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Role of nuclear pregnane X
receptor in Cu-induced lipid
metabolism and xenobiotic
responses in largemouth bass
(Micropterus salmoides)

Hongyan Li, Wangbao Gong, Guangjun Wang, Ermeng Yu,
Jingjing Tian, Yun Xia, Zhifei Li , Kai Zhang and Jun Xie*

Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River
Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
The pregnane X receptor (PXR) is a master xenobiotic-sensing receptor in

response to toxic byproducts, as well as a key regulator in intermediary lipid

metabolism. Therefore, the present study was conducted to investigate the

potential role of PXR in mediating the lipid dysregulation and xenobiotic

responses under Cu-induced stress in largemouth bass (Micropterus

salmoides). Four groups of largemouth bass (52.66 ± 0.03 g) were treated

with control, Cu waterborne (9.44 mmol/L), Cu+RIF (Rifampicin, 100 mg/kg,

PXR activator), and Cu+KET (Ketoconazole, 20 mg/kg, PXR inhibitor) for 48 h.

Results showed that Cu exposure significantly elevated the plasma stress

indicators and triggered antioxidant systems to counteract Cu-induced

oxidative stress. Acute Cu exposure caused liver steatosis, as indicated by the

significantly higher levels of plasma triglycerides (TG), lipid droplets, and mRNA

levels of lipogenesis genes in the liver. Liver injuries were detected, as shown by

hepatocyte vacuolization and severe apoptotic signals after Cu exposure.

Importantly, Cu exposure significantly stimulated mRNA levels of PXR,

suggesting the response of this regulator in the xenobiotic response. The

pharmacological intervention of PXR by the agonist and antagonist significantly

altered hepatic mRNA levels of PXR, implying that RIF and KET were effective

agents of PXR in largemouth bass. Administration of RIF significantly

exacerbated liver steatosis, and such alterations were dependent on the

regulations on pparg and cd36 rather than srebp1 signaling, which suggested

that PXR-PPARg might be another pathway for Cu-induced lipid deposition in

fish. Whereas, KET administration showed reverse effects on lipid metabolism

as indicated by the lower hepatic TG levels, suppressed mRNA levels of pparg
and cd36. Activation of PXR stimulated autophagy and inhibited apoptosis,

leading to lower hepatic vacuolization; while inhibition of PXR showed higher

apoptotic signals, inhibition of autophagic genes and stimulation of apoptotic

genes. Taken together, PXR played a cytoprotective role in Cu-induced

hepatotoxicity through regulations on autophagy and apoptosis. Overall, our

data has demonstrated for the first time on the dual roles of PXR as a co-
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regulator in mediating xenobiotic responses and lipid metabolism in fish, which

implying the potential of PXR as a therapy target for xenobiotics-induced lipid

dysregulation and hepatotoxicity.
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Introduction

The aquaculture sector provides high-quality protein for

human consumption and therefore plays a significant role in

ensuring world food security. However, aquatic animals face

with increasingly serious environmental stress induced by

xenobiotics or chemicals such as microplastics, pesticides, and

heavy metals from anthropogenic activities (1–3). Such

environmental toxicants could result in stress and cause

hepatotoxicity through several pathways including induction

of oxidative stress, ER stress-induced apoptosis, or lipid

dysregulation, therefore demonstrating disruptive effects on

teleost fish (4, 5). However, far less information is available on

the direct upstream regulators in the xenobiotic response in

teleost fish.

The pregnane X receptor (PXR, also known as nuclear

receptor NR1I2) and the constitutive androstane receptor

(CAR, also known as nuclear receptor NR1I3) are ligand-

activated nuclear receptors that mostly identified as

xenosensors in response to toxic byproducts derived from

endogenous metabolism and of exogenous chemicals (6, 7). In

mammals, PXR and CAR mainly expressed in the liver and the

intestine tissue, being the first defense line to inactivate and/or

eliminate xenobiotics (8). However, CAR was lost from fish

lineage in the evolutionary history, thus magnifying the potential

role of PXR in xenobiotic responses in teleost fish (7, 9).

Nowadays, PXR has been identified and cloned in teleost fish

to explore its effects on detoxification pathways towards

pharmaceuticals or pollutants, including zebrafish (Danio

rerio), rainbow trout (Oncorhynchus mykiss), common carp

(Cyprinus carpio), mosquito fish (Gambusia affinis), and

Mugilogobius abei (10–14),. There were only limited studies

elucidating the PXR-mediated xenobiotic response under metal

exposure (15, 16). Thus, the direct involvement of PXR signaling

in the metal-induced defense response has yet to be established.

