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Abstract: In the present density functional theory (DFT) research, nine different molecules, each with
different combinations of A (triel) and E (divalent metal) elements, were reacted to effect methane
C–H activation. The compounds modeled herein incorporated the triels A = B, Al, or Ga and the
divalent metals E = Be, Mg, or Zn. The results show that changes in the divalent metal have a
much bigger impact on the thermodynamics and methane activation barriers than changes in the
triels. The activating molecules that contained beryllium were most likely to have the potential for
activating methane, as their free energies of reaction and free energy barriers were close to reasonable
experimental values (i.e., ∆G close to thermoneutral, ∆G‡ ~30 kcal/mol). In contrast, the molecules
that contained larger elements such as Zn and Ga had much higher ∆G‡. The addition of various
substituents to the A–E complexes did not seem to affect thermodynamics but had some effect on the
kinetics when substituted closer to the active site.
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1. Introduction

Carbon–hydrogen bond activation is a useful process in catalysis as light alkanes are abundant and
have considerable energy contained within their C–H bonds. Much effort is invested into researching
this reaction in order to convert light alkanes, like methane, to higher-value products for industrial
uses [1,2]. There are many well-known challenges to C–H activation, however, as these light alkanes
prove to be highly inert and thermodynamically stable [3]. Because of this, computational methods
can be very useful in being able to quickly identify novel systems that show promise in being able to
activate methane, and which may then be worthy of experimental trials.

For the activation of aliphatic C–H bonds, there are several different types of mechanisms via
which the reaction may proceed. Conceptually, there are three ways a C–H bond may be cleaved:
homolytically (H3C•/H•) or through two heterolytic partitionings, proton (H3C−/H+) and hydride
(H3C+/H−) abstraction. The present research was motivated by the potential to achieve hydric methane
activation (H4C→H3C+ + H−) as compared to a more common deprotonation (H4C→H3C− + H+)
mechanism [4]. For methane, proton abstraction is ~100 kcal/mol (gas; ~50 kcal/mol in a polar aprotic
solvent) thermodynamically easier than hydride abstraction as determined by high-accuracy ab initio
techniques like G3B3. Hence, we sought to identify potential methane activators other than those with
the typical electropositive metal–electronegative actor ligand motif [4].

Much research, both experimental and computational, was conducted and it was found that
breaking C–H bonds can be achieved using complexes containing transition metals [5–7] (with
many studies of Earth-abundant metal catalysts having focused on the 3d metal complexes) [8–10].
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However, some research was done with metal-free catalysts, typically employing frustrated Lewis
pair concepts [11,12]. Catalysts containing boron bonded with various other metals including Group
12 elements [13], Be [14], Mg [15], and 3d metals (Cu and Zn) [16] are known in the literature.
The aforementioned literature precedents sparked an interest in searching for novel systems that
could activate methane. For these purposes, experimentally characterized complexes that contained
+2/divalent–+3/trivalent element bonds were considered. Structures reported in the Cambridge
Structural Database (CSD) [17] led us to consider compounds for this study that involve bonds between
Group 2 (E = alkaline earth metals or the related Group 12, Zn-triad) and Group 13 (A = triels).

For this study, known, structurally characterized model complexes were used as a starting point
for the general complexes studied herein (Figure 1). These experimentally known complexes have low
coordination numbers at the metal or have typically weakly bound ligands such as tetrahydrofuran
(THF), which can be more readily displaced by an alkane substrate. The A–E bond was kept intact,
and the substituent on the N was modeled as a methyl group in order that effects of metal/ligand
modification be more dominated by electronic than steric factors. The model structure used in this
study can be seen in Figure 2.
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Figure 2. A–E model complexes studied in this research, which were inspired by experimentally 
characterized complexes. [13–15,18,19] E = Be, Mg, Zn; A = B, Al, Ga; Me = methyl. 
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2. Results and Discussion

The reactants modeled in this study to activate methane were inspired by existing complexes that
contain an A–E–A bonding motif (A being a triel and E being a divalent metal) [13–15,18,19] (Figure 2).
The following elements were studied in this research: E = Be, Mg, Zn; A = B, Al, Ga. The optimized
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A–E bond lengths between the different combinations of A and E can be found in Table 1. In all cases
studied, both A–E bonds were identical in length to within 0.01 Å. As noted above, many of the
target complexes are two-coordinate with two triel-based ligands coordinated to the central divalent
metal. However, some are higher coordination, e.g., the MgB complex, which has two additional THFs
ligated to magnesium. We calculated the binding free energy of this solvent molecule (THF) to the MgB
complex. It was found that THF is weakly bound to the divalent metal (∆Gbinding ~ + 0.7 − 1.2 kcal/mol),
suggesting that the energetic expense for methane to displace the solvent molecule on solution would not be
too inordinate.

