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Machine learning on quantum experimental
data toward solving quantum many-body
problems

Gyungmin Cho 1 & Dohun Kim 1

Advancements in the implementation of quantum hardware have enabled the
acquisition of data that are intractable for emulation with classical computers.
The integration of classical machine learning (ML) algorithms with these data
holds potential for unveiling obscure patterns. Although this hybrid approach
extends the class of efficiently solvable problems compared to using only
classical computers, this approach has beenonly realized for solving restricted
problems because of the prevalence of noise in current quantum computers.
Here, we extend the applicability of the hybrid approach to problems of
interest inmany-body physics, such as predicting the properties of the ground
state of a given Hamiltonian and classifying quantum phases. By performing
experiments with various error-reducing procedures on superconducting
quantum hardware with 127 qubits, we managed to acquire refined data from
the quantum computer. This enabled us to demonstrate the successful
implementation of theoretically suggested classicalML algorithms for systems
with up to 44 qubits. Our results verify the scalability and effectiveness of the
classical ML algorithms for processing quantum experimental data.

Progress in information storage andprocessing techniques1–5 hasgiven
rise to the generation of large amounts of data, and the use ofmachine
learning (ML) to process these data is being actively explored in
biology6, chemistry7, and physics8. Areas of potential application ofML
in physics include the study of many-body physics. One of the inter-
esting problems is the prediction of the ground-state properties of a
given Hamiltonian, for example the electronic structure Hamiltonian.
The other intriguing problem entails the explorationof the boundaries
between different quantum phases, which may enable the identifica-
tion of exotic quantum phases such as high-temperature super-
conductivity. Widely used classical algorithms9,10, however, in spite of
their many successful applications, have fundamental limitations in
approximating strongly interacting systems.

Although quantum computers are expected to excel at solving
quantum chemistry andmany-body physics problems, current devices
are still prone to errors, which compromise the accuracy of results.
While quantum error correction is believed as a solution11,12, the large-

scale operation is not immediately realizable13. Hybrid approaches in
which classical computers are combined with quantum computers as
to circumvent this issue have been introduced14.

Research aimed at broadening the utility of the hybrid approach
leads to quantum state learning methods such as classical shadow15–17

which is a succinct classical representation of a quantum state. The
ability to convert quantum states into classical forms naturally allows
for their use as data in classicalML, and recent researchhas focused on
theoretical analyses of the performance in many-body physics
applications18–21. One advantage in this direction is that it allows well-
developed classical devices and ML techniques to be leveraged.
Additionally, under widely believed complexity conjectures, the
combined use of data from quantum computers and learning on
classical computers can solve, in a computationally efficient manner,
some problems that are challenging for non-ML algorithms relying
solely on classical devices18,22. Despite the aforementioned advantages,
prevailing errors in data from quantum computers limit the range of
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problems that are addressable and challenge the scalability as the
system size increases23–25. Thus, appropriate quantum error mitiga-
tions (QEMs) are necessary during and after data acquisition.

Here, we experimentally verify the applicability of the hybrid
approach to problems of interest in many-body physics. Previous
research18,19 obtained training data for ML from tensor network algo-
rithms on classical computers. These approaches face limitations as
system sizes increase, particularly beyond two dimensions, high-
lighting the utility of quantum computers for generating training data.
Our experiments demonstrate that classicalML on data fromquantum
computers is effective not only in one-dimensional but also in two-
dimensional many-body physics problems. Experimentally, prior
works17 have used classical shadows primarily for estimating obser-
vables of a given quantum state. However, building on the rigorous
algorithm with various error-reducing procedures applied to the
training data, we have successfully used classical shadows obtained
from quantum computers for ML tasks, extending their applications
beyond predicting physical observables for a given state.