In addition to recognize xenobiotic and chemical signals,

PXR also contributes to the regulation of inflammation, cell

proliferation, and energy metabolism including hepatic

metabolism and gluconeogenesis (17, 18). Hepatic lipid

homeostasis is a complex process maintained by balanced

anabolism (lipogenesis) and catabolism (lipolysis and fatty
02
acids b-oxidation). Several investigations have reported that

PXR activation could inhibit lipid catabolism by provoking a

downregulation in b-oxidation-related genes (19). Moreover, the

activation of PXR was associated with increasement of transcript

levels of peroxisome proliferators-activated receptor g (PPARg),
which is a positive regulator of CD36 and a master regulator of

adipogenesis (20). Therefore, PXR is an emerging new regulator

of intermediary metabolism that connects the relationship

between the sensing of chemical environment and the

regulation of metabolic activities (21).

Moreover, accumulating evidences have indicated the

impacts of environmental toxicants on lipid metabolism, in

particular, on the incidence and progression of a worldwide

occurring liver steatosis, non-alcoholic fatty liver disease

(NAFLD) (22). Environmental pollutants such as heavy metals

were reported to disturb lipid homeostasis in several kinds of

teleost fish (23–25). Among these metals, copper (Cu) is an

essential micronutrient required by all vertebrates, exerting

physiological functions as a cofactor in the activity of a wide

range of processes involved in cellular homeostasis and survival

(26). However, exposure to excess Cu triggered lipid deposition

in the liver of several fish, including zebrafish (Danio rerio), grass

carp (Ctenopharyngodon idella), and Synechogobius hasta (24,

26, 27). The underlying molecular mechanisms of Cu-induced

disorder in lipid homeostasis have been widely investigated in

aquatic animals. Nevertheless, investigations on the link between

the xenobiotic Cu exposure and downstream events, such as

regulations on the related nuclear factors in lipid dysregulation,

are lacking in teleost fish.

Largemouth bass (Micropterus salmoides) is one of the most

important commercially cultured freshwater species in China. It

also has been recognized as an indicator model for

environmental toxicity assessment for its high-intensive and

multi-regional rearing. To detect the potential role of PXR on

the relationship between the sensing of xenobiotic metals and

the regulation of lipid metabolism, pharmacological intervention

was performed by using agonist and antagonist in the present

study. Rifampicin (RIF) and ketoconazole (KET) were potent

activator and inhibitor of PXR in mammals and some species of

teleost fish, but their effects might be species-specific (1, 28).

Previous reports had shown that RIF was an effective inducer on
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PXR-regulated CYP3A expression in largemouth bass (29).

Therefore, acute Cu exposure experiments were carried out in

largemouth bass, with the administration of RIF and KET as the

activator and inhibitor of PXR, respectively. In the present study,

plasma stress indicators, liver histologic and enzymatic assays, as

well as responses to xenobiotic exposure, including liver

molecular events were investigated.

Materials and methods

Fish and trial management

Largemouth bass were obtained and acclimatized for two

weeks in ponds at the Pearl River Fisheries Research Institute,

Guangzhou, China. Subsequently, two experiments were carried

out in a statistical glass aquarium system. A 48-h acute Cu

exposure test were firstly performed at an increasing

concentration of Cu2+ at 15.74, 31.47, 47.21, 62.95, and 78.68

mmol/L in largemouth bass. Then the 48-hour median lethal

concentration (LC50) was determined at 47.21 mmol/L,

according to the prohibit analysis methods (30). Cu was

supplemented by CuSO4·5H2O (C805353, Macklin, China) in

distilled water to prepare stock solution. The amounts of

CuSO4·5H2O were calculated according to the molar mass of

Cu and total molar mass of CuSO4·5H2O, which ensured the

actual concentration of Cu2+ at designed concentrations.

Individual solutions used in the present study were dispensed

by adding an appropriate volume of the primary stock solution

to the dilution water.