Table 1. B3LYP/6-311++G(d,p) computed A–E bond lengths (Å).

E-A Combination Optimized Bond Length (Å)

Be–B 1.84
Be–Al 2.28
Be–Ga 2.17
Mg–B 2.26
Mg–Al 2.67
Mg–Ga 2.56
Zn–B 2.07
Zn–Al 2.47
Zn–Ga 2.39

2.1. Thermodynamics of 1,2 and 2,1 C–H Methane Addition

When reacting the A–E bond of the studied complexes (Figure 2) with the C–H bond of methane,
the reaction may occur with two regiochemistries. The first is 1,2 addition, where the divalent E
(Group 2 or 12) binds to the methyl and the triel A binds to the hydrogen. The 2,1 addition is the
opposite regiochemistry, whereby the E binds to the hydrogen and the A binds to the methyl group.
The visualization of these two reactions can be seen in Figure 3.
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Figure 3. The two regiochemistries studied for activating a methane C–H bond using the A–E bond of
the model reactant complexes.

The free energies for both methane activation regiochemistries were calculated and compared to
see which reaction is more favorable and, thus, is a more likely mechanism from a thermodynamic
perspective. In Figure 4, the calculated free energies are plotted for all methane activation reactions
for each A/E combination modeled. The formation of 1,2 methane addition products proved to be
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more thermodynamically favorable than the formation of products of the 2,1 reaction for the beryllium
complexes. Interestingly, with the heavier divalent (E = Group 2/12) metals—Mg and Zn—it can be seen
that the difference between the calculated free energies of 1,2 and 2,1 methane addition to A–E is very
small. The average difference between the 1,2 and 2,1 addition for all nine A/E combinations modeled
was −2.2 kcal/mol, indicating that 1,2 addition is typically only slightly lower in free energy than the
2,1 regiochemistry. However, the average difference in ∆G for 1,2 and 2,1 methane C–H addition
for the three beryllium molecules was −6.6 kcal/mol. Hence, from a thermodynamic perspective,
beryllium compounds more clearly favor 1,2 vs. 2,1 methane addition in comparison to the heavier
divalent metals.
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Figure 4. Calculated free energies (in kcal/mol) for both 1,2 (blue) and 2,1 (orange) methane C–H
activation regiochemistries for all A–E combinations studied herein.

Focusing on the impact of triels upon methane activation thermodynamics for both 1,2 and 2,1
addition, an interesting trend can be seen; for a given divalent metal, as the metal changes from
boron to aluminum to gallium, ∆G becomes more endergonic in all cases (Figure 4). Therefore, for the
complexes studied, from a thermodynamic perspective, boron would be the most favorable for methane
activation while gallium would be the least favorable. It can also be seen from Figure 4 that methane
activation by the complexes containing boron are exergonic; the calculated Gibbs free energies for
both the 1,2 and the 2,1 additions of methane for boron complexes with Be, Mg, and Zn ranged from
−8.8 (1,2 addition to the BeB complex) to −1.8 (1,2 addition to the ZnB complex) kcal/mol. The only
other exergonic reaction with methane for complexes without boron was with the 1,2 addition to the
BeAl compound which had a computed ∆G = −4.1 kcal/mol. In contrast to boron, all the molecules
containing the heavier triel gallium were endergonic in their reactions with methane, with ∆G values
ranging from 5.7 (1,2 addition to BeGa) to 22.8 (2,1 addition to MgGa) kcal/mol (Figure 4), averaging
∆G ~ 17 ± 7 kcal/mol for the three gallium complexes studied.

2.2. Bond Dissociation Free Energies for BeAl Complex

The molecule that yielded the most exergonic reaction (see Figure 4) and lowest free energy
barrier (vide infra) for methane activation, the BeAl complex (28.9 kcal/mol), was analyzed further,
and the relevant bond dissociation free energies for the reactants and the products for both 1,2 and
2,1 addition were compared. The data from Table 2 show that, for both regiochemistries—1,2 and 2,1
addition—the bond containing Be is much stronger and more exergonic than the bond containing
Al for the methyl and hydride ligands. This is consistent with Be complexes being generally more
thermodynamically favorable for the activation of light alkane C–H bonds than their heavier divalent
counterparts. Furthermore, the data in Table 2 are consistent with the observation that the divalent
metals (E) impact the reaction more significantly than do the triels (A). Finally, the data suggest that it
is the strength of the Be–H/Me bonds that are formed that determines the favorable thermodynamics
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of the methane activation reaction. In the next section, we assess if these thermodynamic factors result
in a kinetic advantage to beryllium compounds.

