNPs) do not capture the entire spectrumof variations
contributing to phenotypic differences, and structural variants
also play an important role (Saxena et al. 2014; Francia et al. 2015).

Detection and characterization of structural variants (SVs) has
revolutionized the understanding of the landscape of genomic var-
iation indifferent species.A structural variant is commonlydefined
as a change in the genome (relative to a reference genome) that has
a different copy number (i.e., gain, loss, deletion), orientation, or
chromosomal location (Medvedev et al. 2009; Escaramís et al.
2015). In human genomes, structural variants account for more
varying base pairs than SNPs (Alkan et al. 2011; Baker 2012;
Sudmant et al. 2015); yet, in plants, studies of SVs are still limited
(Saxena et al. 2014). Although less common than SNPs, structural
variants have a greater potential to impact function due to their
larger size and the possibility of altering gene structure, dosage,
or location (Layer et al. 2014).

After the discovery that structural genomic variation in hu-
man genomes is common, more SV studies were initiated in other
species, from the agriculturally important (Swanson-Wagner et al.
2010) to extinct ones (Smith et al. 2017b). However, identification
of SVs generally has lagged behind finding single-nucleotide vari-
ants due to the lack of high-quality reference genomes (Escaramís
et al. 2015) and robust methods, both of which are needed to dis-
cover and genotype SVs. In plants, structural variants are not rec-
ognized as polymorphisms affecting individual plants but as
differentiating elements between cultivars/accessions of one
species (Francia et al. 2015). Maize became the first plant species
to be extensively interrogated to discover hundreds of SVs.
Although the number of SVs detected was later found to be an
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underestimate, the high level of SVs in maize was unprecedented
among higher eukaryotes (Żmieńko et al. 2014). Another large
plant genome sequencing initiative started in 2008 developed a
catalog of genetic variation in 1135 Arabidopsis accessions (The
1001 Genomes Consortium 2016).

Several studies in plants have already shown the association
between structural variants and plant phenotypes (Żmieńko
et al. 2014). For example, the increased copy number of Vrn-A1
and Ppd-B1 genes in wheat causes late flowering and early flower-
ing, respectively (Würschum et al. 2015). Furthermore, a specific
tandem duplication in wheat that covers the Rht-D1b gene results
in a >70% reduction in plant height (Li et al. 2012). SVs have also
been linked to stress tolerance phenotypes in crop plants such as
boron tolerance in barley (Sutton et al. 2007) and nematode resis-
tance in soybean (Cook et al. 2012).

Previous studies on rice (O. sativa) have identified structural
variants by comparison of rice genome to its closest relatives in
genus Oryza (Hurwitz et al. 2010) and between representatives of
its major subgroups (Schatz et al. 2014) and elucidated association
between structural variants and rice phenotypes using multiple
rice accessions (Xu et al. 2012; Duitama et al. 2015). Examples of
SVs affecting rice traits include the 17.1-kb tandem duplication
at the GL7 locus (Wang et al. 2015) that increases grain length,
the 1.2-kb deletion in qSW5 that alters grain width (Shomura
et al. 2008), the 833-bp deletion that causes dwarf phenotypes
and smaller grains (Ashikari et al. 1999), and the 10-bp deletion
that results in slender grains (Wang et al. 2012). Recently, an ex-
tensive study on genomic variants including 90,000 SVs larger
than 100 bp in the 3K RGwas published, relying on a single SV cal-
ler (Wang et al. 2018) applied to a subset of samples with high
coverage.

The mutational mechanism for structural variants formation
includes nonallelic homologous recombination, nonhomologous
end-joining (NHEJ), shrinking or expansion of variable number
tandem repeats, and transposable element insertion (TEI) (Lam
et al. 2010; Yi and Ju 2018). In the human genome, NHEJ and
TEI are the major mechanisms for SV formation (Lam et al.
2010; Yang et al. 2013).

Structural variants can be classified in the following types: de-
letions, insertions, duplications (tandem and interspersed), inver-
sions, and translocations. There are five general strategies to detect
SVs based on analysis of data from high-throughput sequencing
data using short reads: paired-end mapping (RP) (Chen et al.
2009; Sindi et al. 2009), split-read mapping (SR) (Schröder et al.
2014), read depth (RD) (Abyzov et al. 2011; Duitama et al. 2014;
Smith et al. 2015), de novo assembly (AS) (Narzisi et al. 2014;
Rizk et al. 2014; Yang et al. 2015), and a combination of the preced-
ing approaches (CB) (Ye et al. 2009; Rausch et al. 2012; Layer et al.
2014; Mohiyuddin et al. 2015; Smith et al. 2017a). Each of these
strategies has different strengths and weaknesses in detection, de-
pending on variant type, sequence length, and reference genome
quality and complexity; hence, applying complementarymethods
and combining results can overcome some of the limitations in-
herent to these different approaches (Alkan et al. 2011).

Despite the development of many SV callers, SV discovery re-
mains challengingdue to the complexityof some structural variant
events and their occurrence in repetitive regions (Sudmant et al.
2015). For example, 45% of the rice genome consists of repetitive
sequences (Ouyang and Buell 2004), complicating read mapping
and reducing accuracy of breakpoint predictions. Aside from the
performance of the callers, the nature of the data set greatly influ-
ences the quality of prediction. Many studies suggest that sensitiv-

ity, specificity, and breakpoint accuracy are dependent on read
length, insert size, and physical coverage (Alkan et al. 2011).
Because the average sequence coverage of the 3K RG data set is
14×depth, theuseof one singlemethod for SVdetectionmayresult
in a high error rate.

