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Abstract: Monitoring driver attention using the gaze estimation is a typical approach used on road
scenes. This indicator is of great importance for safe driving, specially on Level 3 and Level 4
automation systems, where the take over request control strategy could be based on the driver’s
gaze estimation. Nowadays, gaze estimation techniques used in the state-of-the-art are intrusive
and costly, and these two aspects are limiting the usage of these techniques on real vehicles. To test
this kind of application, there are some databases focused on critical situations in simulation, but
they do not show real accidents because of the complexity and the danger to record them. Within
this context, this paper presents a low-cost and non-intrusive camera-based gaze mapping system
integrating the open-source state-of-the-art OpenFace 2.0 Toolkit to visualize the driver focalization on
a database composed of recorded real traffic scenes through a heat map using NARMAX (Nonlinear
AutoRegressive Moving Average model with eXogenous inputs) to establish the correspondence
between the OpenFace 2.0 parameters and the screen region the user is looking at. This proposal
is an improvement of our previous work, which was based on a linear approximation using a
projection matrix. The proposal has been validated using the recent and challenging public database
DADA2000, which has 2000 video sequences with annotated driving scenarios based on real accidents.
We compare our proposal with our previous one and with an expensive desktop-mounted eye-tracker,
obtaining on par results. We proved that this method can be used to record driver attention databases.

Keywords: driver focalization; accidental scenarios; gaze estimation; heat map; computer vision;
NARMAX

1. Introduction

In recent years, there have been important advances in the intelligent vehicles field
with the implementation of the autonomous driving as one of the most challenging and
difficult tasks on this research field, from an academic and industrial point of view. This
automation can be divided into five Levels according to SAE (J3016) [4], achieving full
autonomy at Level 5. On the latest vehicle models, we have different Advanced Driver
Assistance Systems (ADAS) that are in charge of different driving tasks that so far have
been done by the driver. In the first two levels of automation, the driver must be fully
engaged during the driving, supervising the vehicle and the actions done by it, under all
circumstances. In the next two levels (3 and 4), the driver may be not on the driving
loop in some situations or during the entire path if the vehicle is able to drive in all the
circumstances that could happen on the route. Level 5 does not present any problem
because the vehicle is able to drive under all circumstances without human intervention. It
is on the above levels where the problems arise, because the driver must be on the loop, but
is not aware of the entire surrounding area (Level 1 and 2) or is out of the loop and needs
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to take over control for some unexpected reasons (Level 3 and 4), bringing back them into
the loop [5].

In this future driving world, where shared control between human and machine will
be present, ascertaining that the state of driver is suitable for driving will be a key task for
safety driving reasons. Specially, when the vehicle requests driver assistance in a complex
scenario where it is not able to handle it because of any issue. In these scenarios where
the vehicle requests human help, it is crucial to ascertain that the driver is aware of their
surroundings (e.g., surrounding pedestrians or vehicles) just before the take over request
to perform a safety transition. For this reason, the driver’s visual focalization must be
evaluated to ensure that awareness of their surroundings, and it must be a key task in the
development of automated vehicles. For this evaluation, gaze tracking estimation is the
most used approach to evaluate driver’s visual focalization [6].

There are different approaches in the literature about how gaze tracking should be
done, mainly based on head-mounted eye trackers [7–9], active desktop-mounted eye
trackers [10] and passive desktop-mounted cameras [6,11–14], which track the gaze. The
first ones provide accurate gaze information, but they are intrusive and costly. The latter
are low-cost and non-intrusive, but less accurate.

In work [15], the authors made a review of the different methods of eye tracking and
gaze tracking, which are two different areas of research. However, as the main contribution
of this paper is to present gaze tracking, we will focus on this part. Gaze tracking systems
based on cameras use two different approaches: model-based techniques and regression-
based methods. The former ones use a geometric model of the eye to calculate the gaze
direction. Gaze focalization is obtained by the intersection of the gaze vector with the
object [16–20]. The later ones [21–25] map the image features to the gaze coordinates using
neural networks, as in [26], or polynomials, as in [27]. Most of these works use IR lights to
obtain a stable gaze, whose usage for a long period of time causes dryness and fatigue in
the eyes [28].

We propose the use of a regression-based system, but using the parameters extracted
from a face tracker OpenFace 2.0 [1] to obtain the gaze focalization over a screen as our
visual attention system.

OpenFace 2.0 is a facial behavior analysis toolkit. In [1], authors made a wide com-
parison with other state-of-the-art systems. As our proposal is based on gaze focalization
estimation, we will focus on this topic. Some state-of-the-art gaze estimators are: We-
bGazer.js [29], EyeTab [30] and OKAO [31]. This last tool is not free to use, which does not
follow our policy of Open Source. Regarding the former two systems, they do not include
head position, which is used in our algorithm to estimate the gaze. Moreover, OpenFace
2.0 provides a C++ code and a simplified model that allows real-time operation, which is a
key factor in our proposal. This paragraph explained the comparison of OpenFace 2.0 with
other systems has been added in the text (line xx to line yy).