We implement classical ML algorithms18 to solve problems
related to the prediction of ground state properties and the classi-
fication of quantum phases, as illustrated in Fig. 1. These problems
can be considered as regression and classification in traditional ML,
respectively. For regression, because the prediction of accurate
values is required, various QEMs were used, which resulted in the
application of accurate ML models to a 12-qubit system. Regarding
the classification task, we expanded on the previous work26,27 of
distinguishing the Symmetry Protected Topological (SPT) phase28

by performing the classification task in a more general setting and
increasing the system size up to 44 qubits. Also, with the help of a
measurement-assisted state preparation method29, which enabled
the generation of suitable training data, we demonstrated successful
phase classification between topologically ordered and trivial pha-
ses of a system comprising as many as 25 qubits, thereby confirming
the applicability of the scalable ML algorithms. We conducted our
experiments on a device consisting of superconducting qubits

provided by IBM. Detailed error statistics on the hardware are pre-
sented in the Supplementary Note 1.

Results
Classical shadow
Despite many efforts to reduce the sample complexity for quantum
state tomography (QST), exponential scaling of the sample complexity
in terms of the system size (n) is unavoidable30. To circumvent the
exponentially increasing sample complexity, research focusing on
predicting physical quantities instead of the full description of a
quantum state was introduced31. Subsequent studies presented the
more experimentally friendly protocol of classical shadows15. In addi-
tion to linear functions flinear(ρ) = Tr(Oρ), nonlinear functions such as
fnonlinear(ρ) = Tr(Oρ⊗k) can also be estimated by the classical shadow27.
Utilization of the classical shadow as the data for ML would be
expected to enable the ML model to learn the nonlinear properties of
the state18,22.

We obtained the classical shadows of the state by applying a
unitary transformation sampled from a random unitary ensemble,
followed by the measurement. By repeating this process T times, we
can obtain ST ðρÞ= fðbðtÞ,UðtÞÞgTt = 1 as the experimental results, where
b(t)∈{0, 1}n is themeasurement outcome,UðtÞ =�n

i= 1U
ðtÞ
i where eachUi

(t)

is sampled from the Haar measure over the unitary group U(2)32

instead of widely used Cl(2) (Clifford group on single qubit). As a
result, the unbiased estimator σ̂T ðρÞ can be written as

σ̂T ðρÞ= 1=T
XT

t = 1

�n
i = 1 3UðtÞy

i bðtÞ
i

��
bðtÞ
i

���
���UðtÞ

i � I2
� �n o

ð1Þ

where EU,bðσ̂T ðρÞÞ=ρ and I2 is the 2 × 2 identity matrix
In practice, classical shadow estimations sometimes lead to

inferior results compared to direct measurement due to the
restriction on available QEMs resulting from the randomized mea-
surements (RM)16 for the classical shadow. Here, direct
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Fig. 1 | Classical machine learning (ML) on quantum experimental data.
a Conversion of the information represented in a quantum state into a classical
form for the application of classical ML. The training data were the expectation
values measured via the quantum computer or the classical shadows of the quan-
tum state. b Predicting the properties of the ground state of a given Hamiltonian
casts to regression in classicalML. Theobjective of the regression is to approximate
the target function f(x) = Tr(Oρ(x)) as closely as possible by trainedMLmodel using

training data fðxi,TrðOρðxiÞÞgNdata
i = 1 . After training, when a new input xnew is given, the

trained ML model outputs f̂ (xnew) as a guess for f(xnew). c In classification, the
objective is to distinguish a particular quantum phase from others by training aML
model that gives rise to the phase boundary on a relevant space. After training,
when a new state is given, the trained ML model assigns a phase of the state by
considering its position relative to the phase boundary on the space.
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measurement was used for the regression, whereas classical
shadow representation obtained by randomized measurement
was employed for the classification in which errors were
tolerable to a certain extent, but nonlinear properties were
necessary.