Then, uniform-sized largemouth bass (body weight: 52.66 ±

0.03 g) were randomly assigned to four groups: Control, Cu

waterborne (9.44 mmol/L, equal to 20% of 48-h LC50), Cu + RIF

(Rifampicin, PXR activator, 100 mg/kg), and Cu + KET

(Ketoconazole, 20 mg/kg, PXR inhibitor) for 48 h. Prior to the

experiment, fish were anesthetized in diluted tricaine methane

sulfonate solution (MS-222; Sigma, USA; 60 mg/L), weighted,

and quickly intraperitoneally injected with the RIF or KET

according to the body weight. Then, fish were immediately put

into glass aquariums with prepared solutions containing Cu at a

concentration of 0.06 mg/L for subsequent Cu exposure. All

groups were set up as three replicates, with six fish per glass

aquarium. Experiments in the present study were performed

according to the guiding principles for the care and use of

laboratory animals and were approved by Pearl River Fisheries

Research Institute, Chinese Academy of Fishery Sciences

(Approval ID: LAEC-PRFRI-2021-08-31).
Sample collection

The fish were anesthetized with MS-222 at a concentration

of 60 mg/L before sampling. Two fish for each glass aquarium
Frontiers in Endocrinology 03
were sacrificed at 48 h after acute Cu exposure. Blood was

collected from the caudal vein of fish using syringes previously

infiltrated with heparin sodium solution (0.2%, Sigma, USA).

Then, plasma was separated after a centrifugation at 3000 g for

15 min. Parts of livers were removed and fixed in 4%

formaldehyde for liver histochemical and histological

observations. The rest parts of liver were immediately

dissected on ice and frozen in liquid nitrogen, storing in the

refrigerator at -80°C until subsequent analysis.
Biochemical parameters and
enzymatic analysis

Biochemical parameters including plasma glucose,

triglycerides (TG), cortisol, and lactic acid levels were

determined using commercial kits (A154-1-1, A110-1-1, H094,

and A019-2-1; Jiancheng Bioengineering Institute, China). Liver

tissues were accurately weighed and ground in sodium chloride

buffer (0.9%) to prepare a 10% homogenate (w/v). Then,

supernatants were obtained after centrifugation at 4°C for

enzymatic analysis. Total antioxidant capacity (T-AOC),

superoxide dismutase (SOD), catalase (CAT), and

malondialdehyde (MDA) activities were determined using

commerc ia l k i t s accord ing to the manufac turer ’ s

recommendations (A015-2, A001-3-2, A007-1-1, and A003-1-

2, Jiancheng Bioengineering Institute, China).
Histological analysis

The fixed livers were dehydrated in ethanol gradients and

embedded in paraffin. Crosssections were prepared by RM-2016

microtome at a thickness of 5 mm (Leica, Germany). Tissue

sections were stained with hematoxylin and eosin (H&E),

dehydrated and mounted. Observations were carried out under

light microscopy (Olympus, Japan).

The previously fixed livers were sliced and embedded in

TissueTek OCT compound (Sakura Finetek, Japan), rapidly

frozen in liquid nitrogen-cooled isopentane, and cut into 5 mm
sections with a cryostat. Sections were stained with neutral Oil

Red O (Wako Pure Chemicals, Japan) to visualize the

accumulation of fatty droplets in the liver, as described in

previous studies (25). The TUNEL (Terminal-deoxynucleotidyl

transferase-mediated nick end labeling) assay was carried out to

observe the apoptotic signals induced by Cu exposure in the liver

by detecting DNA fragmentation, and assays were performed

according to methods described by Li etal. (5). Images were

observed in in digital images from a Nikon Eclipse Ti-SR

inverted microscope.
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Quantitative real-time polymerase
chain reaction (qRT-PCR)

Total RNA was isolated from livers of largemouth bass using

Trizol reagent (Invitrogen, USA). To assess the quality of RNA,

agarose gel electrophoresis was performed to test the

degradation and contamination of RNA. The RNA

concentration and the A260/A280 ratio were checked using an

Implen NanoPhotometer (Implen Inc.). Then, cDNA was

synthesized using a PrimeScript® RT reagent kit (TaKaRa,

China) according to the manufacturer ’s instructions.