Usually, visual attention systems are validated in simulation with simple scenes. How-
ever, the simulation of driver attention in complex driving scenarios is rather challenging
and highly subjective [3]. These systems aim to automatically estimate the area where the
driver is focusing their attention. For this reason, the acquisition systems and computer
vision techniques are one step ahead from traditional human factor approaches focused
on driving behavior understanding using manual tools. In this research field, there are
different databases that collect driver’s attention in the state-of-the-art. The first public
database based on driving attention maps was the project DR(eye)VE [32], which col-
lected 555,000 frames with those attention maps generated by the actual driver. After that,
Berkeley DeepDrive Attention (BDDA) database [10] was published, which is formed by
1232 videos that produced a braking event and the attention map was recorded later in-lab.
This approach not only presented a critical situation where the attention is important,
but also the attention map generated by more than one user for the scene. However, these
scenes are not challenging enough to test the attention because these situations do not cause
accidents. Therefore, we have evaluated our system on the recent DADA2000 database [3],
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which is the largest and most diverse driving attention database composed by accidental
scenarios. It contains 2000 video clips annotated with the accident localization and the
attention map generated in-lab by some users with fairly complex accidental scenarios in
diverse weather and lighting conditions.

Previously, a slight calibration method based on a linear calibration using a simple
projection matrix was proposed by the authors in [2]. It was formed by a low-cost and
non-intrusive camera-based gaze mapping system able to estimate the driver focalization
on challenging prerecorded traffic scenes through a heat map. Gaze direction was calcu-
lated by using the open-source state-of-the-art OpenFace 2.0 Toolkit [1] combined with a
projection matrix.

This paper presents an improvement over our previous system [2]. The proposal
uses a non-linear model based on NARMAX (Nonlinear AutoRegressive Moving Average
model with eXogenous inputs), with the goal of achieving a cheap and non-intrusive gaze
focalization system. It is able to achieve accuracy results on pair of most sophisticated
systems over complex accidental scenarios. With this objective, the work proposed here
has been validated by using the recent and challenging public database DADA2000 [3].
It collects real accidental scenarios annotated with the accident localization on the scene
and the attention map generated by some users who watched the scene on their laboratory
using an expensive and active desktop-mounted eye-tracker. We present a comparison
with their gaze focalization system in similar conditions of the one reported by the authors,
reaching on par results. From our knowledge, and without taking our previous work into
account, this is the first time that a camera-based vehicle-mounted driver attention system
is evaluated in this challenging database.

2. System Architecture

The proposed system has four sections that work together to extract the gaze focaliza-
tion. These sections are: video acquisition, gaze estimation, visual focalization model and
heat map visualization. The architecture is shown in Figure 1.

Figure 1. Non-linear calibration framework.

To communicate all the sections, a Robot Operating System (ROS) [33] is used, which
is a framework that allows bastardization, communication and modularity facilities to all
the sections. It offers the possibility to modularize the complete system and even allows
the possibility of working on distributed systems, such as two computers.

2.1. Video Acquisition

The image from the user is obtained using a ZED camera from Stereolabs, which is a
stereo camera. However, for this application, we will be using it as a monocular camera. It
has been chosen due to its ROS compatibility and for its specs of frame rate and resolution.
On the one hand, Sterolabs provides a wrapper that allows the publication of all the camera
data using ROS topics. Furthermore, on the other hand, the camera is able to work at
100 fps at VGA, which is much higher than that obtained by a standard web cam. This
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application is not limited to the kind of camera. It could work with a standard web cam,
but obtaining worse results.

An ablation study about camera parameters is quite important using the camera setup.
Moreover, the relative position to the user is an interesting topic to be evaluated because of
the possibilities this kind of systems provide on real environments. These studies will be
carried out in the following sections.

Figure 2 shows how the experiment was set-up in order to emulate the same experi-
ment as the authors of the DADA2000 database [3] in order to have a fair comparison.

Figure 2. Full framework set-up. User looking at a 24′′ screen with the camera positioned in front of
him, while DADA2000 videos are displayed on the screen. Heat map is generated in real time.

2.2. Gaze Estimation

The main proposal of this work is to contribute to the scientific field with a gaze
focalization system based on camera. It is a non-intrusive and cheap system that does not
generate rejection nor fatigue in the driver and can be used on a vehicle without disturbing
the user. Therefore, desktop-mounted eye trackers and head-mounted eye trackers are
refused. Gaze estimation systems based on cameras that can be used on vehicles have
been proposed in the literature [6,11–14]. Face detection using video is a key task for this
kind of systems. On this research field, OpenFace is one of the most popular open-source
facial analysis tools because of its robustness and performance. We proposed the usage of
OpenFace 2.0 toolkit [1] because it provides face detection and 68 facial landmarks. With
some of these landmarks, it estimates the gaze direction, as shown in Figure 1.

The tool uses a Conditional Local Neural Field (CLNF) to detect the facial landmarks,
within which are included the next eye landmarks: eyelids, iris and pupils. With the eyes
detected and situated on the space, it computes the gaze vector of each eye using the
eye-region. Regarding the gaze, it returns three vectors, one for each eye and a third one
that is the fusion of both eyes, which will be used with other facial landmarks on this work.
The authors tested performance of the tool on the challenging MPIIGaze database [34]
achieving a mean absolute error of 9.1 degrees per frame. This is a satisfactory result for
this benchmark and good enough for our application. The data from the 68 landmarks
used on this work to achieve gaze focalization will be explained on the next sections.

2.3. Visual Focalization Model

Angle gaze variation is not linear, but it can be assumed to be linear when the gaze
range is small. To implement a system as general as possible, we improve our previous
publication based on a linear method [2], proposing the implementation of a Nonlinear
AutoRegressive Moving Average model with eXogenous inputs (NARMAX model).
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The NARMAX model [35] includes a wide class of nonlinear systems, which means
that the modeled signal depends of:

• Past signal terms (AR);
• Past noise terms (MA);
• Other signal with a possible delay (X).