Case 1: predicting the properties of the ground state
In our first experiment, we aimed to predict the properties of the
ground state, specifically by focusing on learning that f(x) = Tr(Oρ(x))
(ρ(x) is the ground state of theHamiltonianH(x)). Bymapping an input
vector x to a high-dimensional space through a feature map
φ : x 2 Rm ! Rmφ , functions f(x) can be approximated by wTφ(x)
where w is a model parameter. However, if the dimension of the fea-
ture space (mφ) is too large, it is impractical to conduct calculations
directly using feature vector φ(x). Instead of having to process high-
dimensional vectors, a relatively simple relation known as the kernel
trick33 k(x, x′) =φ(x)Tφ(x′) can be used. Among the many available
algorithms, we used the previously studied kernel ridge regression
(KRR)18,19 with minor modifications and a closed-form expression for

predicting f(xnew) based on Ndata samples is given by

f̂ ðxnewÞ=
XNdata

i= 1

XNdata

j = 1

kðxnew,xiÞðK + λIÞ�1
ij f ðxjÞ ð2Þ

where λ is the hyperparameter, Kij(= k(xi, xj)) is a kernel matrix, and I is
the Ndata × Ndata identity matrix.

We selected the 1D nearest-neighbor (NN) random hopping sys-
tem Hhop(x) with 12 sites (n = 12) (illustrated in Fig. 2a) as a benchmark
for the learning task. The number of parameters of the system
increases linearly as n grows. Although it may be challenging to train
the system with many parameters, after training, the ML model would
have the extended interpolation regions for inferences. The ground
state of Hhop(x) was prepared on a quantum computer by using the
Givens rotations34,35 in Fig. 2b. To reduce errors, apart from diverse
error mitigation methods (Dynamical Decoupling, Pauli twirling,
McWeeny purification)36,37, we implemented a parity measurement by
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Fig. 2 | Predicting ground state properties. a Hamiltonian for random hopping
system and Su–Schrieffer–Heeger (SSH) system. xi in Hhop(x) is sampled uniformly
from [0, 2]. b Ground state preparation circuit. Gates labeled G and P represent a
Givens rotation and a basis rotation for parity measurement, respectively.
cCorrelationmatrix for randomhopping system. Results fromMLprediction using
the Gaussian kernel and exact values from exact diagonalization (ED) are shown on
the left and right, respectively. d Prediction error. Model performance is measured
by the root-mean-square error (RMSE). The error bars represent the standard
deviation of the RMSEs of each observable. The dotted red line means the average
RMSE for the training data. Inset shows the relationship between the log(Ndata) and
1/RMSE. The solid lines indicate a linear fit to the data points. e Correlation matrix

for 1D SSH system (v = 1, w = 1). Results fromML predictions using Gaussian kernel
and exact values from ED are shown on the left and right, respectively. f Prediction

error. RMSE* (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=nðn� 1ÞPn

i ≥ jðhay
i aji � hay

i ajiML
Þ2

q
) from different kernels while

keeping v = 1 and varying w in 0.25 intervals from 0.25 to 1.75. g Edge correlation.
The edge correlation 〈a1†an〉 is measured between sites located at either end of a
chain. The dotted red line is the known phase boundary between the trivial and
topological phases. The black curve indicates exact values obtained by ED. In
d, f, g the green, blue, and orange points each indicate the results predicted by the
ML model trained by a (modified) Dirichlet kernel, neural tangent kernel, and
Gaussian kernel, respectively.
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recompiling the circuit. Further information is provided in the Sup-
plementary Note 3.

We obtained the expectation values corresponding to the site
correlations 〈ai

†aj〉 (=1/4(Xi-iYi)Zi+1.. Zj−1(Xj + iYj) by employing a
Jordan-Wigner transformation, where Xi, Yi, and Zi are the Pauli
operators at site i), and constructed a correlation matrix of which
each (i, j)-element corresponds to 〈ai

†aj〉. We uniformly sampled
the hopping rate x ∈ [0, 2]n−1 and performed 20,000 measure-
ments to obtain each 〈ai