Table 2. B3LYP/6-311++G(d,p)-calculated bond dissociation free energies (BDFE) for Be and Al products.

Type of Addition by Methane Bond of Interest BDFE (kcal/mol)

1,2 Be–Me −81.5
Al–H −65.6

2,1 Be–H −84.1
Al–Me −55.5

2.3. Transistion States for Methane Activation

Table 3 lists the calculated free energy barriers of the 1,2 methane activation reactions. The 2,1
addition transition states for methane activation were unstable (optimized to reactants, products, or
previously found transition states) and, when constrained in geometry, were much higher in free
energy than the isomeric 1,2 transition states. Looking at the trends in ∆G‡ for the different triels,
gallium complexes had the highest methane activation free energy barriers as compared to their boron
and aluminum counterparts, in all cases, except for the BeGa complex, where the boron counterpart
(BeB) was higher in energy. The free energy barriers for methane activation by gallium complexes
ranged from 33.2 to 58.1 kcal/mol with an average of 46.5 kcal/mol, this value being 2.8 kcal/mol higher
than the average for activating complexes that contain boron or aluminum as the triel. Similar to the
free energies of reaction, boron was more favorable than the aluminum congener, having a lower
methane activation free energy barrier in all cases except for BeAl. Plotting the computed ∆G versus
∆G‡ showed no obvious linear correlation (see Supplementary Materials). Among the complexes
studied in this research, the BeAl complex had the lowest computed methane C–H activation barrier,
∆G‡ = 28.9 kcal/mol, versus separated reactants.

Table 3. B3LYP/6-311++G(d,p) calculated free energy barriers of methane 1,2 addition.

E/A Elements ∆G‡ (kcal/mol)

Be–B 35.1
Be–Al 28.9
Be–Ga 33.2
Mg–B 41.2
Mg–Al 47.2
Mg–Ga 48.2
Zn–B 53.8
Zn–Al 55.9
Zn–Ga 58.1

Comparing the trends in ∆G‡ (Table 3 and Figure 5) indicates a bigger impact from changing
the divalent metal (E) versus changing the triel (A). Figure 5 shows the average free energy barriers
for methane activation as a function of the divalent metal for the three different triels (B, Al, Ga).
The differences are significant as the calculated average ∆G‡ ranged from 32.4 (average ∆G‡ of the
Be complexes) to 55.9 kcal/mol (average ∆G‡ of the Zn complexes) (see blue columns in Figure 5).
Methane activation barriers for beryllium-containing complexes were, thus, significantly lower than
those computed for the magnesium and zinc complexes by an average of ~ 15–20 kcal/mol. In contrast,
as discussed above, the average ∆G‡ for changing the triel metal for a given divalent only ranged
from 43.4 (average ∆G‡ of B complexes) to 46.5 (average ∆G‡ of Ga complexes) kcal/mol (see orange
columns in Figure 5). Taken together, the present results suggest that beryllium complexes appear to
be the most promising in terms of complexes that may activate methane and other light alkanes with
strong, aliphatic C–H bonds.
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2.4. Reaction Coordinates for Methane Activation

The reaction coordinates for the Be complexes are discussed in detail in this section as these
had, from a computational perspective, the most attractive barriers and reaction free energies for
methane activation. A similar discussion of the results for Mg and Zn complexes is collected in the
Supplementary Materials.

2.4.1. BeB Activating Complex

For the activating complex containing Be and B, the geometries of the inorganic reactants and
products can be seen in Figure 6. The Gibbs free energies for the 1,2 and 2,1 addition of methane
were −8.8 and −5.2 kcal/mol, respectively. From this, it was predicted that the 1,2 reaction is the more
thermodynamically favorable process to activate methane than 2,1 addition, as noted above, although
both reactions are exergonic.
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The free energy barrier for the 1,2 addition of methane to the Be–B bond of the complex was 35.1
kcal/mol. Figure 7 shows the computed free energy diagram for the 1,2 addition of methane to the BeB
compound. Table 4 also shows specific bond lengths for all of the Be–A molecules. For the Be–B bond
in the ground state (GS), the 1,2 addition TS (transition state), and 1,2 addition products, the bond
did not differ significantly. The C–H bond of the methane that broke was 1.45 Å in the TS, which was
0.36 Å (~32%) longer than in its ground state. For the Be–B activating complex, the C–H bond had the
lowest percentage difference from GS to TS as compared to Be–Al and Be–Ga. The bond that formed
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between the methyl C and the Be in the TS was 1.92 Å, which was 0.24 Å (~12%) longer than in the
final product. The bond that formed between the H from the methane and the B was 1.64 Å in the
transition state, which was 0.45 Å (~28%) longer than this bond in the final product.
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Table 4. Bond comparison for all the Be–A complexes. GS—ground state; TS—transition state.