Relationships among them are nonlinear and the modeled signal is discrete, which
can be defined as:

y(k) = F[y(k− 1), y(k− 2), . . . , y(k− ny),

u(k− d), u(k− d− 1), . . . , u(k− d− nu),

e(k− 1), e(k− 2), . . . , e(k− ne)] + e(k)

(1)

where y(k), u(k) and e(k) are the system output, input, and noise sequences, respectively;
ny, nu, and ne are the maximum lags for the system output, input and noise; F[] is some
unknown nonlinear function, d is a time delay typically set to d = 1.

NARMAX is based on five steps that answer the following questions:

1. Structure detection—”What parts are in the model?”;
2. Parameter estimation—”What are the values of the model coefficients?”;
3. Model validation—”Is the model correct and unencumbered?”;
4. Prediction—”What does the modeled signal look like in the future?”.

There are some methods that achieve these steps such as FROLS or MFROLS [36], that
will be tackle hereafter. These algorithms try to find the most simple model that describes
the structure of the system.

The problem of this approach is that the developer has to suggest possible types of
nonlinearity because the number of nonlinearities is quite high. These can be:

• Polynomial degree;
• Term degree;
• Logarithm;
• Neuronal network;
• Superposition of the above methods.

For this reason, modeling a nonlinear system brings the possibility of unknowingly
making a fatal error. If the system under test has a nonlinearity that is not assumed,
the model will not be fitted the data. In NARMAX methods, the only limit is the assumption
made by the modeler. Here, some nonlinear modeling systems are presented.

2.3.1. OLS

This work proposes using the Orthogonal Least Squares (OLS) algorithm to establish
the correspondence between the face features based on the camera and the coordinates
projected by the gaze on the screen. This approach has been used on nonlinear systems
because OLS will search through all possible candidate models to select the better approach.

The main idea of the OLS estimator is to introduce an auxiliary model whose elements
are orthogonal to the signal that is modeled, as in the Wiener Series. Then, subsequent
parts of the orthogonal model can be determined in turn, and then the parameters of
the searched model can be calculated based on them. Iterative repetition of the steps of
this method allows not only finding unbiased model estimators, but also showing what
contribution each of them has in the final modeling result.

Considerations should begin with the assumption of the general model:

y(k) =
M

∑
i=1

θi pi(k) + e(k) (2)
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where y(k) is the modeled system response for k = 1, 2, . . . , N; θ are the model parameters
(θ ∈ R) associated to the regressors pi(k) and e(k) is the external noise or error at the
moment k = 1, 2, . . . , M.

Regressors pi(k) are defined as the combination of delayed signal values or delayed
external signals. In the general case, the function of the delayed members of the model
can take any non-linear form. For the model, it is also assumed that each regressor pi(k) is
independent of the model parameters θ, therefore:

∂pi
∂θj

= 0 for i = 1, 2, . . . , M and j = 1, 2, . . . , M (3)

The goal of the estimator is to transform the model specified in Equation (2) into an
auxiliary model whose elements are orthogonal to each other. This type of model has
the form:

y(k) =
M

∑
i=1

gi(k)qi(k) + e(k) (4)

where gi are the parameters of the orthogonal model and qi(k) (i = 1, 2, . . . M) are the
orthogonal components of the model. The orthogonality condition is then presented as:

M

∑
k=1

gi(k)qi(k) =

{
di = ∑M

k=1 q2
i (k) 6=0, i = j

0, i != j
(5)

The orthogonalization procedure for the model from Equation (2) can be summarized as:

q1(k) = p1(k)
q2(k) = p2(k)− a1,2 p1(k)
q3(k) = p3(k)− a1,3 p1(k)− a2,3 p2(k)

...
qm(k) = pm(k)−∑m−1

r=1 ar,mqr(k), m = 2, 3, . . . , M

(6)

where parameter ar,m associates the components of the output model from Equation (3)
with the orthogonal model according to the following form:

ar,m =
∑N

k=1 pm(k)qr(k)

∑N
k=1 q2

r (k)
, 1 ≤ r ≤ m− 1 (7)

On the base:

gi =
∑N

k=1 y(k)qi(k)

∑N
k=1 q2

i (k)
, i = 1, 2, . . . , M (8)

Therefore: 

θM = gM

θM−1 = gM−1 − aM−1,MθM

θM−2 = gM−2 − aM−2,M−1θM−1 − aM−2,MθM
...

θm = gm −∑M
j=m+1 am,jθj, m = M− 1, M− 2; . . . , 1

(9)

This allows, based on previously established regressors, to develop a model based on
orthogonal components, and to recreate the basic model from this type of model.
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2.3.2. ERR

The problem in carrying out OLS estimation is the criterion for selecting subsequent
regressors for the orthogonal model being created. Remembering that the model also has
noise e, the energy (or variance) of the system can be represented as:

1
N

yTy =
1
N

M

∑
i=1

g2
i qT

i qi +
1
N

eTe (10)

where y is the modeled signal vector, gi are the coefficients standing next to elements of
the orthogonal model, qi are the vector elements of the orthogonal model, e is the vector of
noise samples and N is the number of signal samples. It can be stated that:

1 =
∑M

i=1 g2
i q2

i qi

yTy
+

eTe
yTy

=
M

∑
i=1

ERRi + ESR (11)

where ERRi is the Error Reduction Ratio and ESR is the Error to Signal Ratio. To measure
the significance of each model parameter, the Error Reduction Ratio (ERR) is used, which
indicates the system improvement, in percentage (0–1). It can be accounted by including
the model parameters. This capability is important for the model to get the best model,
without getting a complex one. ERR allows the model to get only the best parameters
in order to achieve best model performance without a high training time and without
complex the model.