†aj〉. Then, we used ML with the aim of
predicting the correlation matrix for a new ground state at xnew.
We collected 200 data points from the quantum computer to train
the ML model. The performance of the trained model was eval-
uated using 10,000 (Ntest) test data obtained by Exact Diag-
onalization (ED). The correlation matrix predicted by the ML
model has reasonable similarity to the exact values (Fig. 2c). As
shown in Fig. 2d, the model achieved an average root-mean-square

error (RMSE) (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Ntest

PNtest
i= 1 ðf OðxiÞ � f̂ OðxiÞÞ

2
q

where fO(x) =
Tr(Oρ(x))) of 0.0168 on the test data, and the decrease in the RMSE
as the number of training data increases confirms the importance
of the data in ML for predicting the ground state properties. The
red dotted line represents the average RMSE of the error-mitigated
training data, which becomes 0.0244 in the case of raw data. We
observed the scaling relationship log(Ndata) ~O(1/RMSE) of some
trained models (inset in Fig. 2d), even in the multi-phase case,
which outperforms theoretical predictions18. This can be attrib-
uted to the fact that the physical systems often encountered are
structurally simpler, allowing ML models to predict the properties
of interest more effectively19–21. For a detailed comparison of the
performance of the ML model across different values of m and
between with and without error mitigation, refer to Supplemen-
tary Note 5.

The trained ML model was subsequently used to predict
the ground state properties of the Su–Schrieffer–Heeger (SSH)
Hamiltonian (Fig. 2a), and as seen in Fig. 2e–g, the results con-
firmed the ability of the ML model to predict not only the correla-
tion matrix but also edge correlations originating from the
topological properties. We therefore succeeded in experimentally
confirming one of the promising applications of the ML approach,
namely that the properties of other systems of interest can be
estimated without performing additional experiments. Details of
the noisy circuit simulations can be found in the Supplemen-
tary Note 5.

Case 2: classifying quantum phases
In the second experiment, we classified quantum phases in many-
body physics by using principal component analysis (PCA) and a
support vector machine (SVM) as classical ML algorithms18,33. To
generate data for ML, we prepared the fixed-point state of a given
phase on the quantum computer and applied a local randomunitary
to generate different states within the same phase as the training
data38. The advantage of this approach is that it allows for model-
independent data acquisition, thereby reducing the biases in the
training data39. With a classical shadow that contains sufficient
information to compute the nonlinear properties of the state, we
employed a shadow kernel18 defined by

kshadowðST ðρÞ,ST ð~ρÞÞ= expfτ=T2
XT

t,t 0 = 1

exp½γ=n
Xn

i = 1

TrðσðtÞ
i
~σðt0 Þ
i Þ�g ð3Þ

where σðtÞ
i =3UðtÞy

i jbðtÞ
i ihbðtÞ

i jUðtÞ
i � I2 and τ, γ >0 are hyperparameters.

Each kshadow can be efficiently evaluated using O(nT2) computation
time. Further explanations on the shadow kernel can be found in the
Supplementary Note 2.

Case 2-1: distinguishing a short-range entangled state from a
trivial one
Without symmetry, both the SPT phase, having short-range entangle-
ment, and the trivial phase exhibit trivial order, and the states from
these two phases can be connected via constant-depth local unitary
(LU) transformations38 (Fig. 3a). However, in cases the applied unitary
preserves a specific symmetry, the constant-depth circuit protecting
the symmetry is known to be non-existent40. As a fixed-point state in
the SPT and trivial phases, we utilized the ground state of HZXZ = −∑iZi-
1XiZi+1 and HX = −∑iXi with a 44-site periodic boundary condition,
respectively, and examined whether the MLmodel can distinguish the
SPT phase protected by ℤ2⊗ℤ2 symmetry generated by
Xeven(odd) =∏i=even(odd)Xi or time-reversal symmetry (TRS) T = (∏iXi)K,
whereℤ2 is a second-order group and K denotes complex conjugation.
Specifically, we do not assume that the system is translationally
invariant when applying a symmetric random unitary39 (Fig. 3b). This
means that attempts to measure the string order parameters (SOP) to
distinguish the SPTphase are highly likely to fail, as shown inFig. 3c27,28.
However, ML using classical shadows to generate data could increase
the probability of classifying the SPT phase because it contains non-
linear information about the state41.