BeB BeAl BeGa

A–Be Bond GS 1.85 2.28 2.17
TS 1.85 2.23 2.16

Product 1.85 2.29 2.19
TS–GS% Diff 0.2 2.3 0.7

TS–Product% Diff 0.1 2.3 1.5
C–H Bond GS 1.09 1.09 1.09

TS 1.45 1.50 1.57
%Diff 32.4 37.2 43.7

C–Be Bond TS 1.92 1.87 1.84
Product 1.68 1.67 1.67
%Diff 12.3 10.3 9.0

A–H Bond TS 1.64 2.08 1.94
Product 1.19 1.57 1.53
%Diff 27.5 24.8 21.0

2.4.2. BeAl Activating Complex

For the activating complex containing Be and Al, the geometries of the products of methane
activation are depicted in Figure 8. The Gibbs free energy for the 1,2 and 2,1 addition of a methane
C–H bond to the Be–Al bond of the complex was −4.1 and 3.5 kcal/mol, respectively. Hence, the
1,2 activation regiochemistry was more thermodynamically favorable. The ~7 kcal/mol difference in
the 1,2 and 2,1 methane addition free energies is commensurate with those computed for the BeB
activating complex discussed in Section 2.4.1. The reactions of the BeAl complex were ~ 4–7 kcal/mol
more endergonic than the corresponding reactions for BeB.
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The free energy barrier for the 1,2 addition of methane to the BeAl complex was 28.9 kcal/mol,
which was the lowest free energy barrier for methane activation among all of the complexes studied in
this research (Figure 9). Table 4 also displays specific BeAl bond lengths as they changed from the GS
reactants to TS to the product. The Be–Al bond length did not vary as the 1,2 reaction moved from
reactants to the TS and from the TS to the products (~2% difference in bond lengths for both cases).
The C–H bond of the methane in the TS was 1.50 Å, which was 0.41 Å (~37%) longer than in its GS.
The bond that formed between the methyl C and the Be in the TS was 1.87 Å, which was 0.19 Å (~10%)
longer than in the final product. The bond that formed between the H and Al was 2.08 Å in the TS,
which was 0.51 Å (~25%) longer than the same bond in the final product.
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2.4.3. BeGa Activating Complex

For the activating complex containing Be and Ga, the geometries of the inorganic reaction products
can be seen in Figure 10. The Gibbs free energies for the 1,2 and 2,1 addition of methane were 5.7 and
14.5 kcal/mol, respectively, which was the greatest difference in computed thermodynamics among the
A/E combinations studied in this research. Both methane activation reactions were endergonic, which
is consistent with other gallium-containing compounds (see Figure 4).
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The energy barrier for the 1,2 addition of methane to the Be–Ga bond of the BeGa complex was
33.2 kcal/mol and, thus, 4.3 kcal/mol higher than the barrier computed for the BeAl congener. Figure 11
shows the computed free energy profile for the 1,2 addition of methane to the BeGa compound.
Interestingly, although the reaction was ~10 kcal/mol more endergonic for the BeGa complex versus the
BeAl analogue, the increase in ∆G‡ was less than half this amount. As noted above, there is no obvious
correlation between computed thermodynamics and barriers to methane in the studied complexes.
Table 4 also shows specific bond lengths for the Be–Ga molecule. The Be–Ga bond length did not vary
as much as the Be–Al complex as the 1,2 reaction moved from reactants to the TS and from the TS to
the products (~1% difference in bond lengths for both cases). The C–H bond of the methane that broke
was 1.57 Å, which was 0.48 Å (~43%) longer than in its ground state, and ~0.1 Å longer than computed
for the BeB and BeAl TSs. The bond that formed between the methyl C and the Be in the TS was 1.84 Å,
which was 0.17 Å (~9%) longer than in the final product. The bond that formed between the H from
the methane and the Ga was 1.94 Å in the transition state, which was 0.41 Å (~21%) longer than the
same bond in the final product.
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2.5. Calcium–Aluminum Complex

Calcium was also considered for an additional comparison. Given that aluminum as the trivalent
showed the most promise for activating methane, the calcium complex was paired with aluminum and



Molecules 2020, 25, 2794 10 of 15

compared to the other compounds that contained Group 2 metals with aluminum as the triel (BeAl
and MgAl). Table 5 shows the results and provides a comparison among the complexes.

