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A semi-supervised approach for predicting cell-
type specific functional consequences of non-
coding variation using MPRAs
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Predicting the functional consequences of genetic variants in non-coding regions is a chal-

lenging problem. We propose here a semi-supervised approach, GenoNet, to jointly utilize

experimentally confirmed regulatory variants (labeled variants), millions of unlabeled variants

genome-wide, and more than a thousand cell/tissue type specific epigenetic annotations to

predict functional consequences of non-coding variants. Through the application to several

experimental datasets, we demonstrate that the proposed method significantly improves

prediction accuracy compared to existing functional prediction methods at the tissue/cell

type level, but especially so at the organism level. Importantly, we illustrate how the GenoNet

scores can help in fine-mapping at GWAS loci, and in the discovery of disease associated

genes in sequencing studies. As more comprehensive lists of experimentally validated var-

iants become available over the next few years, semi-supervised methods like GenoNet can

be used to provide increasingly accurate functional predictions for variants genome-wide and

across a variety of cell/tissue types.

DOI: 10.1038/s41467-018-07349-w OPEN

1 Department of Biostatistics, Columbia University, New York 10032 NY, USA. 2Department of Statistics, Columbia University, New York 10027 NY, USA.
3 Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA. Correspondence
and requests for materials should be addressed to I.I.-L. (email: ii2135@cumc.columbia.edu)

NATURE COMMUNICATIONS |          (2018) 9:5199 | DOI: 10.1038/s41467-018-07349-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:ii2135@cumc.columbia.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Determining the functional consequences of genetic var-
iants is a difficult problem in human genetics. Our
understanding of the genetic code and splicing enables us

to identify variants that are likely functional in protein-coding
regions, but accurately predicting the functional effects of variants
in non-coding regions is much more difficult1. Multiple lines of
evidence support an important functional role for variants in
non-coding regions. For example, comparative genomic studies
show that most of the mammalian conserved and recently
adapted regions reside in the non-coding part of the genome. In
addition, genome-wide association studies (GWAS) have identi-
fied a large number of non-coding variants that are likely to be
involved in both genetic and epigenetic gene regulation in a
highly context-specific manner2. Therefore, accurately predicting
both organism level and cell type/tissue-specific functional con-
sequences of non-coding variation is of great interest.

There are several possible approaches to predict the functional
effects of genetic variants3. In the experimental approach (e.g.
massively parallel reporter assays (MPRAs), CRISPR/Cas9-
mediated in situ saturating mutagenesis), the functional effect of a
variant is measured by evaluating the phenotypic consequence of
the corresponding sequence alteration (e.g. by measuring the
impact of individual alleles on gene expression in a particular
context)4–6. This is considered the gold-standard approach, but it
is quite laborious to perform in a comprehensive manner for large
sets of genetic variants. More often, functional effects are derived
using alternative approaches. One commonly used method is
based on an evolutionary perspective, whereby functional effects
are assessed by the extent of evolutionary conservation at the
position of interest. The classical evolutionary approach relies on
accurate multispecies alignment, which makes it challenging to
identify certain functional elements, such as elements constrained
only within the human species, although several methods have
been recently proposed to identify primate- or human-specific
conserved elements7–9. Evolutionary approaches also pose an
additional challenge, namely they cannot reveal the relevant cell
type or tissue. Another popular approach is the biochemical
approach, based on ChIP and/or DNase I hypersensitivity assays,
with the caveat that such biochemical signatures can occur sto-
chastically, and hence do not completely imply functionality.
Therefore, depending on the approach, functional effect can have
different meanings in different contexts. This creates challenges
for meaningful comparisons among the different approaches.

The rapid development of massively parallel sequencing tech-
nologies has made possible large-scale epigenetic projects such as

the Encyclopedia of DNA Elements (ENCODE), Roadmap Epi-
genomics, and BLUEPRINT10–12. These projects make available
various epigenetic features, including histone modifications and
chromatin accessibility, genome-wide in over a hundred
different tissues and cell types. Over the past few years, several
computational approaches have been proposed to integrate these
epigenetic features to predict the organism level and cell type/
tissue-specific functional consequences of genetic variants13–20.
Many of these methods are unsupervised due to the relative
scarcity of high-quality labeled data that could be used in
supervised approaches. While the unsupervised approaches can
be advantageous when the amount and quality of labeled data are
limited, supervised methods that make use of high-quality
labeled data are able to adaptively learn which functional
annotations will help to better discriminate between functional
and non-functional variants. Recent developments in high-
throughput assays to assess the functional impact of variants
in regulatory regions (e.g. MPRAs, CRISPR/Cas9-mediated
in situ saturating mutagenesis) can lead to the generation of
high-quality data on the functional effects of genetic variants in
various contexts. Although these experimental approaches are
currently quite laborious and difficult to implement, data on even
modest number of variants from such experiments can be used to
train (semi-)supervised approaches for improved prediction
accuracy.

Here we propose a semi-supervised method, GenoNet, paired
with efficient computational techniques for functional prediction
at organism and/or cell type/tissue level. As a semi-supervised
method, GenoNet can jointly use labeled data (several dozens to
thousands of experimentally confirmed labeled variants) and
unlabeled data (millions of unlabeled variants across the genome)
for improved prediction accuracy (Fig. 1), and that is not possible
for existing functional prediction methods that fall in either the
supervised or the unsupervised class. We applied GenoNet to
predict the functional effects of non-coding variants, taking
advantage of available functional labels from MPRAs, and com-
prehensive tissue-specific epigenetic features. Through compar-
isons using several experimentally derived datasets, we show that
the proposed method achieves substantially better prediction
accuracy over the existing methods, especially so at the organism
level. We show how GenoNet can be used to aid in the
fine mapping at GWAS loci, as well as in the discovery of
disease-associated genes. These applications clearly show the
importance of tissue/cell type-specific scores in gene discovery for
complex traits.
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Fig. 1 GenoNet workflow. GenoNet integrates experimentally validated variants (m � 0 labeled variants), millions of unlabeled variants genome-wide (l–m
unlabeled variants), and more than a thousand cell type/tissue-specific functional annotations (p) on each variant to predict the functional consequences
of genetic variants at positions genome-wide
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Results
Overview of the method. We propose a semi-supervised reg-
ularization algorithm, referred to as GenoNet, for functional
prediction at cell type/tissue level using labeled data from MPRA
experiments (when available) and genome-wide functional
annotations in 127 different cell types and tissues from the
ENCODE and Roadmap Epigenomics projects. The key idea of
this semi-supervised algorithm is to use supervised algorithms
(e.g. logistic Elastic-net, LASSO, ridge regression, etc.) on a lim-
ited number of labeled variants, and incorporate the rich infor-
mation on the genome-wide unlabeled variants (marginal
distribution of functional annotations) for improved prediction
accuracy21–23. Let f̂ be the estimated prediction function, then we
solve