We obtained 20 data points for each phase in the form of classical
shadowsusing T = 100, and used half of these points as training data to
identify the phase boundary and the other half as test data. For clas-
sical ML, PCA with a shadow kernel was used to reduce the dimen-
sionality of the data, and the phase boundary was obtained using SVM
with a Gaussian kernel. Figure 3d shows that the ML model can dis-
tinguish between the SPT phase protected by ℤ2⊗ℤ2 symmetry or TRS
with high accuracy. However, if the symmetry is not respected, the two
phases can be connected by a constant depth local unitary, which
would complicate classification. Figure 3e, f shows the distribution of
the test data and phase boundary of the trained ML model for the
ℤ2⊗ℤ2 symmetry and TRS. In the case of TRS, the symmetric local
unitary gates are less restrictive than in the ℤ2⊗ℤ2 symmetry, which
permits the generation of a wider variety of states from the fixed-point
state to ultimately give rise to a more dispersed data distribution.

The dependency of the algorithm’s computational time on n
appears when calculating the shadow kernel k(shadow)(ST(ρ1), ST(ρ2)) and
is proportional to O(n). Therefore, even as the system size increases,
the computational time only increases linearly. In addition, we found
that when the number of layers of symmetric randomunitary (dLU) and
T are the same, the larger the system size, the more clearly the quan-
tum phase separates. Further details on this are elaborated in Sup-
plementary Note 5.

Lastly, we attempted to distinguish the quantum phases of the
HCI = −J∑iZiXi+1Zi+2 − h1 ∑iXi − h2∑iXiXi+1, for which multiple quantum
phases exist depending on the values of h1 and h2 (with J = 1)26,42,43.
Utilizing the same experimental data under ℤ2⊗ℤ2 symmetry, we
trained aMLmodel and attempted to distinguish between the SPT and
trivial phases among a total of 40 test data points from HCI—20 from
each phase—obtained by density matrix renormalization group
(DMRG) simulation44,45, as shown in Fig. 3g. These results showed that
all test data points, except for one, were correctly classified into
appropriate phase, demonstrating the applicability of ML with the
classical shadow.

Case 2-2: distinguishing a long-range entangled state from a
trivial one
Topologically ordered states, having long-range entanglement,
directly prepared on quantum devices have been confirmed by
measuring the non-zero expectation value of topological string
operators46 or topological entanglement entropy (TEE)47–49. Here,
we classified topologically ordered phases using the ML model
trained by data. We utilized a surface code (a planar version of the
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toric code), which is well known to have a ℤ2 topological order, as a
fixed-point state for a topologically ordered phase and a random
product state for a trivial phase. The method that was previously
used for preparing the topologically ordered state49 requires
hardware-specific qubit connectivity conditions, which would
otherwise incur additional swap gates and lower the state pre-
paration fidelity. In addition, the required circuit depth for these
methods increases as O(dcode) where dcode is the code distance of
the surface code49. We avoided these problems by utilizing the
measurement-assisted state preparation29 method instead. Specifi-
cally, after applying a sequence of unitary transformations in
Fig. 4a, we performed a projection bymeasuring some ancilla qubits
and applied Pauli Z or an identity gate adaptively to certain data
qubits conditioned on the measurement results. Despite the non-
deterministic nature of the projection, it is always possible to pre-
pare |0 L〉 of surface code as follows at O(1) circuit depths.

j0Li= 1=
ffiffiffiffiffiffiffiffi
2Np

p Y
p
ðI +BPÞj0i�n ð4Þ

Here, BP =Πi2pXi is a X-plaquette operator where each X-plaquette is
shaded in blue in Fig. 4a, Np is the number of X-plaquettes. In addition,
we applied the adaptive virtual gate to classical shadows to eliminate
possible errors arising from idle data qubits during the measurement
of the ancilla qubits. This flexibility is another advantage of using the

classical shadow as data for classical ML. Further details on this
method can be found in the Supplementary Note 3.