When the sum of subsequent values ERR tends to one means the modeling process can
stop (∑M

i=1 ERRi → 1). Comparison of individual ERR values for various elements of the
model shows which of them are the most influenced on the signal of the designated model.

2.3.3. FROLS

Using the OLS estimator and coefficient ERR describes the FROLS (Forward Regres-
sion with Orthogonal Least Squares) nonlinear modeling algorithm, a forward regression
algorithm using the orthogonal sum of the least squares. It is assumed that the selection of
subsequent regressors for the OLS estimator should be conditioned by the highest value
ERR for a given regressor. This allows choosing the model member that reduces the mod-
eling error to the greatest extent and to stop modeling when ESR will have a satisfactory
value. In the following sections, steps in modeling according to the FROLS algorithm will
be presented.

Step 1. Data Collection

In order to perform modeling, acquisition of the test signal waveforms is required, y(k)
(X_pixel, Y_pixel), as well as external input signals, x(k) (OpenFace parameters), which
affect the system under study. The signal should be collected as discrete or transformed
into such a form. In addition, the recorded waveform should have as little external noise
as possible and should not be subjected to filtration, which may disturb the identification
process. According to the author of the method [35], if the noise presents in the signal is
zero-mean white noise, it does not affect the ERR value and the identification process.

Step 2. Defining the Modelling Framework

Because the number of possible nonlinearities is very high, a priori assumption is
required to define the search method. These requirements can be formulated answering
the following questions:

• What is the maximum delay of the AR term (ny)? (Output signal)?
• What is the maximum delay of external signals (nx)? (Input signal)?
• What nonlinearities are predicted and what is their maximum degree (l)?

After the developer has provided the answer to these questions, the following parts of
the model are known: y(k− 1), y(k− 2), . . . , y(k− ny), ui(k− 1), ui(k− 2), . . . , ui(k− nxi ).
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Where y is the signal under test, ui is one of the external input signals, ny is the maximum
delay of the signal under test and nxi is the maximum delay of one of the external input
signals. The non-linearity that binds these members is also known, which allows the next
step to be taken. In the case where the non-linearity is a polynomial, the maximum degree
of non-linearity determines the maximum power occurring in this polynomial.

Step 3. Determination of the Regressor Vector

Knowing the modeling framework defined in the previous step, we must determine
a vector containing all possible regressors for a given signal. For example, a system with
one output (y) and one input (u) with ny = nx = 2, where nonlinearity is modeled as a
polynomial up to the second degree, l = 2. Then, the regressor vector will consist of a
combination of signals: y(k− 1), y(k− 2), u(k− 1), u(k− 2) according to the maximum
polynomial degree. Including the constant component marked as const., regressor vector
marked as D, will be defined as:

D = {const., y(k− 1), y(k− 2), u(k− 1), u(k− 2)}∪
{y2(k− 1), y(k− 1)y(k− 2), y(k− 1)u(k− 1), y(k− 1)u(k− 2)}∪

{y2(k− 2), y(k− 2)u(k− 1), y(k− 2)u(k− 2)}∪
{u2(k− 1), u(k− 1)u(k− 2)}∪

{u2(k− 2)}

(12)

Step 4. Choosing the First Element

Once the regressor vector has been specified, the database of the created model is
known. Choosing the first one requires determining the value of ERR for each element of
the vector D = p1, p2, . . . , pm, where m is the number of potential regressors.

gm =
yT pm

pT
m pm

(13)

ERR[m] =
g2

m pT
m pm

σ
(14)

l1 = arg max
1≤m≤M

ERR[m] (15)

where l1 corresponds to the highest regressor and it is accepted as the first element of the
orthogonal model. The parameters g and ERR are saved.

q1 = pl1 ; g1 = gl1 ; err[1] = ERR[l1] ; D1 = D− pl1 (16)

After saving the found regressor and its associated values, the search is restarted to
find the next member of the orthogonal model.

Step 5. Selecting the Next Elements of the Model

The next steps are analogously performed to the first step, with the difference that
the orthogonal model already has a certain number of terms, depending on the number
of steps previously performed. Calculation of ERR values for potential new members of
the model must be made again, in relation to the current form of the model. Therefore,
the regressor index is searched (marked as ls) about the highest ERR for the current model
form, where s) is the current step. The regressor vector is marked as Ds−1 and does not
contain the members selected in the previous steps. Then, for m = 1, 2, . . . , M− (s− 1)
and m 6= l1 6= l2 6= . . . 6= ls−1, we have:

qm = pm −
s−1

∑
r=1

pT
mqr

qT
r qr

qr, pm ∈ Ds−1 (17)
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gm =
yTqm

qT
mqm

(18)

ERR[m] =
g2

mqT
mqm

σ
(19)

ls = arg max
1≤m≤M−(s+1)

ERR[m] (20)

After finding ls, which corresponds to the highest regressor ERR, the orthogonal
model is extended by another member, qs, along with the corresponding parameter gs.
The ERR value for the selected element is saved, and from the vector D the selected
regressor is deleted. In addition, parameter values ar,s are determined according to the
following equations:

qs = qls ; gs = gls ; err[s] = ERR[ls] ; Ds = Ds−1 − pls (21)

ar,s =
qT

r pls
qT

r qr
, r = 1, 2, . . . , s− 1 (22)

This step is repeated until the ESR value is satisfactory:

ESR = 1−
M0

∑
s=1

err[s] (23)

where M0 is the number of selected regressors. A certain limit is necessary for ESR, which
will decide the end of the modeling.