Quantitative RT-PCR was performed on a LightCycler 96

System (Roche, Switzerland) with SYBR® Green I Master Mix

(Roche, Germany). All reactions were performed in a 12 ml
volume containing 4 ml of the cDNA template, 0.48 ml of the
forward and reverse primer, 1.04 ml of ddH2O and 3 ml of
LightCycle 480 SYBR Green 1 Master (Roche, Germany). Forty-

five circles of PCR were performed, each consisting of heating at

95°C for 15 s for denaturing, and at 60°C for 10 s for annealing,

and a third extension step at 72°C for 15 s. Melting curves were

systematically monitored (with a gradient of 0.5°C/10 s from

55°C to 94°C) to confirm the specificity of the amplification

reaction. Each PCR assay were set with replicates and negative

controls were included. Relative expressions of genes evaluated

by qPCR were calculated using a mathematical method based on

the real-time PCR efficiencies, using a geometric mean of two

reference genes (b-actin and ef1a) for the normalization. The

primers used in the present study are shown in Table S1.
Statistical analysis

All of the statistical analyses were performed with the SPSS

(SPSS Inc., Chicago, USA) software. A Levene test were firstly

conducted to verify the normality and homogeneity of variance,

then a series of independent samples t-tests were conducted

between the CON and Cu groups, Cu and Cu+RIF groups, as

well as Cu and Cu+KET groups. Data were expressed as mean ±

SEM (standard error of mean, n = 6), and the statistical significance
Frontiers in Endocrinology 04
level was considered as at P < 0.05. Significant differences between

CON and Cu groups, Cu and Cu+RIF groups, as well as Cu and Cu

+KET groups were indicated by “#”, “*”, and “+” (P < 0.05).
Results

Plasma stress indicators

The stress biomarkers in the plasma of largemouth bass

subjected to RIF or KET under Cu exposure are presented in

Figure 1. Results showed that Cu exposure significantly

increased the cortisol, glucose and lactic acid levels in the

plasma of largemouth bass (P < 0.05). Except for plasma lactic

acid levels, administration of the PXR activator (RIF)

significantly reduced levels of plasma stress indicators

including cortisol and glucose (P < 0.05). While no significant

alterations were observed on plasma parameters in groups of

largemouth bass with KET administration (P > 0.05).
Histological observations

The liver histology (H&E) and histochemistry (Oil Red O)

observations of largemouth bass in the present study are shown

in Figures 2A–D and Figures 2E–H, respectively. The structure

of the liver in the control group displayed normal histology and

polygonal cells, with a round nucleus with prominent nucleolus

(Figure 2A). Acute Cu exposure resulted in vacuolization in

hepatocytes of largemouth bass (Figures 2B–D), while RIF

administration markedly reduced the portion of relative areas

of vacuoles, as indicated by the quantificational results shown in

Figure 2I (P < 0.05). Consistent with the H&E staining results,

the Oil Red O staining showed that Cu exposure stimulated the

appearance of lipid droplets in the liver of largemouth bass

(Figures 2F–H). Moreover, significant differences were shown in

Cu+RIF and Cu+KET groups as compared to the Cu exposure

group individually, with higher relative areas of lipid droplets
FIGURE 1

Plasma stress indicators in largemouth bass subjected to RIF or KET under Cu exposure (n = 6). Significant differences between CON and Cu
groups, Cu and Cu+RIF groups, as well as Cu and Cu+KET groups were indicated by “#”, “*”, and “+” (P < 0.05).
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detected in the former and lower levels in the latter groups

(Figure 2J; P < 0.05).
PXR responses and lipid metabolism

The response of the key regulator PXR was assessed by its

transcriptional levels using qRT-PCR. The results showed that

Cu exposure significantly stimulated PXR mRNA levels in the

livers of largemouth bass (P < 0.05). Meanwhile, intraperitoneal

administration of RIF and KET increased and decreased the

mRNA levels of PXR, as compared to the Cu group (Figure 3A; P

< 0.05).

In agreement with the Oil Red O staining results, TG levels

were significantly elevated in the plasma of largemouth bass after

Cu exposure (Figure 3B; P < 0.05). Compared to Cu group,

significantly higher and lower levels of plasma TG were observed
Frontiers in Endocrinology
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in the Cu+RIF and Cu+KET groups (P < 0.05). To detect the

molecular events associated with lipid metabolism, mRNA levels

involved in lipogenic genes and catabolic genes (fatty acids b
oxidation) were determined and shown in Figures 3C–E. Acute

Cu exposure stimulated the mRNA levels of srebp1, fas, pparg,
and cd36 in the liver of largemouth bass (P < 0.05). On the

contrary, Cu exposure significantly decreased the mRNA levels

of cpt1a in the liver of largemouth bass (P < 0.05). With respect

to the effects of administration of PXR activator and inhibitor,

no alterations on the hepatic mRNA levels of srebp1, acc, and fas

were found in either Cu+RIF or Cu+KET groups (P > 0.05).