We prepared a dcode = 5 surface code and applied tensor products
of the random single qubit gates to generate data for the topologically
ordered phase. For the trivial phase, we prepared a random product
state and applied local random unitary at depth (dLU) from 0 to 5
(Fig. 4b). We obtained 20 data points from each phase using T = 300.
TheMLmodel was trained by following the same procedure as in Case
2-1. As shown in Fig. 4c, it was possible to distinguish the phases by
unsupervised learning when dLU = 0. The distribution of the trivial
phases spread out as the dLU increased, and the phase boundary faded
beyond dLU ~ (dcode− 1)/2 = 2. To verify that the observed phenomenon
originated froma robust topological property, wecarried out the same
experiments for a randomly sampled state with the same gate com-
plexity for preparing |0 L〉 but without any topological order. The
results indicated that a phase boundary does not exist, even when dLU
is small (Fig. 4d).

In comparison to previously studied direct measurements of the
topological order parameter, measuring topological string operators46

within error ε only required O(1/ε2) measurements; however, devia-
tions of the state from the fixed-point state degraded its classification
ability18. This could be avoided by evaluating the nonlinear properties
such as TEE47,48 but it would require more measurements than were
made in our case.
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used can be found in the Supplementary Note 5. c String order parameter (SOP)
(Sab= ZaXa+1Xa+3…Xb-3Xb-1Zb) of various lengths measured by direct measurements
on the quantum computer. The blue and orange dots correspond to the SPT and

trivial phases, respectively. The error bars represent the standard deviation of 300
SOPs. d Classification errors. The chart shows the classification error of the ML
model for caseswithℤ2⊗ℤ2, TRS, andwithout symmetry constraints. The error bars
represent the standard deviation from 10 instances. e, f 2D representation of the
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Discussion
Unlocking the black-box of the ML model
A drawback of ML-based analyses is the black-box nature of the ML
model, whichmakes it challenging to understand which aspects of the
data are utilized in these analyses. To address this issue, we conducted
experiments to extract relations among the data that were used by the
ML model. In experiment, we collected 10 data points each from both
the topologically ordered and trivial phases consisting of 9 qubits with
local randomunitary applied to a fixed-point state. Then, we used SVM
on the feature space formed by the feature map φ(ρ), which trans-
formed the input quantum state into a vector consisting of the sub-
system Renyi-2 entanglement entropy (Fig. 5a). ML in this case
corresponds to finding an optimal linear combination of subsystem
Renyi-2 entanglement entropy. Details of the mapping procedure and
a specific form of the ML classifier can be found in the Supplementary
Note 5. The evaluation of the trained ML model presented in Fig. 5b
was conducted using 100 datasets (each set consisted of 6000 states,
generated in the same way as the training data, but through classical
simulation).We observed that the phase classifier derived from theML
model distinguishes quantum phases more effectively than the pre-
viously used nonlinear order parameter of Renyi-2 TEE49. This result is
attributed to the intentional introduction of errors in training data, a
technique named as data augmentation50. Furthermore, a comparison

of the prediction error of the model with and without measurement
error mitigation (MEM) in the training data enabled us to confirm that
appropriate error mitigation techniques can help improve the ML
performance.

Our results highlight an interesting aspect, namely the use of
classical ML to process quantum experimental data with problem-
specific error-reducing procedures for studying quantum many-
body physics. Extensions of our work and interesting future direc-
tions can be outlined as follows. Rather than conducting the mea-
surements immediately after preparing the quantum state,
compressive quantum transformations preserving an important
feature of the state before measurements could lower the dimen-
sionality of the quantum state43, which could reduce the computa-
tional time for classical ML. Moreover, investigating the non-
equilibrium properties using ML based on data obtained from
dynamical simulations of quantum systems51 would be a promising
generalization of our work. Additionally, training theMLmodel with
experimental data obtained by applying various error mitigation
techniques or other methodology suitable for classical shadows
represents a promising avenue for further research52–63. Conse-
quently, we anticipate that future work based on our results would
continue to extend the useful applications of quantum devices
before fault-tolerant quantum computers.
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Fig. 4 | Experimental results for distinguishing between topologically ordered
and trivial phases. a Schematic diagram for measurement-assisted state pre-
paration method on the heavy-hexagonal lattice. The application of a sequence of
unitary transformations and adaptive gates depending on themeasurement results
of some ancilla qubits was followed by randomized measurements for classical
shadows. The blue shaded areas represent the X-plaquettes.bGenerationof data in