f̂ ¼ argmin
f

Xm
i¼1

lP Yi; f Xið Þð Þ þ γI
Xl

i¼1

Ŷu
i � f Xið Þ� �2

;

where lP is the penalized log-likelihood for the labeled data. Here
we adopt Elastic-net because of its superior performance when
the features are correlated and have sparse non-zero coeffi-
cients21. We further justify this choice of supervised algorithm for
GenoNet via numerical simulations (Methods). Yi 2 0; 1f g are
the labels for m variants with MPRA validated labels; Ŷu

i 2 0; 1½ �
are the predicted values for a large number (l) of variants from a
prior unsupervised method. We adopt FUN-LDA score in the
current GenoNet algorithm because it is one of only a handful of
tissue-specific functional scores available genome-wide, recog-
nizing that other unsupervised scores can be readily incorporated
into GenoNet in the future18; Xi are the functional annotations; γI
is a tuning parameter that controls how the unlabeled data are
being used. When γI= 0, the method is fully supervised; when
γI=∞, the method is fully unsupervised (Supplementary
Table 1). The tuning parameter γI is chosen to maximize the area
under the receiver operating characteristics curve (AUROC) by
tenfold cross-validation. The workflow is depicted in Fig. 1. We
present the details in the Methods section.

Cell type/tissue-specific functional prediction. We compared
GenoNet scores with five existing scores for cell type/tissue-spe-
cific functional effects and seven existing scores for organism-
level functional effects. For cell type/tissue-specific prediction:
FUN-LDA, GenoSkyline, quantitative DNase, deltaSVM, Deep-
SEA (tissue-specific version); for organism level: Eigen/Eigen-PC,
CADD, DANN, FunSeq2, LINSIGHT, CATO, DeepSEA (func-
tional significance score; brief descriptions of the different
methods are given in the Supplemental Material)13–20. We
compare the methods in terms of AUROC, area under the pre-
cision recall curve (AUPR), and Pearson correlation between the
predicted scores on test variants and the true labels (COR). All
three criteria have been widely used in the literature to measure
prediction accuracy, where COR measures how the predicted
values are correlated with the true labels, and AUROC/AUPR are
based on the ranks of the predicted scores. We expect that a
desirable method performs well in terms of all three criteria.

To examine whether the proposed method can predict cell
type/tissue-specific regulatory variants, we took advantage of
MPRA validated variants in three cell lines (lymphoblastoid—
LCLs, liver carcinoma—HepG2, and erythrocytic leukemia—
K562 cell lines). We present the details on these MPRA datasets
in the Methods section. We used a 4:1 random partition of each
dataset to train/test the method (in order to test the method on a
dataset independent of training data, and thus avoid over-fitting
issues). Specifically, for each replicate, the dataset is evenly
divided into five parts: four parts are used as training data and

one part as test data. Details on model training can be found in
the Methods section. We trained GenoNet with tenfold cross-
validation on the training data only, and calculated functional
predictions on the independent test data. We calculate the
AUROC, AUPR, and COR based on the average prediction for
each variant when it is in the test data using 1000 replicates of the
4:1 random partition to reduce the variation due to resampling.

We compare the proposed methods with existing tissue-
specific functional scores including GenoSkyline, FUN-LDA,
DNase, deltaSVM, and DeepSEA (tissue-specific version) and
present the results in Fig. 2. (The precise AUROC/AUPR/COR
values are summarized in Supplementary Table 2.) We also
evaluate the performance of existing organismal functional scores
Eigen/Eigen-PC, CADD, DANN, FunSeq2, LINSIGHT, CATO,
and DeepSEA on these datasets. We observed that GenoNet
exhibits the largest AUROC/COR (LCLs: 0.723/0.442; HepG2:
0.756/0.429; K562: 0.707/0.341) compared to existing functional
scores. It also has the largest AUPR for HepG2 (0.571) and K562
(0.418), and the second largest AUPR for LCLs (0.536; the largest
AUPR is 0.540 for DNase). These results show that a semi-
supervised method like GenoNet, which adaptively makes use of
both labeled data (experimentally confirmed regulatory variants)
and unlabeled data, outperforms the existing unsupervised scores
in terms of all three criteria, with substantial improvements in
AUROC. In addition, we observed that organism-level functional
scores do not perform as well as the tissue-specific methods in
predicting these tissue-specific functional variants. For example,
Eigen has AUROCs of 0.604 for LCLs, 0.637 for HepG2, and
0.579 for K562. Similarly, other organism-level predictions such
as LINSIGHT, CATO, and DeepSEA exhibit generally lower
AUROC, AUPR, and COR in the three cell lines than cell type/
tissue-specific predictions.