However, RIF administration significantly enhanced the mRNA

levels of pparg, cd36 and suppressed the mRNA levels of ppara
in the liver of largemouth bass after Cu exposure (P < 0.05).

Along with this, the hepatic mRNA levels of pparg and cd36 were
significantly decreased in largemouth bass subjected to

intraperitoneal injection of KET after Cu exposure.
FIGURE 2

Liver histology (H&E) and histochemistry (Oil Red O) observations of largemouth bass subjected to RIF or KET under Cu exposure (n = 6). (A, E)
Control; (B, F) Cu exposure; (C, G) Cu+RIF; (D, H) Cu+KET; (I) relative areas of hepatocyte vacuolization; (J) relative areas of lipid droplets.
Photomicrographs magnification (× 200) and scale bar (200 mm). H&E: hematoxylin and eosin staining; Oil Red O: Oil red O staining. Lipid
droplets was red-colored and nuclei was blue-colored. Data represent means ± SEM and are normalized to percentage of field area. Significant
differences between CON and Cu groups, Cu and Cu+RIF groups, as well as Cu and Cu+KET groups were indicated by “#”, “*”, and “+”
(P < 0.05).
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Antioxidant systems

Acute Cu exposure induced significantly lower activities of

T-AOC, SOD and CAT levels in the livers of largemouth bass
Frontiers in Endocrinology 06
(Figures 4A–C; P < 0.05). The MDA levels increased markedly

after acute Cu exposure (Figure 4D; P < 0.05). As compared to

the Cu group, the hepatic activities of SOD and CAT were

significantly higher in the Cu+RIF group, while the T-AOC
B C

D E

A

FIGURE 3

PXR responses and lipid metabolism related index in the liver of largemouth bass subjected to RIF or KET under Cu exposure (n = 6). (A) mRNA
levels of PXR in the liver; (B) plasma triglycerides (TG); (C) hepatic mRNA levels of srebp1, acc and fas; (D) hepatic mRNA levels of pparg, cd36
and scd-1; (E) hepatic mRNA levels of ppara and cpt1a. Significant differences between CON and Cu groups, Cu and Cu+RIF groups, as well as
Cu and Cu+KET groups were indicated by “#”, “*”, and “+” (P < 0.05).
B C

D E

A

FIGURE 4

Enzyme activities and transcriptional levels of antioxidant systems in the liver of largemouth bass subjected to RIF or KET under Cu exposure
(n = 6). (A) T-AOC: total antioxidant capacity; (B) SOD: superoxide dismutase; (C) CAT: catalase; (D) MDA: malondialdehyde; (E) hepatic mRNA
levels of nrf2, keap1, sod, cat1. Significant differences between CON and Cu groups, Cu and Cu+RIF groups, as well as Cu and Cu+KET groups
were indicated by “#”, “*”, and “+” (P < 0.05).
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levels were significantly lower in the Cu+KET groups of

largemouth bass (P < 0.05). Regarding the activities of MDA,

RIF and KET administration significantly downregulated and

upregulated the activities in the livers of largemouth bass,

respectively (Figure 4D; P < 0.05).

For the expressions of genes associated with antioxidant

signaling, acute Cu exposure significantly stimulated the mRNA

levels of nrf2, and inhibited the mRNA levels of sod in the livers

of largemouth bass (P < 0.05; Figure 4E). The administration of

RIF induced higher mRNA levels of sod and cat in the livers of

largemouth bass, and the administration of KET significantly

elevated the mRNA levels of keap1 in the livers of largemouth

bass (P < 0.05).
Autophagy and apoptosis

The mRNA levels of genes involved in autophagy are

presented in Figure 5. Acute Cu exposure significantly

stimulated the transcriptional levels of ulk1a, ulk1b, atg5, and

map1lc3b in the livers of largemouth bass (P < 0.05).

Administration of RIF induced markedly higher mRNA levels

of ulk1a and map1lc3b in the liver of largemouth bass, while

KET significantly suppressed the mRNA levels of atg3, atg5, and

map1lc3b (P < 0.05).

As shown by DAPI and TUNEL double fluorescence

staining, rarely was apoptosis found in the CON group, while

much many apoptotic signals were observed in all groups after

Cu exposure (Figure 6A). The apoptosis rate in the Cu group was

significantly higher than in the CON group (Figure 6B; P < 0.05).
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Meanwhile, administration of RIF and KET significantly

elevated and decreased the apoptosis rate in the liver of

largemouth bass after acute Cu exposure (P < 0.05). To better

understand these effects, hepatic mRNA levels of genes involved

in apoptotic processes were analyzed and presented in Figure 7.