2.3.4. Modelling Process Analysis

An important decision when performing modeling with the NARMAX method is
when to stop adding more regressors to the model. The right moment does not have a strict
definition, but rather is determined by a set of factors whose superposition is a premise to
take it. In the case of NARMAX, one of the basic parameters is the ERR sum for the model,
called SERR:

SERR = ∑ ERR (24)

It is assumed that a well-fitted model has SERR higher than 0.8 [37].

2.3.5. Determination of the Final Model

When M0 regressors are selected, it is necessary to determinate their parameters.
Assuming a low value of ESR, the general and ortogonalized models are equal to:

y(k) =
M0

∑
i=1

θi pi(k) + e(k) =
M0

∑
i=1

giqi(k) + e(k) (25)

In the above equation, the only unknowns are θi, because regressors gi were selected
during modeling, and the elements of the orthogonal model qi(k) along with their parame-
ters were appointed on an ongoing basis during the process. Therefore, it is necessary to
perform the conversion from the orthogonal model to the initial model by performing an
inverse process to the previous orthogonalization. Knowing the values of the elements ar,s
for 1 ≤ r < s ≤ M0, the following matrix is specified:

A =


1 a12 a13 . . . a1M0

0 1 a21 . . . a2M0
...

...
. . .

...
...

0 0 . . . 1 aM0−1,M0

0 0 0 . . . 1

 (26)
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which can be included in equation:
Aθ = g (27)

where g = [g1, g2, . . . , gM0 ] and θ = [θ1, θ2, . . . , θM0 ]. Solving this equation, model parame-
ters are obtained, thus determining the full output model.

The output has a vector form of two coordinates (X_pixel, Y_pixel), so, two models
have to be calculated in order to obtain the system output as required.

Three main parts compose the framework used on this calibration step, and how the
subsystems are communicated among them in order to achieve the best result. The first
one is in charge of getting data to calibrate. The second one calculates the regressors for the
model. Furthermore, finally, the last one uses these regressors and sends the topic to the
ROS environment.

In order to achieve this calibration method, a training method is necessary. So, at the
beginning of any test, the user has to look at eight points around the screen. Points are
displayed during 8 s, but in order to get a better accuracy on the model, the first two
seconds are removed because in this time the eyes are in transition between fixations.

To perform this task, the eight points are displayed in red over a white image using
OpenCV. These points have a 30 pixel radio and are placed on the following positions in pix-
els: [X1, Y1] = [200, 200], [X2, Y2] = [700, 200], [X3, Y3] = [1100, 200], [X4, Y4] = [1700, 200],
[X5, Y5] = [200, 700], [X6, Y6] = [700, 700], [X7, Y7] = [1100, 700] and [X7, Y8] = [1700, 700].
After training, these points will be evaluated during a testing procedure.

Data are composed of the point where the user is looking at (X_pixel, Y_pixel) and the
data provided by OpenFace for the gaze and the head for this position, which is formed by:

• Gaze angle X (θx);
• Gaze angle Y (θy);
• Head position X (x);
• Head position Y (y);
• Head position Z (z);
• Head rotation X (Ωx);
• Head rotation Y (Ωy);
• Head rotation Z (Ωz);
• Head rotation W (Ωw).

Data are referenced to the camera and saved on a .txt file with the next structure: Gaze
angle X; Gaze angle Y; Head position X; Head position Y; Head position Z; Head rotation
X; Head rotation Y; Head rotation Z; Head rotation W; X_pixel; and Y_pixel. These are the
parameters chosen, because gaze focalization systems take as input: eyeball orientation and
head pose (orientation and position of the head) [16]. Instead of eyeball orientation, we use
a gaze vector provided by OpenFace 2.0 to obtain a more accurate gaze focalization system.

The file created with the data recorded for each test will be charged on the next step
of the model where a training procedure is carried out to calculate the parameters, as it
is defined on Figure 3, where the data feed the model and following the steps described
earlier to obtain the regressors and their parameters for the two models.

NARMAX model is fit with these parameters. The model will use the parameters
necessary to fit the model to the output as best as possible. After some experiments,
the best option is obtained for a Sum Error Reduction Ratio (SERR) higher than 0.9999
or 10 regressors. More regressors complicate the model with a slight improvement on
accuracy and over-fit the model.
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Figure 3. Nonlinear calibration script flow.

2.4. Heat Map Visualisation

One of the most common visualization approaches to represent a spatial distribution
produced by the gaze focalization on the screen and the one used on this work is the heat
map. To obtain the spatial distribution over the time we have used a temporal window
[t− w, t], where t is the actual frame and w is the temporal window, which has been set to
1 s as done by [38]. With this temporal window, we have 30 samples to generate our spatial
distribution that will be represented as a heat map. The distribution is fitted on a Gaussian
model, which represents the different areas with a color gradient. (Mt = [mx(t), my(t)]) is
the center of the Gaussian, Ct is the covariance matrix and h(X, t) is the intensity of the
heat map for the pixel (X = [x, y]). For this work, we have drawn ellipses following the
Gaussian model with two times the standard distribution, using the next equation:

h(X, t) = e−
1
2 (X−Mt)

TC−1
t (X−Mt) (28)

3. Experimental Results

In this section, we explain and expose the results obtained for our architecture proposal
using the non-linear calibration method based on NARMAX. The evaluation is divided
into two different subsections. Firstly, a precision experiment is done to test the accuracy of
the system. Furthermore, secondly, a comparison is conducted with other state-of-the-art
systems in the challenging database DADA2000 as we carried out in [2].