In this study, we combined multiple approaches and devel-
oped a robust SV prediction pipeline to identify more than 63mil-
lion structural variants grouped into 1.5 million SV events across
3000 rice genomes and performed further analyses to confirm
their accuracy. This set of SVs represents an important public re-
source cataloging genome variation across the main rice varieties
and provides new insights for the discovery of genes related to dif-
ferent traits and for studying the possible roles of structural vari-
ants in rice.

Results

SV clusters number 1.5 million within O. sativa

Based on the benchmark of 10 diverse SV-finding algorithms (Sup-
plementalMethods; Supplemental Fig. S1; Supplemental Table S2),
webuilt a customSVcallingpipeline andused it todetect deletions,
insertions, tandem duplication, and inversions on the 3K RG data
set and alignment files (https://aws.amazon.com/public-datasets/
3000-rice-genome/). Instead of relying on a single caller, we com-
bined multiple variant callers with the best sensitivity and preci-
sion across different sizes and types of SVs. We identified a total
of 63,441,115 SV calls (Table 1) across the 3K RG data set and
grouped them into 1.5 million SVs clusters or events. The clusters
were defined by grouping together SV calls in different samples
that are likely to correspond to single evolutionary events. This
grouping was based on the similarity in sizes and positions of
SVs, with an average distance between breakpoints on either side
of each cluster of 2.2% of the respective SV length (Supplemental
Fig. S2). The frequency distribution for each type of SV follows
the power law (Fig. 1A), consistent with expectation from the neu-
tral theory of evolution (Fu 1995). Compared to SVs discovered by
Wang et al. (2018), our data set covered 80.5% of their detected SV
sites (Supplemental Fig. S3)within the same subset of sampleswith
high coverage; however, we also report insertions and variants
smaller than 100 bp, applied more stringent clustering criteria,
and used all 3K RG samples for SV detection.

To further validate SVs detected by our pipeline, we compared
the reference genome of Nipponbare (IRGSP 1.0) (Kawahara et al.
2013)with the published genome of N 22 (Pacific Biosciences [Pac-
Bio] assembly) (Stein et al. 2018) by visually inspecting predicted

Table 1. Distribution of structural variants per SV type

SV type

Number of
calls (from
all samples)

Number
of events
(clusters)

Number
of events
(MAF>
0.01)

Transposable
elements
(events)c

Deletion 44,143,199 834,763 116,733 106,983
Insertiona 14,411,023 413,740 82,720 16,159
Duplication 3,631,860 78,879 11,729 3485
Inversion 1,255,033 210,301 3362 7946
CNVb 31,093,780 207,927 129,088 44,021

aDetected in 562 high-coverage samples.
bDetected in 938 samples with >15× read depth and normal distribu-
tion; 50% reciprocal overlap was used for TE classification.
cSV size > 50 bp.
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variants using a dot plot display (Krumsiek et al. 2007) of the two
genomes aligned against each other (Supplemental Fig. S17) and
calculated false positive rates (FPR) and false negative rates (FNR)
for randomvariants predicted in the sample CX368, anN 22 acces-
sion. The FPR for deletions is 14%,whereas duplications and inver-
sions have much higher FPRs, 40% and 75%, respectively
(Supplemental Table S4). Predicted false positive rates of the pipe-
line across different types of variants compare favorably with the
performance of individual tools; for example, see extensive bench-
marking of several leading SV callers on humangenomes from Illu-
mina sequencing (Smith et al. 2017b). The false negative rate for
detecting deletions is ∼40%, consistent with the use of multiple
callers whereby caller-specific SVs are often discarded and depen-
dent on the quality of the sequences. The number of detected in-
versions and tandem duplications is very low compared to the
other types. Although this observation can reflect a limitation of
the detection pipeline, it is consistent with studies in other organ-
isms (Quinlan et al. 2010). Due to the lower coverage of sample
CX368 and its non-normal read depth distribution (Supplemental
Figure S18a), we were not surprised by somewhat higher FPR and
FNR, and we could not validate insertions and CNVs predicted
based on read depth following this procedure (for precision of
CNV, see Supplemental Figure S18b).

Transposable elements

Transposable elementsplayamajor role increatingSVs.Among the
8.7% SV events (17.3% SVs calls) that have 80% reciprocal overlap
(at least 80%of the TE is covered by SV, and at least 80%of the SV is
covered by TE) with known transposable elements (TEs) in
Nipponbare annotated in the RiTE database (Copetti et al. 2015),
the Harbinger superfamily had the largest SV event contribution,
followed by the Tc1-Mariner and Mutator TE families
(Supplemental Table S1). Of the remaining clusters, 42.5% also

overlap on at least 50% of their length
with the TE and repetitive regions, com-
prising ∼45% of the rice genome
(Ouyang and Buell 2004), but with lower
intersection percentages.

Most peaks in the distribution of SV
sizes (Fig. 1B) match TEs defined in the
RiTE database with major peaks associat-
ed with events related to the Tc1-mariner
(DTT), Harbinger (DTH),Mutator (DTM),
Gypsy (RLG), and SINE (RSU) families of
transposable elements (Fig. 1C). Peaks at
237, 433, and 466 bp consisted of the
OsT38 family of Tc1-mariner (Lu et al.
2012) elements, mPing elements (Jiang
et al. 2003; Naito et al. 2014), and the
long terminal repeat (LTR) of the gypsy-
type retrotransposon RIRE2 (Ohtsubo
et al. 1999), respectively. Last, we found
that 87.6% of the 155-bp duplication
peak is composed of centromeric repeats
(SRC).