Acute Cu exposure significantly inhibited the mRNA levels of

bcl2, while elevated the mRNA levels of bax, caspase 9, and

caspase 3 in the liver of largemouth bass (P < 0.05).

Administration of RIF significantly increased the mRNA levels

of bcl2, while decreased the mRNA levels of caspase 9 and

caspase 3 (P < 0.05). On the contrary, significantly lower

mRNA levels of bcl2 and bax, as well as significantly higher of

caspase 9 were found in the largemouth bass of the Cu+KET

groups (P < 0.05). No alterations were observed on the hepatic

transcriptional levels of caspase 8 and caspase 10 in largemouth

bass among all groups (P > 0.05).
Discussion

Cu-induced xenobiotic responses could
be modified through pharmacological
intervention of PXR

Stress is one of the most common responses in aquatic

animals that are subjected to abnormal stimulation by

environmental factors. Normally, plasma cortisol and glucose

levels are considered as sensitive indicators of stress response in

fish, which consistent of the primary and secondary stress

systems (31). As a chemical byproduct of anaerobic

respiration, LD increases when fish suffers stress. In the
FIGURE 5

Hepatic mRNA levels of genes involved in autophagy in largemouth bass subjected to RIF or KET under Cu exposure (n = 6). Significant
differences between CON and Cu groups, Cu and Cu+RIF groups, as well as Cu and Cu+KET groups were indicated by “#”, “*”, and “+”
(P < 0.05).
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present study, 48-hour acute Cu exposure significantly elevated

cortisol, glucose, and LD levels in the plasma, implying the

occurrence of a stress response in largemouth bass after Cu

exposure. Additionally, exposure to heavy metals such as Cu has

been reported to result in oxidative stress and antioxidant

response in various species of fish (25, 32). Nrf2-keap1

signaling is vital in cellular resistance to oxidants through

regulating antioxidant and detoxifying genes (33). Acute

exposure to Cu increased the gene expression of nrf2,

suggesting a stimulation on the antioxidant pathways to

counteract Cu-induced toxicity. The harmful effects of ROS

generated from oxidative stress are balanced by activities of
Frontiers in Endocrinology 08
the non-enzymatic antioxidants and antioxidant enzymes

including T-AOC, SOD, and CAT (34). However, Cu exposure

finally induced a reduction on mRNA levels of sod, as well as on

the enzymatic activities of T-AOC, SOD, and CAT in the liver of

largemouth bass. The representative makers of peroxidation,

MDA, were significantly higher in fish after Cu exposure. Higher

portions of the relative areas of the vacuoles indicated that

histological lesions were induced in the hepatocytes of

largemouth bass after Cu exposure. Therefore, Cu exposure

triggered antioxidant systems to fight against Cu-induced

oxidative stress, but severe stress still caused hepatotoxicity in

largemouth bass eventually.
FIGURE 7

Hepatic mRNA levels of genes involved in apoptosis in largemouth bass subjected to RIF or KET under Cu exposure (n = 6). Significant
differences between CON and Cu groups, Cu and Cu+RIF groups, as well as Cu and Cu+KET groups were indicated by “#”, “*”, and “+”
(P < 0.05).
BA

FIGURE 6

Representative DAPI and TUNEL double staining of liver in largemouth bass subjected to RIF or KET under Cu exposure (n = 6). TUNEL-positive
cells were stained and indicated by bright green fluorescence indicating apoptotic cells, and normal nuclei appear in blue. (A) TUNEL staining
sections; (B) Apoptotic index: the number of apoptotic nuclei/The number of observed nuclei × 100%. Significant differences between CON and
Cu groups, Cu and Cu+RIF groups, as well as Cu and Cu+KET groups were indicated by “#”, “*”, and “+” (P < 0.05).
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To investigate the potential role of PXR in its response to the