We additionally evaluate the performance on a collection of
DNase I–sensitivity quantitative trait loci (dsQTLs), originally
identified using DNase I sequencing data from human LCLs24. In
Li et al.25, the authors selected a subset of dsQTLs with
association p-value <1 × 10−5, and residing within 100-bp of
the corresponding DNase I–hypersensitive sites, resulting in a
final set of 559 dsQTLs. Then they randomly selected as controls
2236 common single nucleotide polymorphisms (SNPs) (minor
allele frequency >5%) from the top 5% of DNase I sensitivity sites
used in the original study. We observed that deltaSVM, DeepSEA
(the functional significance score), CATO, and DNase have better
performance than other methods on this dsQTL dataset (e.g.
deltaSVM AUC= 0.751 vs. GenoNet AUC= 0.716), although
they have lower accuracy on the previously discussed MPRA
validated datasets (e.g. for GM12878, deltaSVM AUC= 0.593 vs.
GenoNet AUC= 0.723). Since most dsQTLs are located near the
target DNase I hypersensitive sites, we expect that methods such
as DeepSEA, DNase, CATO, and deltaSVM perform well on these
datasets. In addition, we observed that the DeepSEA tissue-
specific score does not perform as well as the organism-level
DeepSEA score (the functional significance score).

Organism-level functional prediction. The cell type/tissue-spe-
cific functional predictions for the tissues/cell types in ENCODE
and Roadmap Epigenomics provide a comprehensive profile of
the functional consequences of a variant across various tissues.
However, many available functional prediction scores are avail-
able only at the organism level. We show that the organism-level
predictions based on the tissue-level predictions (i.e. maximum
of cell type/tissue-specific GenoNet scores) are more accurate
than existing predictions at the organism level using several
different datasets with different ways to define “functional”
variants.
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First, we generate GenoNet predictions for a collection of
expression quantitative trait loci (eQTLs) from 11 studies on
seven tissues/cell lines26. Li et al. restricted to the most highly
associated eQTLs for each tissue/cell type, for a total of 31,118
eQTLs25. They also selected 36,540 background SNPs near
the transcription start sites (TSS) of randomly selected genes
as control variants. We present the results in Fig. 3. (The precise
AUROC/AUPR/COR values are summarized in Supplementary
Table 3.) We observed that GenoNet has larger AUPR and
COR (0.731/0.369) than other methods, with the second
largest AUPR and COR being 0.693 for Eigen-PC and 0.351 for
FunSeq2, respectively. It also has the second largest AUROC
(0.766), which is comparable to the largest AUROC (0.778) from
LINSIGHT.

Next, we generate GenoNet predictions for three collections of
variants, including (1) 76 experimentally validated regulatory SNPs;
(2) 5247 refined causal SNPs in non-coding regions from HGMD,
ClinVar, and OregAnno; (3) variants identified by a recent fine-
mapping study for 39 immune and non-immune diseases25,27. For
the experimentally validated regulatory SNPs, we select 156
frequency-matched background variants within 10 kb as controls,
same as Li et al.25. For the refined causal SNPs, we paired each
positive variant with four randomly selected frequency-matched
non-coding SNPs outside of the refined causal single nucleotide
polymorphisms (SNPs). We present the results in Fig. 3. As shown,
GenoNet has the largest AUPR, AUROC, and COR for both
datasets, with substantial improvements over competing methods.
For the experimentally validated SNPs, Eigen-PC exhibits the
largest AUPR/AUROC (0.842/0.892) and second largest COR
(0.497), while GenoNet exhibits the second largest AUPR/AUROC
(0.828/0.877) and largest COR (0.635). For the refined causal SNPs,
the AUPR/AUROC/COR of GenoNet are 0.549/0.811/0.458, while

the second largest values are 0.485 (FunSeq2)/0.781 (LINSIGHT)/
0.397 (FunSeq2).

Finally, we generated GenoNet predictions for 8592 allelic
imbalanced SNPs in chromatin accessibility, previously identified
by a large number of DNase-seq assays28. We pair them with
9678 controls, which are frequency-matched background SNPs
around nearest TSS of randomly selected genes. We present the
results in Fig. 3. We observed that GenoNet has the largest AUPR
(0.896), AUROC (0.921) and second largest COR (0.612), with
the second largest AUPR and AUROC of 0.875 (DeepSEA), 0.892
(DeepSEA), and largest COR of 0.615 (DeepSEA), respectively.

In addition to the AUROC/AUPR/COR comparisons detailed
above, the full receiver operating characteristics curves and
precision recall curves can be found in Supplementary Figures 1
and 2. Overall, we observed that the AUROC and AUPR curves of
GenoNet are generally above the curves for other methods, and
GenoNet performs particularly well in the regions with lower
recall (or higher precision) in the AUPR curves.

Transferability of cell type/tissue-specific predictions. We
additionally evaluated the transferability of cell type/tissue-specific
predictions of regulatory variants across tissues and present the
results in Table 1. We observed that GenoNet scores trained in one
cell line exhibit substantially lower AUROC in predicting MPRA
validated variants in another cell line. For example, GenoNet
trained using variants validated in LCLs has AUROC 0.627 for
variants in liver carcinoma (HepG2) and 0.604 for variants in
erythrocytic leukemia (K562), much lower than the AUROC of
0.723 for LCLs. Similar results hold for GenoNet trained using
MPRA validated variants in the other two cell lines. We note that
the training data and test data are independent even for the same
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cell line because of the 4:1 random partition design, which elim-
inates the possibility of inflated AUROC values due to over-fitting.
These results demonstrate that GenoNet can accurately distinguish
regulatory variants in one tissue vs. another tissue.

To further investigate this lack of transferability of predictions
across tissues, we evaluated whether tissue-specific functional
elements predicted by GenoNet correlate with known biological
knowledge of the tissues or cells. To test this, we selected three
ENCODE cell lines (LCLs, HepG2, K562) and then defined sets of
genes for each cell line, e.g. for GM12878 (LCLs), consisting of
genes whose promoter regions (1 kb from the TSS) contain at
least one variant with GenoNet score >0.9 in LCLs and no variant
with GenoNet score >0.5 in HepG2 and K562 (we evaluated
different thresholds on the GenoNet score and the results remain
qualitatively the same; Supplementary Figures 3 and 4). Then we

compared the median gene expression in GM12878, HepG2, and
K562 for genes in this set. We present the results in Fig. 4. We
observed that the median gene expression in GM12878 is
significantly higher (53.5-fold, Wilcoxon rank sum test p=
6.86 × 10−13) than in the other two cell lines combined. We did
the same analysis for HepG2 and K562, respectively, and the
results consistently show that the genes selected based on cell
line-specific GenoNet scores for variants in promoters tend to
have higher expression in the matched cell line compared with
the other cell lines.