Table 5. Comparison of Group 2 complexes (Be, Mg, and Ca) with aluminum.

Complex 1,2 ∆G (kcal/mol) 2,1 ∆G (kcal/mol) TS 1,2 ∆G‡ (kcal/mol)

BeAl −4.1 −3.5 28.9
MgAl 12.6 11.8 47.2
CaAl 14.9 14.0 33.7

The reaction free energies for both the 1,2 and the 2,1 methane addition seemed to be in line
with the larger Group 2 metal used, i.e., the reaction was increasingly more endergonic. Interestingly,
the calcium complex’s free energy barrier for methane activation was closer to the BeAl complex, being
only 4.8 kcal/mol higher, and significantly lower than the barrier for the MgAl complex, by about
13.5 kcal/mol. As such, calcium complexes with the A–E–A motif would appear to be additional
systems worthy of experimental scrutiny.

2.6. The Impact of Triel Ring Substituents

The complex that yielded the lowest computed free energy barrier for methane activation, the BeAl
complex (∆G‡ = 28.9 kcal/mol), was taken, and various groups (R) of differing electron-withdrawing
and -donating abilities were substituted on the triel-containing ring to assess how the free energy
barriers changed. The hydrogen that was substituted is highlighted in Figure 12. The R groups
modeled in this research were methyl, fluoro, chloro, cyano, hydroxy, and phenyl groups. These groups
were introduced to the same site of the complex and their Gibbs free energy and free energy barriers
were compared.

Molecules 2020, 25, x FOR PEER REVIEW 10 of 15 

 

Calcium was also considered for an additional comparison. Given that aluminum as the trivalent 
showed the most promise for activating methane, the calcium complex was paired with aluminum 
and compared to the other compounds that contained Group 2 metals with aluminum as the triel 
(BeAl and MgAl). Table 5 shows the results and provides a comparison among the complexes. 

Table 5. Comparison of Group 2 complexes (Be, Mg, and Ca) with aluminum. 

Complex 1,2 ΔG (kcal/mol) 2,1 ΔG (kcal/mol) TS 1,2 ΔG‡ (kcal/mol) 

BeAl −4.1 −3.5 28.9 

MgAl 12.6 11.8 47.2 

CaAl 14.9 14.0 33.7 

The reaction free energies for both the 1,2 and the 2,1 methane addition seemed to be in line with 
the larger Group 2 metal used, i.e., the reaction was increasingly more endergonic. Interestingly, the 
calcium complex’s free energy barrier for methane activation was closer to the BeAl complex, being 
only 4.8 kcal/mol higher, and significantly lower than the barrier for the MgAl complex, by about 13.5 
kcal/mol. As such, calcium complexes with the A–E–A motif would appear to be additional systems 
worthy of experimental scrutiny. 

2.6. The Impact of Triel Ring Substituents 

The complex that yielded the lowest computed free energy barrier for methane activation, the 
BeAl complex (ΔG‡ = 28.9 kcal/mol), was taken, and various groups (R) of differing electron-
withdrawing and -donating abilities were substituted on the triel-containing ring to assess how the 
free energy barriers changed. The hydrogen that was substituted is highlighted in Figure 12. The R 
groups modeled in this research were methyl, fluoro, chloro, cyano, hydroxy, and phenyl groups. 
These groups were introduced to the same site of the complex and their Gibbs free energy and free 
energy barriers were compared. 

 
Figure 12. BeAl activating complex and the location of the backbone H (highlighted in yellow) for 
which R groups (R = methyl, fluoro, chloro, cyano, hydroxy, and phenyl) are substituted. 