Using the MEME Suite (Bailey et al.
2009), we analyzed the deletion sequenc-
es corresponding to the 237- to 238-bp
peaks and found that 81.1% have rice-
specific 95-bp terminal inverted repeats
(TIR). Insertions of 237 and 238 bp were

found to have the same 95 bp TIR and were classified as Tc1-mar-
iner elements, one of the superfamilies that generates themajority
of the miniature inverted-repeat transposable elements (MITEs) in
rice (Han et al. 2013). Of the deletions with TIR, 90% (40,212)
belong to 191 (28%) clusters with a frequency above 0.1. We iden-
tified 730 genes that have insertion/deletion of MITEs in the 3′

UTRs, which may result in the translational repression of the
gene as shown by Shen et al. (2017). Their conserved lengths are
consistent with observations of the OsT38 family of Tc1-mariner
(Lu et al. 2012).

Other known active transposable elements also matched sev-
eral events (Fig. 1D). Supplemental Figure S19 showsmore TE fam-
ilies that matched SVs and that mPing inserts preferentially in
introns, whereas nDart tends to insert in 5′ UTRs.

Supplemental Table S1 presents statistics of transposable and
repeat elements (size >50 bp) among the detected structural vari-
ants. Even after aggregation of insertions and duplications, detect-
ed events are significantly rarer than deletion events: Counting SV
events, the ratio of the number of deletions to the combined num-
ber of insertions and duplications is 5.45. There are several reasons
for this imbalance. First, when sequences of any two genomes are
compared, deletions in one genome are detected as insertions in
the other. Because we do not have the ancestral genome, unaffect-
ed by expansion of TE, wemust compare three thousand genomes
of cultivated rice to the Nipponbare reference. All insertions of
transposable elements in the evolution of Japonica rice or even par-
ticular to Nipponbare will be predicted as deletions in other acces-
sions in a reference-based analysis. Second, insertion and other
events (especially longer ones) in accessions different from
Nipponbare aremuch harder to detect using short NGS reads com-
pared to the deletion events. Hence, a large proportion of nonde-
letion events, therefore, may go undetected. Comparison of
length of different TEs supports the importance of this factor. A
typical LINE element can be as long as 6000 base pairs, whereas

BA

DC

Figure 1. Distribution and classification of SVs. (A) Frequency of observations per SV cluster. Only 562
high-coverage samples were used for insertion detection. (B) Distribution of variant sizes by SV type.
(C ) Classification of variants in each peak (cluster frequency >10 samples). (D) Frequencies of events
with 98% sequence identity to known or potentially active TEs in rice.
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LTRs range from 100 to 5000 base pairs. Supplemental Table S1
shows that predicted LINE element deletions are almost 100 times
more common compared to predicted insertions, whereas for var-
ious subclasses of LTR, the ratio can be as small as 1.5.

This tendency of excess deletions occurs for both retrotrans-
posons (Class I; copy and paste) and DNA transposons (Class II;
cut and paste). Overall, there are more deletion events for Class II
transposons. This is a combinedmethodological and biological ef-
fect that can be illustrated by the following thought experiment.
Assuming that there are copy-and-paste TE events in each of the
3K rice genomes. When projected onto the reference genome,
they should be manifested as insertions. Because insertions are
hard to detect using NGS, many of them go undetected. When a
cut-and-paste event occurs in the same genomes, the “cut” site is
seen as a deletion event, and the “paste” site can be either detected
ormissed. This leads to a greater number of deletions of Class II TEs
(Supplemental Table S1). The copy-and-pastemechanismensures a
relatively higher number of insertions for Class I TEs. Our observa-
tions support both of these hypotheses in which the ratio of the
number of detected deletions to insertions and duplications for
Class I is 2.36, and forClass II (cut-and-pastemechanism), it is 6.77.

To normalize the described imbalance effect produced by the
methodology, for each type of SV instead of raw numbers, we com-
pared the distribution (percentage) of events intersecting each TE
family with the general distribution of TEs annotated in the rice
reference genome. If SVs are randomly distributed, both distribu-
tions should be similar. For CNV and tandem duplications, we
identify mostly Gypsy and Copia Class I elements (Supplemental
Data, sheet “TE SVs”). Copia elements are more enriched in dupli-
cation (17.25%) than in deletion CNVs (10.46%). For the Class II
elements, CNVs show enrichment for CATCA elements, probably
because they are longer on average (860 bp) than other Class II el-
ements. The Helitron family appears to be enriched in deletion
CNVs (7,18%). Deletions, insertions, and inversions found by RP
approaches are comprisedmostly of Harbinger, Mutator, andMar-
iner Class II elements. Despite the larger numbers, percentages of
deletions in Class I elements are similar to the general percentages
of these elements. In contrast, Gypsy elements are enriched in in-
sertions (17.15%) and inversions (12.52%). Cluster sizes for dele-
tions related to Copia and Gypsy elements are much larger on
average than clusters for other elements. This suggests that many
of these events may be true insertions in Japonica. Despite the
shortcomings of each method to detect SVs, our data agree with
the expected footprints of historical activity of Class I and Class
II transposable elements in contributing to variety-specific (or
type-specific) differences in genome structure.