Enrichment analyses of eQTLs and dsQTLs. Using the MPRA-
based GenoNet scores, we have performed additional enrichment
analyses using several eQTL and dsQTL datasets to investigate

Table 1 Transferability of cell type/tissue-specific predictions of regulatory variants across tissues

GM12878 (lymphoblastoid cells) HepG2 (liver carcinoma cells) K562 (erythrocytic leukemia cells)

Training set AUPR AUROC COR AUPR AUROC COR AUPR AUROC COR

GM12878 0.536 0.723 0.442 0.400 0.627 0.212 0.322 0.604 0.183
HepG2 0.313 0.536 0.123 0.571 0.756 0.429 0.277 0.592 0.125
K562 0.327 0.530 0.150 0.348 0.567 0.147 0.418 0.707 0.341

For each row, GenoNet was trained using labels from different tissues. Each cell presents the AUPR (area under the precision recall curve), AUROC (area under the receiver operating characteristics
curve), and COR (Pearson correlation between predicted and true labels) calculated based on the average prediction for each variant when it is in the test data using 1000 replicates. For each replicate,
the datasets were evenly divided into five parts: four as training data, and one as test data. GM12878: MPRA validated variants in lymphoblastoid cells (693 positive variants, 2772 control variants).
HepG2: MPRA validated variants in liver carcinoma cells (525 positive variants, 1451 control variants). K562: MPRA validated variants in erythrocytic leukemia cells (342 positive variants, 1368 control
variants). The highest value in each column is bolded
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how the GenoNet score is able to distinguish eQTLs/dsQTLs (as a
surrogate for functional variant) from a background variant in the
genome. For eQTLs, we use a collection of 17,530 lead eQTLs
(those variants most associated with expression levels) in LCLs
from the Geuvadis project and the TwinsUK cohort29. Among
them, we further considered a subset (3268) of eQTLs with fine
mapping probability >0.5, calculated based on a resampling-based
approach called CaVEMaN29. We also analyzed a collection of
5684 eQTLs unique to LCLs (i.e. only significant in LCLs) from
the GTEx project30. For dsQTLs, we utilized the aforementioned
collection of 559 dsQTLs in human LCLs, originally identified
using DNase I sequencing data24. In addition, we considered
separately 102 dsQTLs that are also associated with variation in
expression levels of nearby genes (eQTLs)24.

We first present the distributions of GenoNet scores for
variants in the different sets of eQTLs and dsQTLs described
above in Fig. 5a, and compare with the distribution of scores for 2
million background variants across the genome. We observed that
eQTLs with fine mapping probability >0.5 tend to have
significantly higher GenoNet scores than eQTLs in general, as
expected. We also observed that dsQTLs tend to have higher
GenoNet scores than eQTLs, likely due to the higher chance for
dsQTLs near the DNase I-hypersensitive sites to be functional
relative to eQTLs, and concordant with the hypothesis that
changes in chromatin accessibility may be an important
mechanism by which genetic variants affect gene expression.
Overall, eQTLs and dsQTLs tend to have significantly higher
GenoNet scores than background variants (p < 10−20).

We then estimated the probability of a variant to be an eQTL
or dsQTL conditional on its GenoNet score being greater than a
given percentile, relative to a randomly selected background
variant, e.g. r ¼ P variant is eQTLjGenoNet>qxð Þ

P variant is eQTLð Þ , where qx is the xth
percentile of GenoNet score (Fig. 5b). Compared to a background
variant, we observed that a variant with GenoNet score greater
than the 98th percentile is 12 times more likely to be both a
dsQTL and an eQTL, nine times more likely to be a dsQTL, eight
times more likely to be a fine-mapped eQTL (probability > 0.5),
and two to four times more likely to be eQTL.

Fine-mapping of MIR137 schizophrenia risk locus. The func-
tional predictions from GenoNet can also be used to help in

fine-mapping at previously identified GWAS loci. To illustrate
GenoNet’s potential in this setting, we show the case of a leading
non-coding GWAS locus in schizophrenia, namely the MIR137
locus31. In Forrest et al., the authors focus on the MIR137 locus,
and using open chromatin analyses in hiPSC-differentiated neu-
rons they prioritize one SNP, rs1198588, among 23 equally
associated SNPs at this locus32. Excitatory neurons derived from
hiPSCs with CRISPR/Cas9-edited rs1198588 showed changes in
MIR137 gene expression and impaired neurodevelopment. An
additional functional rare variant known to increase the risk to
schizophrenia (1:g.98515539 A > T) is also within a neuronal
open chromatin region proximal to the MIR137HG TSS33.