From the calculated free energy barriers (Table 6), it can be seen that a single substituent on the 
carbon backbone had little effect on the reaction’s free energy, as well as the free energy barrier. All 
of the free energies of reaction for 1,2 addition became more endergonic with every substituent used 
compared to no substitution (H). In contrast to that, most of the substituents for the 2,1 addition 
became slightly more exergonic aside from the fluoro (no change) and hydroxy (increased by 1.1 
kcal/mol) substituents. Looking at the energy barrier, the substituent making the most difference was 
the cyano substituent which was lower in energy by ~1.5 kcal/mol than no substituent (H). Cyano 
proved to marginally be the best substituent as both free energies were exergonic with the lowest 
energy barrier. However, the present results suggest that the backbone R groups do not have a 
profound impact on the energy of reaction or on the free energy barrier for the activation of methane 
to the Be–Al bond of this complex. 

Figure 12. BeAl activating complex and the location of the backbone H (highlighted in yellow) for
which R groups (R = methyl, fluoro, chloro, cyano, hydroxy, and phenyl) are substituted.

From the calculated free energy barriers (Table 6), it can be seen that a single substituent on the
carbon backbone had little effect on the reaction’s free energy, as well as the free energy barrier. All of
the free energies of reaction for 1,2 addition became more endergonic with every substituent used
compared to no substitution (H). In contrast to that, most of the substituents for the 2,1 addition became
slightly more exergonic aside from the fluoro (no change) and hydroxy (increased by 1.1 kcal/mol)
substituents. Looking at the energy barrier, the substituent making the most difference was the cyano
substituent which was lower in energy by ~1.5 kcal/mol than no substituent (H). Cyano proved to
marginally be the best substituent as both free energies were exergonic with the lowest energy barrier.
However, the present results suggest that the backbone R groups do not have a profound impact on
the energy of reaction or on the free energy barrier for the activation of methane to the Be–Al bond of
this complex.
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Table 6. Calculated Gibbs free energy and free energy barriers for 1,2 addition of methane to BeAl
activating complex with various substituents on the triel ring.

Substituent 1,2 ∆G (kcal/mol) 2,1 ∆G (kcal/mol) TS 1,2 ∆G‡
(kcal/mol)

–H (no sub) −4.1 3.5 29.0
–methyl −3.7 2.1 29.0
–F −3.3 3.5 29.3
–Cl −3.5 2.2 28.3
–CN −3.6 −0.7 27.6
–OH −2.0 4.6 29.6
–phenyl −1.5 2.0 28.3
Average −3.1 2.5 28.7
SD 1.0 1.7 0.7

2.7. Impact of Nitrogen Substitution

Since the changes in substituent on the carbon backbone seemed to have little to no effect,
substituents were substituted in place of the methyl groups bonded to the nitrogen of the supporting
ligand. To maintain overlap, R groups modeled here were hydrogen, fluoro, chloro, cyano, hydroxy,
and phenyl (Table 7). Although slight, it does appear that changes for the substituent on the nitrogen
had a bigger impact than substituents on the backbone carbons for energy barriers. Most of the
free energies of reaction for the 1,2 addition of methane for the various substituents became more
endergonic aside from the hydrogen substituent, which was 0.6 kcal/mol more exergonic. In contrast
to that and similar to the carbon backbone substituent trends, most of the substituents for the 2,1
addition became slightly more exergonic aside from hydroxy (no change). As for the energy barriers,
two substituents had a major impact; the hydroxy and phenyl groups decreased the energy barrier
from no substitution (methyl group) by 3.2 kcal/mol and 6.2 kcal/mol, respectively. The transition state
for the cyano group did not converge; thus, it was omitted from Table 7. It does appear that alteration
of the substituent on N rather than on the backbone carbon of the supporting ligand had a greater
impact on the free energy barriers of methane activation. As such, the latter would appear to be a more
profitable avenue for experimental exploration.

Table 7. Calculated reaction free energies and free energy barriers for nitrogen substituents on the
BeAl complex.

Substituent 1,2 ∆G (kcal/mol) 2,1 ∆G (kcal/mol) TS 1,2 ∆G‡
(kcal/mol)

–methyl (no sub) −4.1 3.5 29.0
–H −4.7 3.0 29.5
–F −2.6 2.3 28.6
–Cl −2.4 2.7 28.2
–OH −2.6 3.5 25.8
–phenyl −2.5 2.7 22.8
Average −3.1 2.4 27.3
SD 1.0 0.5 2.6

2.8. 1,3,5-Cycloheptatriene as a Substrate

The BeAl complex was reacted with 1,3,5 cycloheptatriene to compare the free energy change,
as well as the free energy barrier differences, in relation to methane. Our initial hypothesis was
that there might be more hydridic (less protic) character to activation by these divalent metal–triel
complexes versus prototypical transition metal–element active sites. Abstracting a hydride from 1,3,5
cycloheptatriene yields the aromatic tropylium cation. As such, 1,3,5 cycloheptatriene is relatively
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hydridic for a neutral hydrocarbon, and one might expect it to be a suitable surrogate substrate for
experimental studies.