Population structure derived from SV calls

To validate the catalog of SVs described in this study, we selected
different types of variants and performed population structure
analyses taking individual SV calls as alleles of genetic markers to
verify whether this structure is consistent with that inferred from
SNP markers. For the case of copy number variants (CNVs) geno-
type calls, we selected 7515 CNVs genotyped in at least 800 of
938 selected samples (for details, see Supplemental Methods;
Supplemental Fig. S13) and having the major allele in a maximum
of 99% of the samples. Then, using the predicted copy number
of these CNVs in each accession as alleles of genetic markers, we
performed a population stratification analysis with Structure
(Pritchard et al. 2000) and verified that the population structure
derived from CNVs is consistent with that obtained from ge-

nome-wide SNPs (Wang et al. 2018). Figure 2 shows that indeed,
CNV genotyping data can distinguish the threemajor rice subpop-
ulations of: Indica, circum-Aus, and Japonica. At K=4, Japonica is
separated into temperate and tropical types. At K=5, the Indica
group 1A emerges. From K=6 to K=9, Indica is further divided in
the groups Indica 1A, 1B, 2, and 3, whereas Japonica is divided in
temperate, tropical, subtropical, and admixed Japonica types. All
of these groups are consistent with the clustering derived from
SNP markers. We also tried to reconstruct population structure
from 2839 CNVs genotyped in at least 2000 of the 3023 samples,
located in nonrepetitive regions of the genome that have the ma-
jor allele in atmost 80% of the samples. In this case, themain pop-
ulations could still be differentiated but the signal was less clear
(Supplemental Fig. S14a). This was probably a result of the larger
percentage of missing data in this data set (27.9%) compared to
that of the data set shown in Figure 2 (9.02%) as well as the low-
er-quality predictions of CNVs for samples sequenced at low
(<15×) average read depths.

We also conducted principal component analysis (PCA) on
the deletion data set using all and high-coverage samples and
found agreement with clustering defined by genome-wide SNP
data (Wanget al. 2018). Inparticular, the first twoprincipal compo-
nents (PCs) separatemajor groups (Supplemental Fig. S4c), and PC
6 and 7 separate the Indica subgroups (Supplemental Fig. S4b,d).

Distribution of SVs relative to gene models

About 74.6% of SV clusters lie in intergenic space, but only 5.8%
intersect with exonic regions. Nevertheless, in the 3K RG data,
we found that 72.6% of the gene models supported by full-length
mRNA sequence overlap with SV clusters havingMAF>0.005, and
47.6% of their coding regions are affected by SVs. Structural

Figure 2. Structure analysis based on selected CNVs and assuming K=
[2, …, 9] subpopulations.
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variants occur more often in intergenic and promoter regions and
are depleted in genic regions, especially in coding DNA sequence
(CDS) (Fig. 3A). Figure 3B shows the similarity between distribu-
tions of SVs and SNPs (Tatarinova et al. 2016; Triska et al. 2017),
where a higher density of variation was observed in the intergenic
space. The excess of SV events upstream of core promoters is likely
due to transposon-related SVs.

Figure 3C shows that there is a significant difference in distri-
butions between short (<40 bp long) and long deletions. Short de-
letions peak in the 5′ UTR region, and long deletions are most
frequent in the promoter region. Additionally, we examined short
indels identified by the GATK (McKenna et al. 2010) pipeline and
found that the peak in the 5′ UTR consists mostly of variants with
sizes in multiples of 3 nt (Supplemental Fig. S5; Supplemental Fig.
S15). Using the repeat finder SSRIT (Temnykh et al. 2001), we
found that 42.4% of the small deletions within the region [tran-
scription start site (TSS),TSS+125] are simple sequence repeats
(SSRs) with trimer or hexamer motifs (Supplemental Data, sheet
“SSRs in UTRs”). Abundance of short indels in 5′ UTRs can be ex-
plained by high density of SSRs (mostly triplets) (Lawson and
Zhang 2006), resulting in low sequence complexity (Supplemental
Fig. S6).

To evaluate the effects of SVs on regulatory elements, for each
position around the TSS, we performed a test for independence be-
tween the presence of transcription factor binding sites (TFBS) and
deletions along the promoter sequence and found a significant
negative correlation between the presence of TFBS and deletions

near TSSs (Fig. 3D). In positions where P-values are close to 1 [log
(P) close to zero], there is no mutual avoidance between TFBS
and deletions. In the region [TSS-200, TSS+ 50], there is significant
mutual avoidance between TBFS and deletions, because the dele-
tions in this area may be detrimental to the plant. Therefore, we
hypothesize that presence of a functional TFBS in the core promot-
er decreases the chance of a structural variant to be retained.

Association of SV-rich regions and stress response genes

Using 100-kb sliding windows with 50-kb overlaps, we computed
the density of SNPs (Mansueto et al. 2017) and SVs across the rice
genome and found that SNPs and SVs correlate (r=0.52; P= 2.2 ×
10−16) (Supplemental Fig. S7). We retrieved windows with SV
counts of twice or more than the mean and performed an enrich-
ment analysis using GO annotations. Supplemental Figure S8
shows highly similar distributions of SNPs and SVs across the ge-
nome and the colocalization of SV spikes and with enriched GO
categories like “stress response” (Fisher’s exact test; P= 2.8 ×
10−5). At least 83.4% of the genes from the enriched categories
overlapped a deletion (MAF>0.005) (Supplemental Data, sheet
“SV-Rich Genes”).