3.1. Visual Focalization Model Evaluation

To evaluate the precision of our driver focalization system, we have applied the same
testing procedure as done previously with the linear calibration. After the calibration
and training step, the user has to focalize their gaze on eight points during eight seconds
per point, that are displayed on different locations over the screen. The first second of
each point has been despised because the gaze is not stable when transitioning to the
new position to be glanced. This test has been done in the ablation study to test the best
camera parameters, the best camera position and the loss of accuracy that the use of glasses
may cause to the system. After that, it has been carried out with some users to evaluate
the system. To evaluate the accuracy of the system, we have used the Root Mean Square
Error (RMSE) between the gaze estimation on the screen and the localization of the points.
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Accuracy is shown in total and regarding the (X, Y) axes, and is evaluated in percentage,
pixels and millimeters.

3.2. Camera Parameters

The ablation study starts by analyzing the camera parameters that best suit the system.
We have evaluated different resolutions and camera frame rates and tested the precision
of the system for all these parameters. The camera used ZED from Sterolabs, which
allows four different resolutions with different frame rates, as shown in Table 1. On the
performance column, we show the ability of OpenFace to process frames. The test was
repeated by the same user for 5 times in order to achieve a better conclusion about the best
camera parameters to be used for the next sections.

This experiment shows that the X axis gets the best accuracy using 2k resolution at
15 frames per second. Instead, the Y axis gets the best accuracy using HD1080 at 30 frames
per second. Taking into account the two axes, the best accuracy is obtained for HD1080,
which is different to the linear calibration results obtained in previous works, where best
camera parameters were 720p at 60 frames per second. In conclusion, HD1080 at 30 frames
per second will be the camera parameters used for the next tests performed with the
NARMAX calibration.

Results show a quite improvement from the linear calibration method, which obtained
an error of 60.5 pixels, 3.5 times higher than the obtained with this nonlinear method.

Table 1. Testing accuracy vs. camera parameters on a 1920 × 1080 screen using NARMAX calibration method. Test done by
one person looking at eight points on a screen. Test was done 5 times.

Method Resolution
Frame Acc_x Acc_y Acc_Total Performance

Rate % pix mm % pix mm % pix mm (Hz)

NARMAX HD2K 15 0.7 12.5 3.9 1.3 14.5 4.5 1.1 20.3 6.3 14.8

NARMAX HD1080 30 0.7 12.6 3.9 1.1 11.8 3.7 0.9 17.3 5.4 29.47

NARMAX HD720 60 1.6 29.9 9.3 0.9 10.2 3.2 1.3 24.7 7.7 53.447

NARMAX VGA 100 0.9 18.2 5.7 1.1 12.4 3.9 1.1 20.2 6.3 76.16

Linear HD720 60 1.9 36.1 11.3 4.0 43.7 13.6 3.2 60.5 18.9 50.74

3.3. Camera Position

Camera position is vital for the system to work, as it gives the opportunity to place
the camera on different locations in the vehicle. We are going to repeat the study as in the
linear calibration where the camera was placed in front of the user at different heights (10,
48 and 78 cm) over the table where the screen was located.

Table 2 shows the results obtained for this test. The results are displayed in the same
conditions as done in our previous work. The best accuracy is obtained when the camera
is just in front of the user at 48 cm above the table. Nevertheless, this localization is not
possible in a real car as it will hide the road scene. Placing the camera on the top localization
is not allowed because most of the landmarks of the face are occluded and OpenFace 2.0
does not work properly, as happened with the linear calibration. This problem cannot be
solved with this new calibration method because OpenFace loses some landmarks and the
input model is already wrong. Therefore, the bottom position has been chosen to place the
camera for future real applications on a vehicle, as was done with linear calibration.

Even though the bottom position is the most suitable for a real application on the
vehicle, the middle position is used for the next tests, due to the fact that this middle
position is the best one for in-lab application. Results show an improvement of more than
6 times for the bottom position and near 3.5 for the middle position.
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Table 2. Testing accuracy vs. camera position on a 1920 × 1080 screen. Test done by one person
looking at eight points on a screen. Test was done 5 times.

Method Position
Acc_x Acc_y Acc_Total

% pix mm % pix mm % pix mm

NARMAX Top - - - - - - - - -

NARMAX Mid 0.7 12.6 3.9 1.1 11.8 3.7 0.9 17.3 5.4

NARMAX Bot 1.0 18.6 5.8 1.5 16.1 5.0 1.3 24.1 7.5

Linear Mid 1.9 36.1 11.3 4.0 43.7 13.6 3.2 60.5 18.9

Linear Bot 2.5 48.0 15.0 10.6 114.5 35.8 7.7 147.9 46.2

3.4. Glasses

Once the ablation study has been carried out, it is time to test the performance when
the user wears glasses as some drivers wear glasses while driving in a mandatory way,
whereas others prefer to drive with sunglasses. The results previously obtained with the
linear calibration method showed that it cannot work with a user wearing sunglasses,
which limits the use of the previously proposed system.

NARMAX calibration method shows that performance is even better using glasses
than without them. This could be because glasses are rigid elements where OpenFace is able
to find robust visual features. Even so, differences between them are less than a pixel, which
are no representatives. Both tests were done using uniform lighting conditions, which will
differ in a real experiment where the sun may cause sun-glasses on the glasses. Results are
depicted on Table 3. With this calibration method, it is possible to track the gaze even with
sunglasses This is because this process takes into account face parameters, in addition to
the gaze ones, which in this case are occluded. We have obtained an improvement over the
linear calibration between 3 and 4 times better.