From the calculated free energy of reaction (Table 8), methane activation was about 1.1 kcal/mol
more endergonic than activation of 1,3,5 cycloheptatriene. However, the methane substrate had a
1,2-addition barrier that was almost double that of the 1,3,5-cycloheptatriene activation. This shows
that 1,3,5-cycloheptatriene is significantly more favorable as a substrate versus methane. The computed
barrier was far less than the ca. 30 kcal/mol difference [20] in the homolytic C–H bond strengths of
the hydrocarbon. While optimized 1,3,5-cylcoheptatriene and the 1,3,5-cycloheptatrienyl fragment
in the TS with BeAl had similar CCCC dihedrals and similar CC bond lengths, the much lower C–H
activation barrier for 1,3,5-cycloheptatriene compared to methane implies that perhaps there is some
modest hydridic character to the activated H in the transition state.

Table 8. Comparison of 1,3,5-cycloheptatriene with methane activation reaction free energy and free
energy barrier reacted with the BeAl complex for 1,2 addition.

Substrate ∆G (kcal/mol) ∆G‡ (kcal/mol)

1,3,5-Cycloheptatriene −5.2 14.8
Methane −4.1 28.9

3. Computational Methods

The B3LYP/6-311++G(d,p) [21] level of theory was used to calculate the optimization and frequency
of all the given molecules in the gas phase at standard temperature (298.15 K) and pressure (1 atm) using
the Gaussian 16 software package [22]. All of the complexes were modeled as neutral with appropriate
spin multiplicities; the lowest spin state structure was found, and all energies are reported in kcal/mol.
All calculations yielded minima that were defined by having zero imaginary vibrational frequencies,
while transition states yielded one imaginary vibrational frequency, which was related to the movement
of the hydrogen from the methane substrate to the activating complex of interest. For comparison,
the wavefunction method MP2 [23], and the M06 [24] and wB97XD [25] functionals were also used for
the most promising system identified (a BeAl complex) in this study with the same basis set employed
for B3LYP calculations, 6-311++G(d,p) to consider dispersion corrections. Others reported that the
neglect of dispersion corrections could potentially give errors up to 40 kcal/mol of difference for
energies [26]. Thus, empirical dispersion corrections were calculated using the GD3 [27] methodology.

However, for the present systems, the various methods tested did not significantly differ from
the B3LYP data for both the reaction free energies and the free energy barriers. With this same suite
of methods, as well as with B3LYP, solvent effects were also calculated using the SMD formalism
(THF was chosen as a prototypical solvent of intermediate polarity) for the most promising complex in
this study, a BeAl complex. All comparisons of functionals and calculations employing solvent effect
modeling can be found in the Supplementary Materials.

4. Conclusions

In the present research, nine different molecules (Figure 2), each with different combinations of A
(triel) and E (divalent metal) elements, were reacted with methane to see if the computed ∆G and ∆G‡

would be reasonable enough (i.e., ∆G close to thermoneutral, ∆G‡ ~30 kcal/mol) to warrant further
investigation. The triels (A) modeled herein were B, Al, or Ga, while the E divalent metals were Be,
Mg, or Zn.

Among the divalent metals, the activating complexes that contained Be had the lowest calculated
free energy barriers for methane activation with a range of ∆G‡ = 28.9–35.1 kcal/mol. This suggests
that molecules containing beryllium are more likely to activate hydrocarbons than those containing
magnesium or zinc, although hydrocarbons whose Csp3–H bonds are more reactive/weaker than
methane seem the most plausible substrates. Furthermore, among the divalent metals studied,
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Be complexes also had the lowest calculated reaction free energies with a range of ∆G = −8.8 to
+5.7 kcal/mol for the 1,2-addition reaction with methane. It is further notable that these reactions are
not inordinately exergonic, which is often computed for more traditional d-block metal–2p element
active sites [28]. Such a thermodynamic situation should facilitate subsequent functionalization and
catalyst regeneration steps within a catalytic cycle for alkane functionalization. Thus, taken together,
the data indicate that beryllium is the most promising candidate for novel complexes to successfully
activate a light alkane such as methane.