xenobiotic exposure, RIF and KET were applied as the activator

and inhibitor in largemouth bass, respectively. Compared with

Cu group, the markedly elevation and descent of mRNA levels of

PXR in the livers suggested that RIF and KET were able to

induce PXR activation and inhibition in largemouth bass. Thus,

we further investigated the potential role of PXR in antioxidant

responses after pharmacological intervention. Resistance to

contaminants consists of detoxification and antioxidant

pathways (35). The detoxification process is mainly regulated

by downstream gens of PXR signaling, while the Nrf2-keap1

system activates target genes such as sod and cat to reduce the

oxidative toxicity of environmental pollutants (36). In the

present study, RIF administration stimulated the mRNA levels

and enzymatic activities of SOD and CAT, as well as decreased

the levels of MDA in the liver of largemouth bass after Cu

exposure. Histological observations showed that the rate of

hepatocyte vacuolation was significantly lower in the Cu+RIF

group as compared to the Cu group, suggesting the

cytoprotective role of PXR activation. The expression levels of

the nrf2 remained constant regardless of whether exposed to an

agonist or antagonist. Nevertheless, the mRNA levels of sod and

cat were significantly higher after subjected to RIF

administration, as compared to the Cu group. Therefore, PXR

showed positive roles in stress and antioxidant responses in

largemouth bass, especially through pharmacological activation.
PXR-PPARg pathways might be one of
mechanisms regulating Cu-induced
hepatic steatosis

The peroxisome proliferator activated receptor g (PPARg)
and the sterol-regulator element-binding protein 1 (SREBP1) are

key nuclear factors involved in lipid metabolism. To date,

PPARg and SREBP1 have been shown to be vital intermediary

factors in mediating the Cu-induced liver steatosis, by

orchestrating the transcriptional levels of the lipogenesis-

related enzymes (24, 37). In the present study, exposure to Cu

caused significant stimulation of plasma TG levels, and hepatic

mRNA levels of genes related to lipogenesis in largemouth bass,

including srebp1, fas, pparg, and cd36. Consistently, significantly

higher levels of lipid contents were retrieved in the liver of

largemouth bass after Cu exposure, as indicated by the

quantitative relative areas of lipid droplets according to Oil

Red O staining. At the same time, the transcriptional levels of

cpt1a were significantly lower after exposure to Cu, which

represented the suppression of lipid catabolic pathways.

Therefore, one of the mechanisms of Cu-caused hepatic

steatosis was ascribed to the acceleration of the lipogenesis

pathways and suppression of catabolic pathways in

largemouth bass.
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Nevertheless, the mechanisms as how Cu from xenobiotic

exposure eventually alters hepatic lipid metabolism are still

unclear. Therefore, investigations on the potential role of the

xenobiotic stress sensor PXR in linking the xenobiotic responses

and lipid metabolism emerged (38). The activation of PXR

induced by environmental toxicants has been reported to be

associated with liver steatosis (39). The present study showed

that RIF and KET administration significantly increased and

decreased the levels of plasma TG and lipid droplet levels in the

liver of largemouth bass after Cu exposure respectively,

suggesting the effective role of PXR in the regulation of Cu-

induced lipogenesis. While taking the hepatic molecular events

into account, we observed that the srebp1 and the downstream

gene acc and fas were constant whatever they were exposed to

RIF or KET. Similarly, PXR was reported to induce lipogenesis in

a SREBP1-independent manner in mammal models (17).

Moreover, PXR activation was associated with up-regulation of

PPARg, a positive regulator of CD36 and a master regulator of

adipogenesis (17). Concomitantly, RIF administration

significantly enhanced the mRNA levels of pparg, as well as

the downstream genes of cd36 in the liver of largemouth bass

after exposure. However, the administration of KET showed

opposite effects, as refers to mRNA levels of pparg and cd36.

Fatty acid b oxidation was also inhibited since mRNA levels of

ppara were significantly lower in largemouth bass from the Cu

+RIF group, which suggested the catabolism pathways also

contributed to the lipid accumulation. In addition, recent

studies have indicated that Cu exposure increased lipid

deposition through oxidative stress-induced alteration of

PPARg pathways in yellow catfish (P. fulvidraco) (32).

Therefore, our data indicated that pharmacological activation

of PXRmight induce hepatic steatosis through the stimulation of

PXR-PPARg and inhibition of fatty acid b oxidation by

regulating PPARa pathways rather than alterations on

SREBP1 signaling pathways.
PXR protected against Cu-induced
hepatoxicity via autophagy and apoptosis