Table 3. Testing accuracy vs. glasses on a 1920 × 1080 screen. Test done by one person looking at
eight points on a screen. Test was done 5 times using NARMAX calibration.

Method Eyes-Glasses
Acc_x Acc_y Acc_Total

% pix mm % pix mm % pix mm

NARMAX Free 0.7 12.6 3.9 1.1 11.8 3.7 0.9 17.3 5.4

NARMAX Glasses 0.6 11.6 3.6 1.0 11.3 3.5 0.9 16.4 5.1

NARMAX Sunglasses 0.9 17.5 5.5 1.3 13.6 4.2 1.1 21.1 6.6

Linear Glasses 2.5 48.7 15.2 4.6 50.0 15.6 3.7 71.7 22.4

3.5. Precision Test

After the ablation study and the opportunity to work with any kind of user indistinctly
if they wear glasses or not, we have performed an evaluation with some users to get
statistical results. The test was done by 10 users who calibrated the system following the
procedure explained early to perform the test and obtain a comparison with the method
presented in [2] in terms of precision. Results for the whole users can be seen in Figure 4.

Our method achieves about 1.02% error on the X axis and 1.04% error on Y axis, which
is an error 3 times less than the obtained by the linear calibration as can be seen in Table 4
Unlike linear calibration method, this system provides a similar accuracy in both axes which
is an important improvement because it allows having circular focalization map instead a
ellipsoids one, which is the correct approximation for a focalization error. Figure 5 shows
the error overprinted on an image with a crash object in order to compare scales for the
both tested systems. Furthermore, the linear calibration error is displayed in order to check
the difference between both methods. This new model offers a better tool to obtain the
focalization map generated by a driver.
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Table 4. Testing accuracy on a 1920 × 1080 screen. Test done by 10 users looking at eight points on a
screen using the NARMAX calibration method.

Method Users
Acc_x Acc_y Acc_Total

% pix mm % pix mm % pix mm

NARMAX 10 people 1.02 19.5 10.4 1.04 11.2 6.0 1.03 19.7 6.2

Linear 25 people 1.9 36.1 11.3 4.0 43.7 13.6 3.2 60.5 18.9

Figure 4. Calibration results using NARMAX calibration method. Eight points are displayed on the
screen (Red circle). The results from our output creates 8 Gaussian around the testing points.

Figure 5. DADA2000 frame. Crash object circle for 60 and 300 pixels (blue). Error linear calibration
area (red). Error NARMAX calibration area (green).

3.6. DADA2000 Evaluation

The presented system based on NARMAX model shows potential to be a satisfactory
focalization method in order to be used for driving application. However, it has to be
firstly tested on a challenging video benchmarking (DADA2000), which is composed by
accidental videos including driver attention and annotated accident localization. This
allows evaluating the performance of our proposal to estimate accidents in video sequences
as done with the linear calibration.

We are going to compare the results obtained by our system with those found by the
authors of the database (DADA2000) using an expensive and active desktop-mounted
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eye-tracker. Some users watched the same videos in similar conditions as done with the
linear calibration.

This database provides with three annotated information pieces. Firstly, it offers the
crash-object position (accident localization in pixel per frame). Secondly, it contributes
with the focalization map captured with a desktop-mounted eye-tracker by some users.
Furthermore, lastly, the temporal window that involves the accident is exposed. The
provided videos are partitioned in three main clips: before the accident, during the accident
and after the accident, as it is depicted in Figure 6. The accident clip is also divided into
three sub-clips (Start, Mid and End) for a better analysis.

Figure 6. Temporal partition of the video. Dividing the accident part in three pieces of same length
to evaluate the results by sections.

3.6.1. Crash Object Detection in DADA2000 Benchmark

Crash object detection has been tested with four users who were invited to watch the
videos, in the same way as done using the linear calibration. Between videos, users made a
pause of 3 s to accommodate the gaze for the next video. The database was resized from
1584 × 660 to 1920 × 1080 to match it with the screen resolution used in the experiment by
the original authors, in order to wide the working field of view.

The clips were played at 30 fps to compare our results with the obtained by the
authors of DADA2000 [3] in the same terms. We recorded attention map without temporal
aggregation, obtaining one measure per frame, because with this calibration method we
work at 30 frames per second, which gives one focalization measure per frame.

This test is not focused on what kind of accidents the users focalize better. This test is
done in order to validate the possibility of using this method to acquire driver focalization.
Because the main proposal of this work is to present a gaze focalization system, the goal
of this test is to localize driver attention on a screen. For this purpose, we have used the
same evaluations done by the original authors of the database. They measured the distance
between the crash object center, which is manually annotated, and the attention point
obtained for each frame. After that, they used some thresholds (Th) in pixel to establish if
the detection is below that Th or not. With these premises we obtain two indicators (frame
ratio and success rate).

Results are compared with the obtained by DADA2000 authors using a Senso Motoric
Instrument (SMI) RED250 desktop-mounted infrared eye tracker, for different detection
area sizes as is shown on Table 5. Our success rate is higher than the obtained by the
DADA200 authors for all the partitions except for start clips at threshold between 100 and
300. However, our numbers are obtained for four users per video instead of the five they
argue to use, even though they also argue every video was watched by at least two people,
indicating that not all of them were watched by the five users.

For a 300 pixels threshold, we have obtained more than a 90% success rate for mid
and end sections of the accident. This test shows worse results on the start section, but
close to the results claimed by the authors of the database. Mid and end sections show
better results than those claimed by the authors.