We sought to investigate the use of our GenoNet predictions in
prioritizing these two known causal regulatory SNPs at the
MIR137 locus. In Fig. 6, we show GenoNet predictions in H9-
derived neuronal cultured cells in a 200-Kb region centered at the
GWAS index SNP at this locus, rs1702294. In addition, we show
GenoNet predictions for primary neutrophils from peripheral
blood, along with predictions from LINSIGHT, a recently
developed organism-level functional prediction approach. As
shown, GenoNet is successful in predicting as functional the
CRISPR/Cas-9 validated SNP, rs1198588 (GenoNet score=
0.656), as well as the location of the known functional rare risk
variant, 1:g.98515539 A > T (GenoNet score= 1), in H9-derived
neuronal cultured cells, while in the case of primary neutrophils
from peripheral blood, GenoNet scores are low (GenoNet score
= 0.012 for rs1198588; 0.222 for 1:g.98515539 A > T). Compared
with GenoNet, organism-level functional prediction method
LINSIGHT performs much worse and does not accurately predict
the locations of the two known functional variants at this locus.
In Supplementary Figure 5, we show further comparisons with
additional functional scores, including Eigen, Eigen-PC, FUN-
LDA, and individual epigenetic annotations such as DNase,
H3K27ac, H3K9ac, H3K4me1, and H3K4me3. As shown, FUN-
LDA performs quite well in this setting, similar to GenoNet.
Eigen, like LINSIGHT, is not able to achieve accurate predictions,
while Eigen-PC performs better, assigning a high functional score
for the common causal SNP, rs1198588. Of the individual
epigenetic scores in H9-derived neuronal cultured cells (DNase,
H3K27ac, H3K9ac, H3K4me1, H3K4me3), only H3K27ac assigns
a high score to the common causal regulatory SNP, although it
misses the rare functional variant. Overall, GenoNet and FUN-
LDA, as integrative methods, perform best in predicting as
functional the two known regulatory variants at the MIR137
locus. As an additional analysis, we have checked whether the
CRISPR/Cas-9 validated SNP falls into a transcription factor
binding site, by checking the TFBS identified by ChIP-seq
experiments in ENCODE for the MIR137 locus. As shown in
Supplementary Figure 6, there are several TFBS at the MIR137
locus, but they are not very close to the CRISPR/Cas-9 validated
SNP.

Integrative analysis of rare variants in Metabochip regions. The
functional predictions made by GenoNet not only help with variant
interpretation and fine-mapping of GWAS loci, but also benefit the
discovery of new disease-associated genes. Gene-based tests for
sequencing data such as Burden and SKAT have shown limited
success in empirical studies so far, likely a result of modest sample
sizes for sequence-based studies performed, as well as sub-optimal
implementations of such tests34. It has been recently shown how
incorporating functional predictions in sequence-based association
tests can lead to improved power of gene-based association tests35.
The functional predictions we provide in 127 different cell types/
tissues provide comprehensive profiles across large number of tis-
sues/cell types, which can be integrated with sequence-based data.

120

Gene expression patterns in three cell lines

GM12878
HepG2
K562

100

80

R
el

at
iv

e 
m

ed
ia

n 
ex

pr
es

si
on

60 53.5

78.89

96.33

p = 6.86e-13

p = 1.04e-22

p = 5.23e-03

40

20

0
0.01

6
0.01 0.12 3.64 2.55

GM12878, N = 546 HepG2, N = 355 K562, N = 30

Fig. 4 Gene expression patterns for genes with cell-line-specific functional
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line for genes with cell-line-specific functional variants in promoters relative
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We incorporated the GenoNet scores into an integrative test
(referred to as FST-GenoNet, FST-functional score test), and
applied it to a meta-analysis of rare variants (minor allele
frequency <0.05) in Metabochip data on 12,281 individuals from
eight studies for lipid traits (total cholesterol (CHOL), high-
density lipoproteins cholesterol (HDL), low-density lipoproteins
cholesterol (LDL), and triglycerides (TG))35–37. The eight studies
include Finnish: FUSION stage 2 (2741), D2D 2007 (2108), DPS
(429), METSIM (1439), DR’s EXTRA (1242); Norwegian: HUNT,
Tromso (2793 for the two studies together); German: DIAGEN
(1529). We adjusted for gender, age, age squared, and type 2
diabetes status for each individual study. We analyzed the two
Norwegian cohorts jointly, with an additional covariate for study
of origin. Birthplace was additionally adjusted for FUSION stage
2. We did not adjust for gender for METSIM because it only
contains males. Samples and SNPs with call rates <98% are
excluded from the analysis. We also exclude samples when the
outcomes are missing for each trait. We applied normal quantile
transformation to each trait and evaluated 266 genes located in
the 99 gold fine-mapping regions, meta-analyzing the summary
statistics from the eight individual studies. We compared the
results of FST-GenoNet with the original test without integrating
any functional information (referred to as FST-O, equivalent to
SKAT-O) and a test integrating organism-level predictions FST-
LINSIGHT (FST integrating the functional score LINSIGHT),
and defined the significant genes those with p-values <2.5 × 10−6.

We summarize the significant genes identified by either FST-
GenoNet, FST-O, or FST-LINSIGHT in Fig. 7. We observed that
by incorporating GenoNet scores, we are able, for some genes, to
obtain substantially more significant results than those provided
by FST-O (e.g. TOMM40: 2.4 × 10−13 vs. 5.3 × 10−8 for LDL,
4.1 × 10−6 vs. 3.7 × 10−4 for CHOL; PCSK9: 1 × 10−15 vs. 9.0 ×
10−8 LDL, 1.1 × 10−14 vs. 3.5 × 10−5 for CHOL; BUD13: 1 ×

10−15 vs. 1.4 × 10−8 for TG; LPL: 3.7 × 10−8 vs. 8.7 × 10−4

for TG), while for CETP and LDLR the p-values from FST-
GenoNet and FST-O are of the same order (CETP: 1.3 × 10−13 vs.
7.5 × 10−14 for HDL; LDLR: 2.2 × 10−6 vs. 9.2 × 10−7), while
FST-LINSIGHT exhibits very similar p-values to FST-O. Among
them, PCSK9, LPL, CETP, and LDLR were also reported to be
associated with the same traits in both of the two recent meta-
analyses of exome-wide association studies of 47,532 East Asian
individuals and >300,000 European samples, respectively38,39.
The QQ plots for these meta-analyses are included in
Supplementary Figure 7. We note that genes on the Metabochip
sit in previously identified loci, therefore the distribution of p-
values tends to deviate slightly from the null expectation. Overall
the p-values from FST-GenoNet are consistent with those from
FST-O (equivalent to SKAT-O) and FST-LINSIGHT except in
the tails, demonstrating that the type I error rate is well controlled
after integrating 127 GenoNet scores. Comparisons with other
cell type/tissue-specific tests, such as GenoSkyline and quantita-
tive DNase, are shown in the Supplementary Figure 8. Overall, the
results of incorporating these alternative tissue-specific scores are
similar to those including GenoNet.