We also investigated possible functional roles of the genes
affected by CNVs by selecting genes for which at least 80% of its
genomic location was covered by a CNV used to perform structure
analysis. Executing ontology term enrichment analysis by agriGO
(Tian et al. 2017), we found that genes affected by CNVs were en-

riched for the biological processes of cell
death and response to stress (Supplemen-
tal Fig. S14b). Enriched molecular func-
tions include kinase activity and
nucleotide binding (Supplemental Fig.
S14c). This result is consistent with the
previous analysis of Bai et al. (2016) on a
more limited data set of deletions occur-
ring in 50 accessions and suggests that
copy number variation could play a role
in the plant defense system.

Known SVs at important loci

To test whether our pipeline detected
known structural variants in rice, we ex-
amined a set of selected genes with
known structural variants. An important
gene in rice known as GW5was found to
be associated with rice grain width and
weight (Shomura et al. 2008). A study re-
vealed that a deletion in qSW5, a QTL for
seed width which contains GW5, has
played an important role in increased
yield during rice domestication. Only
390 bp of GW5 can be mapped to Chro-
mosome 5 of Nipponbare, with a larger
part of the gene overlapping a 1212-bp
deletion in the Nipponbare genome.
Analysis of our insertion data set revealed
17 samples that contain the correspond-
ing insertion of 1212 bp. Using historical
phenotyping data we were able to con-
firm its association with grain weight, al-
though the P-value appeared to be barely

CA

DB

Figure 3. SVs in genome features. (A) Enrichment/depletion of deletions (green) and insertions
(orange) in various genomic regions. As expected, genic regions have fewer SVs than intergenic ones,
with CDSs and exons being themost conserved regions. (B) Distribution of deletion and insertion clusters
near the transcription start site (TSS). Although the total number of SNPs is much larger than SV clusters,
SVs affect more positions. The bump at about −366 bp just before the core promoter is explained by lon-
ger SVs associated with transposons. (C) Distribution of the number of deletions in the vicinities of start
and end of transcription and translation (Supplemental Fig. S16). (D) P-values of the independence tests
between predicted TFBS and deletions. Strong anti-correlation is observed at the TSS and ∼100 bp up-
stream. Distribution of P-values shows that in the core promoter area ([TSS-200, TSS]), deletions and
TFBS are not independent.

Fuentes et al.

874 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241240.118/-/DC1


significant due to sample size (Supple-
mental Figure S9a).

Many studies have associated copy
number variants with changes in gene
expression levels and various adaptive
traits. A study of the GL7 locus (Wang
et al. 2015) revealed that a 17.1-kb tan-
dem duplication is responsible for a
long-grain phenotype in selected rice va-
rieties. We identified 111 varieties in the
3K RG data set with this causative dupli-
cation. Historical data confirmed the
association with grain length (Supple-
mental Fig. S9b).

A study on anaerobic germination
previously discovered a 20.9-kb deletion
of the AG1 locus in several varieties in-
cluded in the 3K RG (Kretzschmar et al.
2015) data set. In our predicted SV data set, we found 156 samples
with this deletion, 39 of which had an additional deletion of ∼100
bp within the AG1 locus and 149 belong to the Indica group. In ad-
dition, we found 176 samples with a novel smaller deletion (185–
467 bp) at the locus instead of the longer variant previously report-
ed. Thus, our study confirmed thepresence of knownSVs in impor-
tant genomic regions and expanded the set of genotypes and
haplotypes with novel SVs to examine in further association stud-
ies (Supplemental Fig. S9; Supplemental Data sheet “Known SVs in
Genes”).

Utility of SV data sets for GWAS

SVs have been recognized as the causative mutations for many
traits. Thus, the ability to conduct association studies with SVs
should aid in gene discovery. Although SV detection is known to
have a higher error rate than SNP calling, we theorize that with
enoughcoverage, ourpredictedSVscanbeused ingenome-wide as-
sociation studies (GWAS). As an example, we conducted a GWAS
for a seed coat color trait using a previously published SNP data
set, merged with genotype data for an insertion site (Chr 07:
6068071) at the red pericarp (Rc; LOC_Os07g11020) gene locus,
known to be the causative mutation for this trait (Sweeney et al.
2006). Supplemental Figure S10a shows that the insertion is the
most significant point in the GWAS plot at the Rc locus.

We also tested for SV effects associated with grain length. The
major peak (Supplemental Fig. S10b) coincides with the LONG
KERNEL 3 gene, which is known to regulate grain size (Takano-
Kai et al. 2009). The 350-nt-long deletion within the peak truncat-
ed the longest CDS of the gene and is likely to be the causative var-
iation. The other peak onChromosome 11has an indel as themost
significant variation. This region does not have annotated protein-
coding genes and is more difficult to interpret.

Knowing that the presence of SVs is likely to have a sig-
nificant impact on a gene function, we also identified 710 func-
tionally characterized genes in the Q-TARO database (Yonemaru
et al. 2010) that intersect with deletions (MAF>0.005) (Supple-
mental Data, sheet “Q-TARO Genes”), among these, 308 are
completely deleted in some rice accessions.