Histological structure alterations represent lesions that fish

suffered from hepatotoxicity due to heavy metal exposure. Fish

have evolved systematic mechanisms and defense strategies to

protect themselves from xenobiotic toxicity (5, 40). Autophagy is

an important intracellular pathway for the degradation and

recycling of cytosolic components, acting as either a survival

or death safeguard mechanism depending on the environmental

stress and cell type (41). Autophagy also mediated heavy metal-

induced damage in tissues and organs (42). Ulk1, which belongs

to a homologue of ATG1, is a key regulator in the initiation of

autophagy by forming a complex with other autophagic proteins

(43). In the present study, exposure to Cu caused significant
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induction on the mRNA levels of genes involved in autophagic

process, including ulk1a, ulk1b, atg5, and map1lc3b. In

accordance with this, the occurrence of autophagy acted as a

defense strategy in gibel carp to combat metal-induced

toxicology (25). In addition, apoptosis is a kinds of

programmed cell death for maintaining cellular homoeostasis,

which can be initiated under environmental stimuli and

minimize the toxic effects of xenobiotics (4, 44). As compared

to the control group, significant apoptotic signals shown by the

TUNEL staining and significant higher apoptotic index were

both observed in the Cu group. At molecular levels, significantly

lower mRNA levels of the anti-apoptotic genes bcl2 and higher

levels of the pro-apoptotic genes bax, caspase 9, and caspase 3

were observed after Cu exposure in largemouth bass. Taken the

elevation of hepatocyte vacuolation into consideration, Cu

exposure triggered the autophagy and apoptosis responses to

alleviate hepatotoxicity in largemouth bass, but such regulations

were still insufficient to countervail the occurrence of damage in

the liver.

In addition, PXR may be a promising target for the

prevention and treatment of liver disease based on its

transcriptional regulation in inflammation, liver injury, and

maintenance of homeostasis. PXR has also been shown to

regulate liver autophagy and apoptosis pathways, thus having

hepatoprotective effects in various liver injuries (44, 45). PXR-

null mice were reported to have more severe liver damage and

suppressed autophagy flow in mice (46). By using PXR-specific

agonist and inhibitor to intervene in autophagy in mice with

liver injuries, increasement of the autophagy indexes LC3-B and

P62 were observed as a response to agonist pretreatment (46). In

the present study, pharmacologic activation of PXR by RIF

mitigated liver injuries, as shown by the lower levels of

hepatocyte vacuolation in the H&E staining. Meanwhile, the

mRNA levels of ulk1a and maplc3b were significantly triggered,

which might verify the potential role of PXR on relieving liver

damage via regulation on autophagic pathways. In addition to

regulations on autophagic processes, PXR also promoted

hepatocyte survival by upregulating the Bcl-xL and Bcl-2 anti-

apoptotic proteins in rat and human (44). Constitutively

activated PXR or pharmacologic activation of PXR by the

agonist RIF in PXR-overexpressing cells protects human cells

from deoxycholic acid-induced apoptosis (29). Our data

revealed that administration of RIF significantly upregulated

the mRNA levels of anti-apoptotic genes bcl2 and downregulated

the mRNA levels of pro-apoptotic genes caspase9 and caspase3.

Such anti-apoptotic effects were further confirmed by the lower

rate of apoptotic index as shown by TUNLE staining. On the

contrary, KET showed reverse effects, as lower mRNA levels of

bcl2 and higher levels of caspase9, eventually more severe

apoptotic signals were observed in the liver of largemouth bass

in the Cu+KET group. In conclusion, by intervening PXR with

activators and inhibitors, our data demonstrated that PXR might

play a protective role in Cu-induced liver injuries, and such
Frontiers in Endocrinology 10
positive effects were mainly involved in autophagy and apoptosis

signaling pathways.

Conclusion

Acute exposure to Cu caused stress, liver steatosis, and

eventually liver injuries in largemouth bass. Such phenotypes

were induced as to a combined involvements of antioxidant

system, lipogenesis, autophagy, and apoptosis signaling

pathways. For the role of PXR in Cu-induced lipid deposition

and xenobiotic responses, our data indicated that RIF and KET

were effective agonist and antagonist of PXR in largemouth bass.

PXR promoted liver steatosis through regulations on lipogenesis

and lipid catabolism in largemouth bass, but the lipogenesis

enhancement was achieved majorly in a PPARg-dependent
manner rather than a SREBP1-dependent manner. Moreover,

PXR showed cytoprotective role in mitigating Cu-induced liver

injuries ascribed to its regulations on autophagy and its anti-

apoptotic effects. Our findings provide the first evidence for the

dual functions of PXR as a co-regulator in mediating metal-

induced xenobiotic responses and intermediary lipid

metabolism in fish, suggesting that PXR might be a promising

target for therapy on stress-induced liver steatosis and

hepatotoxicity through pharmacological intervention.
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