Discussion
We proposed here a statistical learning framework, GenoNet, to
make accurate predictions of both organism-level and cell type/
tissue-specific functional consequences of non-coding variation.
GenoNet distinguishes itself from existing methods by being
semi-supervised, and therefore can jointly use data from several
dozens to thousands of experimentally confirmed labeled variants
and millions of unlabeled variants across the genome for
improved prediction accuracy. The ability to infer cell-type-
specific functional elements that regulate target genes will greatly
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Fine-mapping of MIR137 schizophrenia risk locus
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enhance our understanding of what genes contribute to cellular
identity and cell lineage differentiation, and better prioritize non-
coding variants from GWAS or NGS in the contexts of the cell
types that are relevant to the disease under study. It also allows
the design of functional genomics experiments that target specific
subsets of non-coding regions based on the cell type under study.

The analyses of datasets containing variants with prior
experimental or statistical evidence of functional effects (such as
MPRA validated variants, eQTLs, dsQTLs, etc.) illustrate that
GenoNet has superior prediction accuracy over existing methods.
It is worth noting that commonly used organism-level prediction
methods such as CADD, DANN, Eigen/Eigen-PC, CATO,
DeepSEA, FunSeq2, and LINSIGHT have substantially lower
accuracy than GenoNet in predicting functional effects in the
example datasets considered here. Furthermore, GenoNet pro-
vides a much more detailed overview of the functional effects of
genetic variants across different tissues/cell types.

We further demonstrate the use of GenoNet in important
applications for complex traits. In particular, we illustrate its
ability to pinpoint likely functional variants at GWAS loci using
one of the leading loci in schizophrenia, the MIR137 locus.
Compared to organismal-level methods such as LINSIGHT, the
GenoNet score is much more effective and correctly predicts the
location of two regulatory variants at this locus. The application
to the Metabochip data illustrates the advantage of integrating
diverse functional scores into gene-based analyses for improved
power over commonly used gene-based tests. Given the increas-
ing number of studies generating whole-genome sequencing data
for various complex diseases, such integrative analyses for region/
gene-based tests can potentially improve the identification of
novel regions. A further application to variants involved in 3C
chromatin interactions is shown in the Supplemental Materials
(Supplementary Table 4, Supplementary Figures 10 and 11)40.

We have shown that both the number of labeled variants and
the accuracy of the labels are important factors that can affect the
accuracy of the semi-supervised approach, although to a lesser
extent than that of a purely supervised method (Methods section).
More generally, the precise definition of function is important for
(semi-)supervised methods. In Supplementary Table 5, we

compared the performance of GenoNet scores trained using
different definitions of function for labeling functional variants.
We show, as known already, that the definition of function plays
an essential role for training, and that the different ways to define
function lead to different algorithms behaving differently
depending on the test datasets. For example, the model trained
using eQTLs accurately predicts eQTLs in various test datasets,
but performs poorly in predicting dsQTLs and MPRA validated
variants (Supplementary Table 5). Overall, GenoNet trained using
MPRA regulatory variants has relatively robust predictions for
eQTLs and dsQTLs in terms of the AUROC loss, relative to when
using the same type of labels (eQTLs or dsQTLs) for training
(Supplementary Table 5).

GenoNet is a flexible approach that can incorporate a large
number of different types of features. In the present imple-
mentation, we have not included transcription factor binding site
(TFBS) information in the prediction model because such data
(either from ChIP-seq experiments or purely computational
predictions based on position weight matrices) are currently
incomplete and of varying degrees of reliability. However, it can
be helpful to follow up variants with high GenoNet scores, by
checking whether particular variants directly disrupt high con-
fidence binding sites and the corresponding transcription factors
(see Supplementary Figure 6 for an example). This type of ana-
lysis can help further narrow down the list of possible causal
variants and can provide more insight into the possible
mechanisms of action.

The GenoNet scores are freely available for over a hundred
different cell types/tissues in ENCODE and Roadmap on a
genome-wide scale. While GenoNet makes use of experimentally
validated variants for training whenever such data are available,
GenoNet scores can be computed even for those tissues/cell types
that currently lack lists of experimentally confirmed variants; in
such cases, the GenoNet scores are linear approximations of the
FUN-LDA posterior probabilities. As high-quality labels on the
functional effects of genetic variants in various cell types and
tissues are expected to become increasingly available in the near
future, GenoNet can take advantage of such an information for
increasingly accurate functional predictions.

Integrative analysis of Metabochip data
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Methods
MPRA datasets. The first MPRA dataset contains confirmed regulatory variants in
LCLs4. The authors (Tewhey et al.) have applied a new version of the MPRA to
identify variants that show differential expression between alleles (emVars,
expression-modulating variants). In particular, they identified 842 emVars out of
32,373 variants in 3642 eQTLs and control regions in LCLs. After excluding the
emVars that cannot be mapped to a genomic location using the Ensemble database,
we define the remaining 693 emVars as positive variants. Then we matched each
emVar with four controls (2772 variants in total), defined as variants that were
tested using MPRA but neither allele showed effects on expression (Bonferroni
corrected p-value > 0.1).

We considered two other MPRA datasets of regulatory motifs, one in liver
carcinoma (HepG2) cell line and one in erythrocytic leukemia (K562) cell line.
Kheradpour et al. generated these datasets by measuring the transcriptional levels
produced by targeted motif disruptions in 2104 candidate enhancers5. They
compared the expression values for the sequences with the motif with the values for
sequences with scrambled versions of the motif. We defined the variants with p-
values <0.05 as positive variants, and those with p-value >0.1 as controls, and
removed those variants whose genomic coordinates we could not resolve. The final
datasets consist of 525 positive and 1451 control variants for HepG2, and 342
positive and 1368 control variants for K562.