Deleted genes

Wedefined genes as deletedwhen their coding sequence is deleted
over its entire length in at least one sample out of 562 high-cover-
age samples. Figure 4A shows the fraction of deleted genes in each

sample, and Figure 4B illustrates the distributions of deleted genes
among the variety groups.WeusedGOannotations andMAPMAN
curated pathways (Thimmet al. 2004) to compare enriched biolog-
ical themes of deleted temperate Japonica (Nipponbare) genes with
the core gene set of genes that are present in all varietal groups.
Results showed an enrichment of a core set genes having basal
housekeeping functions and processes (e.g., developmental and
catabolic processes, DNA-binding transcription factor activity,
etc.). For circum-Aus and Indica-deleted genes, biological themes
were indicative of adaptive functions/processes (e.g., response to
oxidative stress, abiotic stress pathways, defense response), hinting
at domestication/selection events that these variety groups under-
went through their history of cultivation in diverse environments
(Supplemental Data, sheet “Deleted Genes”). Deleted genes in the
circum-Basmati (aromatic) groupdid not show any overrepresented
adaptive themes, but were enriched for housekeeping functions
(cell growth, carbohydrate metabolism), somewhat supporting
theknowncultivationhistoryof circum-Basmativarieties ina small-
er geographic region as compared to the Indica and circum-Aus vari-
etal groups.

Discussion

Wepresent the results of one of the largest studies on structural ge-
nome variations within a crop species. We carefully assessed the
performance of differentmethods in discovering SVswith simulat-
ed short reads. We then combined them into one pipeline and as-
sembled a comprehensive data set of SVs produced from the 3000
rice genomes project data set.

We found ∼1.5 million SV events (clusters) longer than 9 nt
that are distributed across the Nipponbare reference genome. In
the manual validation, we found complex events that “confuse”
the SV callers, such as short deletions in large interspersed duplica-
tions, palindromes, and terminal repeats. It is also important to
note that some events may be found in large translocated regions,
which could not be differentiated by the pipeline due to the limita-
tionof detecting translocations andevents containedwithin them.
Furthermore, our deletion detection has a lower false positive rate
compared to the other SV types. Although transposable elements
complicate SV detection, true TE events were accurately predicted
by the pipeline (see validation results).

At least 17% of the SV calls longer than 50 bp are associated
with transposable elements, which contribute significantly to ge-
nomic variation in plants (Wendel et al. 2016). Based on their

BA

Figure 4. Deleted genes in variety groups. (A) Percentage of deleted genes in each variety group.
(B) Number of deleted genes (frequency≥5) that are unique or shared between variety groups. Note
that the number of the deleted genes in Japonica is lower can be explained by the bias introduced by us-
ing Nipponbare genome as a reference.
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distribution near genes, we hypothesize that transposons play an
extensive role in gene regulation, which is consistent with other
studies (Naito et al. 2009; Han et al. 2013; Shen et al. 2017).
Population structure, revealed by the deletion (Supplemental Fig.
S4c) and CNV data sets, identified the same subgroups as ge-
nome-wide SNP analysis (Wang et al. 2018), providing additional
validation of the identified SVs.

We observed a significant difference between distributions of
short and long indels near TSSs. Longer deletions most frequently
occurred in promoter regions, whereas short deletions were prefer-
entially found in or near 5′ UTRs. The peakof long deletions in pro-
moter regions at ∼360 bp upstream of the TSS is consistent with
previous observations made for transposons (Han et al. 2013)
and may be explained by easier accessibility of these regions for
transposon insertion (Naito et al. 2009). The short deletions
peak in 5′ UTRs can be explained by lower complexity of 5′ UTRs
having numerous short sequence repeats. The greatest contribu-
tion to this peakwas fromdeletionswith lengths divisible by three,
which is consistent with the SSR length distribution. We also de-
tected a significant anti-correlation between the presence of SVs
and TFBSs at∼100 bp upstreamof TSS, implying negative selection
against deletion of important regulatory elements in these regions.

The abundance of SVs that have high sequence similarity to
known transposable elements suggests thatmany SVs are products
of TE activity. The higher number of TEs in the upstream regions of
genes (Naito et al. 2009;Han et al. 2013), where promoters and reg-
ulatory motifs reside, indicates that SVs may be important agents
for gene expression pleiotropy that is often observed in stress re-
sponsive genes. Studies in both human and plant genomes have
found structural variants and transposable elements that are asso-
ciated with aberrant expression of nearby genes (Lu et al. 2012;
Wei and Cao 2016; Chiang et al. 2017). Previous studies in maize
(Lu et al. 2015), cucumber (Zhang et al. 2015), soybean (McHale
et al. 2012), A. thaliana (Debolt 2010), and 50 rice accessions (Xu
et al. 2012) also associated high level of SVs in proximal locations
to stress response or disease defense genes. Makarevitch et al.
(2015) reported that small numbers of maize TE families may con-
tribute to abiotic stress responses by providing stress responsive en-
hancer-like functions to nearby genes. They also reported that
specific insertions of TEs near genes are often polymorphic within
a species, in agreement with our observations across the 3K RG.

Although third-generation sequencing technologies can as-
semble high-quality rice genomes and assess structural variation
through comparative genomics, it is unlikely that for the foresee-
able future they will be applied to a large set of varieties within a
species. Hence, bioinformatic analysis of short reads is currently
themost practical way to assess the diversity of structural variation
within a species as performed in this study. Future studies may use
different reference genomes from other variety groups, and inclu-
sion of new samples resequenced at higher depths would allow
better profiling of longer insertions. Our SV data set will enable
rice geneticists to explore variability that is normally missing in
SNP-based genome-wide association studies. Moreover, the vari-
ability described in this analysis can be used as a hypothesis gener-
ator to identify genetic causes of different important traits through
future functional studies.