the trivial phase. States in this phase are generated by applying local random uni-
tary to the product state at varying circuit depth (dLU). Detailed information about
the local random unitary that was used is provided in the Supplementary Note 5.
c 1D projection of data. Using kernel principal component analysis with the shadow
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projection of data without topological order.
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Methods
Kernel ridge regression
To predict the properties of the ground state from the measured
expectation values, we utilized the classical ML algorithm, Kernel
Ridge Regression (KRR). KRR aims to estimate the value of a real-
valued function f(x) for a new input vector xnew using the given data
{(xi, f(xi))}i. Here, f(xnew) was approximated as fML(xnew;w) = wTφ(xnew)
by employing w, which minimizes the L2 loss with the regularization

CðwÞ= 1
2

PNdata
i= 1 jwTφðxiÞ � f ðxiÞj

2
+ 1

2 kwk22. As the feature vector φ(x)
typically resides in high-dimensional space, we used the kernel trick
instead of directly calculating the high dimensional feature vec-
tor φ(x).

Kernel principal component analysis
For reducing the dimensionality of data, we applied kernel principal
component analysis (PCA) to quantum states represented as classical
shadows, using the shadow kernel. PCA was implemented by defining
the covariance matrix C = 1

Ndata

PNdata
i= 1 φðxiÞφðxiÞT and by diagonalizing

C, which led to principal axes that could describe the data with the
minimumpossible number of variables. But,mapping an input vector x
into a large dimensional vector through the feature map
φ : x 2 Rm ! Rmφ , as in our case, would cause the direct diagonaliza-
tion of C to become computationally challenging. Using the kernel
trick as a workaround, by diagonalizing the kernelmatrix K, defined by
Kij = k(xi, xj) =φ(xi)Tφ(xj) for indices i, j ranging from 1 to Ndata, we can
derive the expression for principal axes instead of diagonalizing cov-
ariance matrix C. Using kernel PCA, we effectively reduced the
dimensionality of the data, which led to the clustering of data points
within the same quantum phase.

Error-reducing procedures
We utilized various methods to reduce the errors arising from the
data acquisition process in quantum computing. Both Dynamical
Decoupling (DD) and Pauli twirling (PT) were employed in all

experiments. Additional techniques such as particle number con-
servation, McWeeny purification, and parity measurement by
recompiling the circuit were used to train ML model for the 1D
nearest-neighbor random hopping system. In the task of distin-
guishing quantum phases, we were able to eliminate the swap gate
overhead induced by the hardware qubit connectivity through the
measurement-assisted state preparation method and reduce the
errors from idle data qubits by using the virtual (adaptive) gate on
the classical shadow. Furthermore, in the experiment that involved
extracting the ML classifier from the trained ML model, we utilized
measurement error mitigation, which improved the performance of
the trained MLmodel. Detailed explanations for each method can be
found in the Supplementary Note 3.

Classical simulation for ground states
The test data in Fig. 3g were obtained by using matrix product state
(MPS) representation and density matrix renormalization group
(DMRG) to compute the ground state of HCI = −J∑iZiXi+1Zi+2 − h1
∑iXi − h2∑iXiXi+1. In our simulation, we utilized a bond dimension of
X = 100 for a system of 44 qubits and employed a perfect sampling
method to enable the simulation of randomized measurements to
obtain the classical shadows of the prepared quantum state repre-
sented by MPS.

Hardware characteristics
We used the quantum hardware (ibm_sherbrooke) with 127 qubits
available through IBM Cloud. The backend is composed of fixed-
frequency transmon qubits where each qubit, embedded in a heavy-
hexagonal lattice, is directly connected with two or three other qubits.
Detailed device characteristics are summarized in the Supplemen-
tary Note 1.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.
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