GenoNet is a semi-supervised approach. Consider p standardized functional
annotations of l genetic variants Xi ¼ ðXi1; ¼ ;XipÞ, i ¼ 1; ¼ ; l. Without loss of
generality, suppose we know the underlying functional status of the first 0 � m � l
variants, Yi 2 0; 1f g, i ¼ 1; ¼ ;m. Let X be the functional annotation matrix for
all labeled and unlabeled variants; X(m) be the functional annotations sub-matrix
for the labeled variants only; Y be the label vector. Let f̂ be the estimated prediction
function, then we solve

f̂ ¼ argmin
f

Xm
i¼1

lP Yi; f Xið Þð Þ þ γI
Xl

i¼1

Ŷu
i � f Xið Þ� �2

;

where lP is the penalized log-likelihood for the labeled data. We adopt Elastic-net
because of its superior performance when the features are correlated and have
sparse non-zero coefficients21; Yi 2 0; 1f g are the labels for m variants with MPRA
validated labels; Ŷ

u
i 2 0; 1½ � are the predicted values for a large number (l) of

variants from a prior unsupervised method. We choose the FUN-LDA score in the
current GenoNet implementation because it is one of only a handful of tissue-
specific functional scores available genome-wide, recognizing that other unsu-
pervised scores can be readily incorporated into GenoNet in the future18. γI is a
tuning parameter that controls how the unlabeled data are being used18. When
γI= 0, the method is fully supervised; when γI=∞, the method is fully unsu-
pervised (Supplementary Table 1). As Yi’s often consist of a set of positive variants
paired with control variants (a case-control design), but Ŷu

i ’s are continuous and
randomly sampled from the genome (a cohort design), it is not trivial to find f by
directly solving the optimization problem. Instead, we solve two optimization
problems for labeled data, and unlabeled data (with γI= 0 and γI=∞) separately,
and then combine the resulting functions.

For γI= 0, we define a logistic function f1 Xið Þ ¼ exp β0þβTXið Þ
1þexp β0þβTXið Þ and solve the

regularization problem bf1 ¼ argmin
f1

Pm
i¼1

lP Yi; f1 Xið Þð Þ, where

lP Yi; f1 Xið Þð Þ ¼ 1
m log 1þ eβ0þβTXi

� �
� Yi β0 þ βTXi

� �n o
þ λ

m
1�αð Þ
2 k β k2l2 þα k β kl1

h i
22.

The l1 and l2 penalties are incorporated because the number of labeled variants is

often limited. We set α= 0.5 and λ ¼ σ̂ Yð Þ
ffiffiffiffiffiffiffiffiffi
2 log p
m

q
where σ̂ Yð Þ is the sample

standard deviation of Y. The choice of α and λ aims to balance the computational
efficiency and prediction accuracy and we discuss the details in the Supplementary
Information. The method can be applied to data with imbalanced classes (positive
vs. control variants) because the coefficients (except the intercept) estimated
assuming prospective and retrospective designs are equivalent for logistic
regression22. In practice, to predict the probability of a new variant to be
functional, we set the prevalence to 2% (estimated by Backenroth et al.) and correct
the intercept by ~β0 ¼ β0 � log 1�0:02

0:02 ´ π
1�π, where π is the proportion of positive

variants in the training data18.
For γI=∞, we define f2 Xið Þ ¼ α0 þ αTXi and solve the ordinary least-square

problem bf2 ¼ argmin
f2

Pl
i¼1

Ŷu
i � f2 Xið Þ� �2

. In practice, we randomly selected 100,000

500-bp segments across the genome where each segment includes 20 variants (25
bp apart), for a total of 2 million background variants as unlabeled data. These 2
million background variants are used to estimate f̂2. Finally, we define

f̂ ¼ 1� ϕ̂
� �

f̂1 þ ϕ̂f̂2;

where the tuning parameter ϕ̂ is chosen to maximize the AUROC curve by tenfold
cross-validation.

The proposed method is connected to some existing machine learning
algorithms. For example, manifold regularization is a semi-supervised method with

f̂ ¼ argmin
f2HK

Pm
i¼1

Yi � f Xið Þð Þ2þγA k f kK þγI
Pl
i;j¼1

f Xið Þ � f Xj

� �� �2
Wij , where Wij

are edge weights in the data adjacency graph41. The last penalty term is based on
the graph Laplacian. GenoNet considers a logistic model for binary labels and

replaces the last term by
Pl
i¼1

Ŷu
i � f Xið Þ� �2

to utilize the prediction from existing

unsupervised methods; Prior LASSO is a supervised method which aims to
incorporate some prior information for variable selection with

f̂ ¼ argmin
f2HK

Pm
i¼1

Yi � Xiβð Þ2 þ γA k β k1 þγI
Pm
i¼1

Ŷu
i � Xiβ

� �2
, where Ŷu

i is the

prediction using prior information42. GenoNet extends it to use both l1 and l2
norms (elastic net vs. lasso); and extends the last penalty term to unlabeled data for
a semi-supervised inference.

Model training. We trained GenoNet to provide functional predictions in 127
different cell types/tissues in ENCODE and Roadmap on a genome-wide scale,
using the aforementioned MPRA validated variants in three cell lines (lympho-
blastoid, liver carcinoma, and erythrocytic leukemia cell lines), and comprehensive
cell type/tissue-specific epigenetic features. It is worth noting that GenoNet scores
are available even in cell lines where no MPRA data are currently available (it
reduces to an unsupervised method in such settings).

For these three cell lines, we used those MPRA validated variants as labeled data
and randomly selected 100,000 500-bp segments across the genome where each
segment includes 20 variants (25 bp apart), for a total of 2 million background
variants as unlabeled data. We incorporate the pre-calculated FUN-LDA score for
the training using unlabeled data18. For tissues/cell types where labels from high-
throughput functional assays are not yet available, GenoNet reduces to an
unsupervised method as described in the Methods section. The features for each
labeled or unlabeled variant include seven core histone modifications (H3K4me1,
H3K4me3, H3K9ac, H3K27ac, H3K9me3, H3K27me3, H3K36me3) and DNase I
hypersensitivity sites in 127 different cell types and tissues from ENCODE and
Roadmap, resulting in a total of 1016 functional annotations (8 annotations per
tissue × 127 tissues)10,11. For organism-level prediction, for a given position, we
took the maximum of GenoNet scores at the position across 127 tissues and cell
types. Based on these training data, we generate functional predictions at every
position in the genome in each cell/tissue type available in ENCODE and
Roadmap. These predictions are used in all subsequent analyses.