Methods

Evaluation of SV callers

We benchmarked a set of SV callers to identify a subset to integrate
into a discovery pipeline. The benchmarking pipeline was de-

signed so that the performance of SV callers could be evaluated
with respect to variant types—deletion (DEL), insertion (INS), in-
version (INV), tandem duplication (DUP), and translocation—
and variant sizes, binned according to lengths: A (50–150 bp), B
(151–500 bp), C (500–5000 bp), D (5–50 kb), E (50–250 kb), and
F (0.25–1Mb). Test data were designed to replicate the 14× average
coverage of the 3K RG data set with 1000 introduced variations per
SV type for the first four bins, and 200 and 100 variations for bins E
and F, respectively. Genomic sequences with DEL, DUP, and INV
variants were created by SVSIM (https://github.com/mfranberg/
svsim) using the Nipponbare RefSeq (IRGSP 1.0), and sequencing
reads were simulated by WGSIM (https://github.com/lh3/wgsim)
with 83-bp read lengths, 500-bp insert sizes (SD=50), and 0.02 er-
ror rates. It is worth clarifying that all DUP events simulated by
SVSIM were tandem duplications (TDs). For insertion types, simu-
lated paired-end reads of the Nipponbare RefSeq were aligned to
another reference genome with randomly deleted regions. For
translocation types, random regions in the Nipponbare RefSeq
were deleted and inserted into regions either in the same or anoth-
er chromosome. The Burrows–Wheeler Aligner’s (BWA) (Li and
Durbin 2010) paired-end module was used in mapping reads to a
reference.

A prediction of an SV caller was considered correct if it passed
90%minimum reciprocal overlap (RO) and its breakpoint error (e),
defined as the sum of distances between the breakpoint starts and
ends of the predicted SV(p) and the simulated event (S), was less
than 10 bp (allowing for microhomologies around breakpoint
sites) (Schröder et al. 2014) or <10% of length(p)+length(S) (requir-
ing less error for events with size <50 bp). However, these condi-
tions were too strict to detect duplications that have poor
breakpoint resolutions. In Supplemental Figure S11, the sensitivity
of the callers on different ROs suggested a 70% threshold and no
constraint for e to evaluate fairly duplication breakpoints.

Discovery pipeline

Based on benchmarking results, Pindel (Ye et al. 2009) was selected
as the main variant caller for the pipeline since it consistently
called more precise predictions across almost all bins of deletions,
tandem duplications, and inversions even though it had relatively
lower sensitivity for the largest events. DELLY (Rausch et al. 2012),
GROM (Smith et al. 2017a), and LUMPY (Layer et al. 2014) were
added to improve sensitivity and support of predictions especially
for larger variants. For insertions, both MetaSV (Mohiyuddin
et al. 2015) and MindTheGap (Rizk et al. 2014) were chosen to
complement each other for better sensitivity for short and long
insertions in the 562 highest-coverage samples since assembly-
based algorithms require high coverages for accurate prediction.
Interspersed duplications can only be detected using read depth
signals; therefore, we analyzed copy number variation (CNV) pre-
dictions from NGSEP (Duitama et al. 2014) as a separate data set.

Given the calls predicted in each sample, merging results
fromall callers required aminimumreciprocal overlap (RO) to clas-
sify whether or not calls were similar. A commonmerging strategy
is to require each variant prediction to be supported by at least two
callers; however, this may increase false negatives when some se-
lected callers perform poorly for some size ranges. To address
this, our pipeline retained

1. all Pindel results with QUAL=PASS, regardless of other callers’
support; for inversion, all Lumpy calls; and

2. results from other callers, not supported by Pindel, when sup-
ported by at least two callers, using the following criteria: If
merging of callers is between Lumpy and another caller, 70%
RO was required; otherwise, 90% RO.
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These criteria were applied to all SV types except insertions
that require a different clustering approach.

Supplemental Figure S12 shows the breakpoint accuracy of
the callers based on sensitivity improvement using either 70% or
90% RO. The 90% threshold for reciprocal overlap was reduced
to 70% to consider inaccuracy of duplication breakpoints from
Lumpy. To merge insertion calls from MetaSV and MindTheGap,
the pipeline clustered all INS sites thatwerewithin 10 bp of one an-
other and included all unique insertions assembled by the callers.

To create amap of variant sites across all samples, we clustered
variant calls across different samples and pooled them as follows.
All events that overlapped by at least 1 bp were initially grouped
together. For each group, a graph was built with SVs as nodes
with edges connecting SVs that have at least 90% reciprocal over-
lap, or at least 70% ROwith a breakpoint error of at most 10 bp. The
latter condition allows for grouping of small events from different
samples that have <90% RO but very small boundary differences.
Each group was then split into connected components of the
graph. For each connected component, we computed a distance
matrix using the absolute value of the distances between break-
points of two variants divided by their total lengths. Then, hierar-
chical clustering by complete linkage was performed using the
distance matrix with a cutoff of 0.1 for height, yielding the final
clusters. We consider each cluster to represent a single ancestral
event inherited by a subset of our sample. This stage is done for
each variant type except insertions, which were clustered by
grouping events that are at most 10 bp apart.

The pipeline described above uses SV callers selected for their
performance on detecting insertions, deletions, inversions, and
tandem duplications. However, the use of read depth signals
allows for the discovery of larger copy number variants, including
interspersed duplications and those variants located in complex
genomic regions that RP and SR methods find difficult to detect
(Medvedev et al. 2009; Zhao et al. 2013). NGSEP, one of the
callers using RD signals, was used to compile a CNV data set
(Supplemental Table S3).