Results show that early accident detection is worse than for the middle and end
partitions because users take some time to react and focus their gaze in the accident area.
In the last part of the accident, users using NARMAX method focus their eyes in the
accident area longer that with the linear method.

Table 6 shows the Frame ratio, which compared the distance between the focalization
and the accident frame by frame.
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Table 5. Success rate: percentage of number of clips that frame ratio for the entire clip is more than half of the frames of the
entire accident scene.

System Ours (Based on OpenFace Using NARMAX Calibration) DADA2000

Th (pixels) Start Mid End Start Mid End

60 20.3% 53.1% 64.1% 10.8% 10.7% 5.1%

100 32.8% 75.0% 84.4% 34.4% 30.8% 22.6%

160 40.7% 85.9% 96.3% 59.0% 57.2% 49.1%

200 54.7% 90.6% 96.9% 68.0% 67.2% 60.1%

260 65.6% 92.2% 96.9% 76.6% 76.6% 71.5%

300 70.3% 95.3% 96.9% 80.0% 81.3% 76.6%

360 87.5% 98.4% 98.4% 84.0% 81.0% 82.0%

400 92.2% 98.4% 98.4% 86.0% 86.0% 84.0%

460 95.3% 98.4% 100% 90.0% 88.0% 88.0%

Table 6. Frame ratio: percentage of frames in each clip section where the attention point is inside the correct detection area.
This is measured frame by frame because the crash object change with it.

System Ours (Based on OpenFace Using NARMAX Calibration) DADA2000

Th (pixels) Start Mid End Start Mid End

60 48.0% 64.3% 62.9% 17.0% 17.0% 13.0%

100 63.2% 82.0% 82.5% 25.0% 36.0% 30.0%

160 63.4% 90.9% 89.1% 58.0% 57.0% 50.0%

200 85.2% 93.6% 94.0% 67.0% 67.0% 60.0%

260 91.3% 96.2% 96.1% 75.0% 77.0% 68.0%

300 94.2% 97.2% 97.3% 78.0% 83.0% 75.0%

360 97.1% 98.4% 98.8% 84.0% 85.0% 80.0%

400 98.2% 98.8% 99.1% 86.0% 87.0% 82.5%

460 99.0% 99.4% 99.6% 87.0% 92.0% 85.0%

(a) (b)

Figure 7. Results obtained on the testing using NARMAX calibration. (a) Success rate obtained by the system proposed
using NARMAX calibration, (b) frame ratio obtained by the system proposed using NARMAX calibration.

The success rate and frame ratio curves are shown on Figure 7, this figure shows the
curves obtained for the different Th (60 to 1000 pixels) and divided by the three sub-clips in
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which the accident is divided, as done by the original author in [3]. Our results outperform
the obtained for our baseline for all the analyzed sub-sections except the success rate start
section, which has a lower curve in some sections of the curve (160–400 pixels).

3.6.2. Heat Focalization Map on DADA2000

Heat focalization map is the visualization tool used for this method, as done with
the linear calibration for analyzing driver gaze focalization areas. For this purpose, it
is necessary to establish a temporal window which has been set to 1 s, as done in the
DR(eye)VE project. This window represented 60 measures using the linear calibration,
but as this method works better with 30 frames per second, in this case has been set to
30 measures.

The way this experiment has been done is showed on Figure 2, where the user under
test is looking at the accident while the system is evaluating their gaze focalization over
the accident displayed and recording results in real time. The attention map generated by
the samples is shown. As we can see, our focalization map is included in the baseline map,
showing the usability of our system but using a cheaper and non-intrusive sensor than the
authors of the database.

Figure 8 shows how temporal aggregation on heat attention map can help to predict
where the accident will happen. Displayed accidents involved other vehicles were the
ego-vehicle is an observer of the accident. This figure shows the heat map created by
four users. The figure shows two accident situations with their corresponding focalization
maps in the image where the accident takes place as a heat map. Images are displayed
with a temporal difference of 1 s. As we can see, the heat map is able to correctly predict all
the crash object position. Being able to generate focalization maps is the key of this work in
order to get where drivers look at when they are driving as a way to predict their driving
behaviors in the near future

Figure 8. Attention map with temporal aggregation for the frame t, t − 1 s, t − 2 s and t − 3 s using
NARMAX calibration method.



Sensors 2021, 21, 6262 18 of 20

4. Conclusions and Future Works

This paper presents a new low-cost and non-intrusive method to obtain visual fo-
calization maps using NARMAX method as an improvement over our work proposed
on [2].

Our system is composed of a passive camera that can be mounted on every vehicle.
This system is satisfactory enough to be an alternative to active desktop-mounted eye
trackers (our baseline) or head-mounted eye-tracker, which are intrusive, costly and difficult
to be mounted in a real vehicle. We have validated our system in a challenging public
database DADA2000 [3] showing on par results with our baseline (desktop-mounted eye
trackers) in similar conditions. It has been exposed that the proposed system could be a
competitive technique to monitor driver focalization over other state-of-the-art systems. It
is able to be used on real applications such as the take over request maneuver or driving
environment awareness in intelligent vehicles. It contributes with a security complement
to the vehicle in order to make a safer driving for all the users.

As future works, we plan to use the presented system for a take over request ex-
periment and to record an attention database with the attention map generated by this
system instead of the active desktop-mounted eye tracking used in the current state of the
art. Moreover, this is a excellent approach to be tested on our current simulator based on
CARLA [39].
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