Semi-supervised vs. supervised vs. unsupervised approach. We investigated
how GenoNet, as a semi-supervised method, performs relative to alternative
supervised and unsupervised methods when the number and quality of labeled
variants vary. Specifically, we compared GenoNet with Elastic-net (supervised
version of GenoNet, γI= 0), LASSO, ridge regression, and support vector machine
regression (SVM, ϵ-regression with radial basis). Elastic-net, LASSO, ridge
regression were implemented using the “glmnet” R package, and SVM was
implemented using the “e1071” R package. The tuning parameters were chosen
using tenfold cross-validation. We also include the unsupervised version of Gen-
oNet (GenoNet-U, γI=∞) for comparison.

We use experimental labels for 1710 MPRA validated variants for erythrocytic
leukemia (K562) cell lines for the supervised methods, and 2 million genome-wide
background variants with their corresponding annotations as unlabeled data.
We train the semi-supervised GenoNet utilizing both labeled and unlabeled data
(γI � 0), and incorporate the pre-calculated FUN-LDA predictions for the
unlabeled data18. Overall, as we show in Fig. 8, among the supervised methods,
Elastic-net and LASSO perform similarly, while ridge regression and SVM
generally exhibit smaller AUC. This is likely due to the fact that only a small
number of epigenetic features are expected to be predictive of MPRA labels for this
cell line (K562), and therefore the variable selection conducted by Elastic-net and
LASSO improves the prediction accuracy. Hence, we choose Elastic-net to be
incorporated into GenoNet in the current implementation. We focus our
comparisons below on the semi-supervised (GenoNet), the supervised (Elastic-net,
γI= 0), and the unsupervised (GenoNet-U, γI=∞) versions of GenoNet.

In the first scenario, we investigate the impact of the number of labeled variants.
We randomly select m= 50–1500 variants out of 1710 variants validated by MPRA
in K562 as labeled data for the training of GenoNet and the supervised methods.
Then we use the trained model to predict the functional effects of the remaining
1710−m variants. As shown in Fig. 8, the number of labeled variants is a key factor
that influences the relative performance. When the number of labeled variants is
small (e.g. m � 100), the supervised version (i.e. Elastic-net) has lower AUROC
than the unsupervised version, GenoNet-U. This is because there are not enough
labeled data to train the model well, but the unsupervised version does not require
any labels. As the number of labeled variants increases from 50 to 1500, the
supervised version eventually achieves a larger AUROC than the unsupervised
version, as expected. The proposed semi-supervised GenoNet leads to more robust
AUROC regardless of the number of labeled variants by adaptively choosing
between the supervised and unsupervised versions.
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In the second scenario, we investigate the impact of label misspecification. We
fix the number of labeled variants to 200, and randomly set δpositive (60–0%) of true
positive variants to be misspecified as control variants and δcontrol (6–0%) of control
variants to be misspecified as positive variants. The results are described in Fig. 8.
With increasing label misspecification, we observed that the AUROC for the
supervised version Elastic-net decreases from 0.654 to 0.552, but of course the
accuracy of the unsupervised version is not affected (AUROC of 0.634). The semi-
supervised GenoNet is more robust (AUROC varies from 0.660 to 0.623) than the
purely supervised version, although the AUROC is still affected by the label
misspecification. Hence, as expected, the quality of labels plays a crucial role in
training a model with superior prediction accuracy.

Method evaluation under unbalanced settings. In general, for a given cell type/
tissue, the proportion of functional variants in the genome is small. Since the
training of GenoNet is done on fairly balanced datasets, a natural question is how
the method performs in real, unbalanced settings. GenoNet is based on a logistic
model for its supervised training, which is known to result in robust estimation of
coefficients in an unbalanced setting where the ratio of positive and negative
controls in the training data is different from that in the test data (i.e. the coeffi-
cients (except the intercept) estimated assuming prospective and retrospective
designs are equivalent for logistic regression)23. We further investigate the issue of
unbalanced test data by using the MPRA validated variants in GM12878 (LCLs)
and considered a more unbalanced setting by including 19,576 additional control
variants (not significant in the MPRA experiments). This results in a test dataset
with 693 positive controls and 22,348 negative controls. As shown in Supple-
mentary Figure 9, GenoNet retains its better performance in unbalanced settings,
making it appropriate for predicting functional effects at genome-wide scale where
the proportion of functional variants is expected to be small.

Web-based resources. For 1000 Genomes; see http://www.1000genomes.org. For
Annovar, see http://annovar.openbioinformatics.org/en/latest. For CADD, see http://
cadd.gs.washington.edu.For CATO, see http://www.mauranolab.org/CATO/. For
DANN, see http://jjwanglab.org/PRVCS/index.html#Download. For DeepSEA, see
http://DeepSEA.princeton.edu/job/analysis/create/. For deltaSVM, see http://www.
beerlab.org/deltasvm/. For Eigen, see http://www.columbia.edu/ii2135/eigen.html. For
ENCODE, see https://www.encodeproject.org, https://www.encodeproject.org/data/
annotations/. For Ensemble, see http://grch37.ensembl.org/index.html. For FunSeq2, see
http://funseq2.gersteinlab.org. For FUN-LDA, see http://www.funlda.com. For GenoS-
kyline-Plus, see http://genoSkyline.med.yale.edu/GenoSkyline. For GTEx, see http://
www.gtexportal.org/home. For LINSIGHT, see http://compgen.cshl.edu/~yihuang/
LINSIGHT. For Roadmap Epigenomics, see http://www.roadmapepigenomics.org. For
UCSC genome browser, see https://genome.ucsc.edu.

Data availability
The data that support the findings of this study are available at the GenoNet
website, http://www.funlda.com/genonet/.
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