Validation

With the published “N 22::IRGC 19379-1” hereafter referred to as
N 22 (NCBI Assembly ASM195236v1) (Stein et al. 2018) and
Nipponbare reference IRGSP 1.0 (Kawahara et al. 2013), we validat-
ed randomSVs predicted inCX368, anN22 accession in the 3KRG
data set. Random SVs were selected and manually inspected in a
dot plot alignment betweenN 22 andNipponbare generated using
Gepard (Krumsiek et al. 2007). Events found in long deleted re-
gions were further analyzed using NCBI BLAST to determine if
they occur in translocated regions in the Nipponbare reference.
False positive rate was computed per SV type depending on the
number of predicted calls that were inconsistent with the dot
plots. Some false positive calls may also be private to CX368 (a
different N 22 sample) and not to the N 22 reference genome.
Because we mainly expect to discover tandem duplications using
the pipeline, interspersed duplications were given lower weights
of being true positives. For computing false negative rates, we fo-
cused on deletions and identified 20 events between N 22 and
Nipponbare using the dot plots in randomly selected locations
and validated if they were predicted in CX368.

The scripts used for the structural variant discovery pipeline
are available at https://github.com/rrfuentes/SV_Discovery as
well as in Supplemental Code.

Identification and analysis of transcription factor binding sites

We extracted regulatory regions [TSS-500, TSS +500] for all “high
confidence” rice genes defined by Tatarinova et al. (2016). The dis-

tribution of transcription factor binding sites (TFBSs) in these reg-
ulatory regions were analyzed with the MATCH algorithm (Kel
et al. 2003) using the TRANSFAC database (Wingender et al.
1996) comprised of 764 plant position weight matrices. For each
genomic position, we calculated the fraction of genes that have a
TBFS in this position and computed a probability that each posi-
tion x is covered by a putative regulatory element, Px(TFBS).
Then for each position in this region, we calculated the fraction
of all genes that have a structural variant and TBFS covering the
same position, resulting in the probability Px(TFBS> SV). The con-
ditional probability was calculated as follows:

Px(SV|TFBS) = Px(TBFS> SV)
Px(TFBS)

.

Sequence complexity

To rule out the influence of sequence complexity on the efficiency
of read mapping and variant calling, we calculated sequence com-
plexity profiles around transcription start sites. For every sequence
around a transcription start site [TSS−1000, TSS+ 1000], we calcu-
lated the Linguistic Complexity (CL)

CL =
∑N

i=1
Vi

( )
/

∑N

i=1
Vmaxi

( )
,

where N is the window size (10 bp in our case), Vi is the number of
words of size i in the window, and Vmaxi is the maximum possible
number of words of length i. For a window of size N, and alphabet
size K, this number is calculated according to the following formu-
la:Vmaxi=min (Ki,N− i+1) (Orlov and Potapov 2004). CL is the ra-
tio of the observed number of different words of size 1, …, N in a
given window divided by the sum of maximum possible number
of different words for a fixed window length. After calculating the
complexity profile for every sequence, we averaged across all rice
promoters.

Deleted genes

For each sample, all non-TE genes that were completely deleted
were identified and their sequences retrieved. These sequences
were compared against all insertion sequences to remove all of
those that may have been translocated or have similar copies in
other parts of the genome. Using the variety group assignment
from Wang et al. (2018), we computed the average number of
genes deleted per variety group. This analysis focused on genes pre-
sent in the Nipponbare genome.

Gene enrichment analysis

To identify overrepresented (enriched) biological themes of genes
covered by large deletions, we compared the list of these subset
genes against the “population” of genes in the genome that is an-
notatedwithin a given systemof classifying genes (e.g., “Biological
Process” in Gene Ontology). “Hits” refers to genes in the popula-
tion falling within the gene category in question. As an example,
“Population hits” for the GO annotation Biological Process “cellu-
lar stress response to acidic pH” refers to the number of genes fall-
ing within the category “cellular stress response to acidic pH” out
of all genes in the population annotated with a Biological Process.
Given the number of genes in the subset SV gene list that fall with-
in a specific category (the “List hits”), the count of genes in the list
(the “List total”) and the corresponding “Population Hits” and
“Population Total,” the probability of seeing the number of “List
Hits” in the “List Total” given the frequency of “Population
Hits” in the “Population Total” is calculated with the Fisher’s exact
test and reported for overrepresentation analysis.
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Genome-wide association studies

We conducted GWAS on the seed coat color and grain length phe-
notypes, recorded by the T.T. Chang Genetic Resources Center for
the International RiceGenebankCollection information system at
IRRI and retrieved from SNP-Seek, on a 365 high-sequence cover-
age subset of the 3K RG where the phenotype was measured:
(“white”) 291 samples; (“red”) 74 samples. To construct the geno-
type file, we first merged two data sets (GATK SNP and small indels
and the INS data set). Then, we merged this single-variant data
set with a filtered and LD-pruned SNP data set (MAF>0.015,
max miss = 0.2, r2≤0.8 within 2 kb, total 889,903 SNPs).

We used linear mixedmodel association analysis implement-
ed in GEMMA (Zhou and Stephens 2012), using a kinship matrix
and the first five principal components for relatedness and popu-
lation structure correction. The kinship matrix was computed by
the GEMMA -gk command with default parameters. The PCA
was computed using PLINK 1.9 (Purcell et al. 2007). We plotted
Manhattan and QQ plots using the R package “qqman” (Turner
2014) with in-house modifications for graphics.

Data access

All SVs identified in this study are available at the SNP-Seek portal
(http://snp-seek.irri.org) in the download section.
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