The average free energy of 1,2 methane C–H addition was ∆G = 5.9 kcal/mol and the average free
energy of the 2,1 addition was ∆G = 8.1 kcal/mol. From these averages it can be seen that the computed
difference between the 1,2 addition and 2,1 addition mechanisms is only 2.2 kcal/mol. But Figure 4
indicates that there was a large difference between the two reaction pathways with the molecules that
contain Be. The average free energy of the 1,2 addition pathway for molecules that contain Be was
∆G = −2.4 kcal/mol, while the average free energy of the 2,1 methane addition pathway for these
same molecules was ∆G = 4.2 kcal/mol, which is a difference of 6.6 kcal/mol, which further shows that
beryllium is the most promising divalent metal from among those studied.

Previous DFT studies indicated that, for methane activation through a transition metal catalyst,
calculations showed that the system had ∆G of ~ 5–10 kcal/mol and ∆G‡ of ~ 20–32 kcal/mol [4,29,30].
Compared to the systems studied herein, the beryllium complexes seem to fit within these ranges
(although some systems are exothermic), suggesting that these systems may be experimentally viable.

Adding a substituent to the carbon backbone of the ring (Figure 2) did not affect the free energies
and energy barrier significantly. For the substituents studied, the free energies of reaction stayed
within 2.6 kcal/mol and within 4.2 kcal/mol compared to the non-substituted 1,2 and 2,1 reaction,
respectively. The lack of substituent impact on the carbon backbone in the ring might be due to its
placement being two bonds away from the active site, as well as a lack of significant inductive or
resonance interactions. Substituents on the nitrogen, however, had a bigger impact on the kinetics than
substitutions to the carbon backbone (Table 7) as computed for the hydroxy (∆G‡ = 25.8 kcal/mol) and
phenyl (∆G‡ = 22.8 kcal/mol) substituents. These substituents on the nitrogen probably had a bigger
effect on the kinetics than on the carbon backbone, likely due to being closer to the active site.

Perhaps more importantly, the present computational results indicate that changes in the
thermodynamics and kinetics of 1,2 addition of a methane C–H bond to an A–E bond are more
sensitive to changes in the divalent metal (E) than changes to the triel (A). Larger metals in the
activating complexes such as Ga and Zn generally had very high ∆G‡ and, thus, showed less promise
for activating light alkane C–H bonds, as they also were mostly endothermic in their reactions with
methane. Additionally, the average free energy barrier for methane activation for the different divalent
metals studied ranged from 32.4 to 55.9 kcal/mol (ca. 23.5 kcal/mol range), while the free energy barrier
for methane activation ranged from only 43.4 to 46.5 kcal/mol (ca. 3 kcal/mol range) (Figure 5) for the
different triels modeled. The range of the energy barrier is much wider for the divalents, suggesting
modifications to these metals as being the most profitable avenue for future research.

Supplementary Materials: The following are available online, Figure S1: Plot of ∆G vs ∆G‡ for the 1,2 addition
for all of the studied combinations, Figure S2: DFT-optimized geometries, Figure S3: DFT-optimized geometries,
Figure S4: Reaction diagram for the 1,2 addition of methane to the MgB complex, Figure S5: DFT-optimized
geometries of the products of 1,2, Figure S6: DFT-optimized geometries of the products of 2,1, Figure S7: Reaction
diagram for the 1,2 addition of methane to the MgAl complex, Figure S8: DFT-optimized geometries of the
products of 1,2 addition of methane to the MgGa complex, Figure S9: DFT-optimized geometries of the products
of 2,1 addition of methane to the MgGa complex, Figure S10: Reaction diagram, Figure S11: DFT-optimized
geometries of the products of 1,2 addition of methane to the ZnB complex, Figure S12: DFT-optimized geometries
of the products of 2,1 addition of methane to the ZnB complex, Figure S13: Reaction diagram for the 1,2 addition
of methane to the ZnB complex, Figure S14: DFT-optimized geometries of the products of 1,2 addition of methane
to the ZnAl complex, Figure S15: DFT-optimized geometries of the products of 2,1 addition of methane to
the ZnAl complex, Figure S16: Reaction diagram for the 1,2 addition of methane to the ZnAl complex, Figure
S17: DFT-optimized geometries of the products of 1,2 addition of methane to the ZnGa complex, Figure S18:
DFT-optimized geometries of the products of 2,1 addition of methane to the ZnGa complex, Figure S19: Reaction
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diagram for the 1,2 addition of methane to the ZnGa complex, Table S1: Comparisons of Functionals for BeAl
molecule, Table S2: Comparisons of solvent effects (THF) for BeAl molecule with different functionals.
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