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Abstract 

Background:  A various number of imaging modalities are available (e.g., magnetic resonance, x-ray, ultrasound, and 
biopsy) where each modality can reveal different structural aspects of tissues. However, the analysis of histological 
slide images that are captured using a biopsy is considered the gold standard to determine whether cancer exists. 
Furthermore, it can reveal the stage of cancer. Therefore, supervised machine learning can be used to classify histo-
pathological tissues. Several computational techniques have been proposed to study histopathological images with 
varying levels of success. Often handcrafted techniques based on texture analysis are proposed to classify histopatho-
logical tissues which can be used with supervised machine learning.

Methods:  In this paper, we construct a novel feature space to automate the classification of tissues in histology 
images. Our feature representation is to integrate various features sets into a new texture feature representation. All 
of our descriptors are computed in the complex Shearlet domain. With complex coefficients, we investigate not only 
the use of magnitude coefficients, but also study the effectiveness of incorporating the relative phase (RP) coeffi-
cients to create the input feature vector. In our study, four texture-based descriptors are extracted from the Shearlet 
coefficients: co-occurrence texture features, Local Binary Patterns, Local Oriented Statistic Information Booster, and 
segmentation-based Fractal Texture Analysis. Each set of these attributes captures significant local and global statis-
tics. Therefore, we study them individually, but additionally integrate them to boost the accuracy of classifying the 
histopathology tissues while being fed to classical classifiers. To tackle the problem of high-dimensionality, our pro-
posed feature space is reduced using principal component analysis. In our study, we use two classifiers to indicate the 
success of our proposed feature representation: Support Vector Machine (SVM) and Decision Tree Bagger (DTB).

Results:  Our feature representation delivered high performance when used on four public datasets. As such, the best 
achieved accuracy: multi-class Kather (i.e., 92.56%), BreakHis (i.e., 91.73%), Epistroma (i.e., 98.04%), Warwick-QU (i.e., 
96.29%).

Conclusions:  Our proposed method in the Shearlet domain for the classification of histopathological images proved 
to be effective when it was investigated on four different datasets that exhibit different levels of complexity.
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Background
In medical imaging, the study of histology images is con-
sidered a significant task  [1]. The advancement of tech-
nology allows the histological slides to be digitized and 
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stored in digital form  [2]. The inspection of histological 
slides manually by a histopathologist is indispensable. 
However, computational techniques from image process-
ing and machine learning can be of a great asset in the 
field of histopathology to assist in applying pre-screen-
ing/classification of easy cases. Therefore, more time can 
be consumed in studying the challenging histological 
slides. More importantly, computer-assisted diagnosis in 
histopathology can play a significant role in minimizing 
(and ultimately eradicating) man-made mistakes, e.g. by 
the pathologist [3].

Therefore, the early identification of cancer is crucial 
for the pathologist to propose an appropriate treatment 
for the patients. The process of histopathological tissue 
classification is tackled in different ways. We divide our 
review of such techniques into three groups: texture-
based, Shearlet-based, and deep feature-based methods.

Texture-based techniques  are frequently investigated 
for the analysis and classification of histopathological 
tissues. For instance, Kather et al. [4] proposed comput-
ing various texture features and classify colorectal cancer 
histology using SVM (i.e., using 10-fold cross-validation) 
into eight classes. The fusion of different texture features 
delivered an accuracy of 87.4%.

Similarly, Linder et al. [5] investigated a different num-
ber of descriptors: LBP, Haralick texture attributes, and 
Gabor filters to classify their introduced dataset which 
is called, Epistroma. As such, those extracted descrip-
tors are fed to an SVM model to distinguish between 
epithelium and stroma tissues. Comparably, Spanhol 
et  al.  [3] established a new dataset called, breast cancer 
histopathology dataset (BreakHis). This dataset consists 
of benign and malignant tissues. Spanhol et al. used dif-
ferent techniques to classify BreakHis tissues into benign 
or malignant.

Bruno et al. [6] proposed applying LBP on the curvelet 
coefficients of the transformed image)(i.e., authors used 
the Digital Database for Screening Mammography, Breast 
Cancer Digital Repository, and UCSB biosegmentation 
benchmark). To reduce the number of descriptors, the 
authors used statistical analysis of variance (ANOVA). 
In comparison to Bruno et  al., we also use descriptors 
computed from a directional wavelet transform, but we 
demonstrate that it is advantageous to integrate various 
descriptors computed in the Shearlet domain to create 
the feature space. A more relative idea to our technique 
is proposed by Ribeiro et al. [7]. Ribeiro et al. computed 
descriptors from both spatial images and curvelet coef-
ficients to classify colorectal histology tissues. In con-
trast to Ribeiro et  al., we utilized both magnitude and 
phase coefficients of the complex Shearlet domain. A 
similar approach to ours is proposed by Vo et al. [8] who 
extracted both, phase and magnitude descriptors for 

textured image retrieval, but applied to non-medical tex-
ture image samples.

The Shearlet transform  has been previously used in 
different studies. Such a transform has the advantage of 
constructing an anisotropic system of a wavelet. How-
ever, only the magnitude coefficients are utilized for 
the classification of textured images. For instance, He 
et  al.  [9] classified textured images by proposing Shear-
let-based descriptors. Authors in this study, quantize and 
encode the local energy descriptors computed from the 
Shearlet coefficients. Thereafter, the energy histograms of 
all levels are cumulated to form the image characteristics. 
Instead, Zhou et al. [10] utilized only specific levels of the 
decomposition of the Shearlet domain for breast tumor 
ultrasound image classification.

Dong et  al.  [11] suggested a technique for textured 
images classification and retrieval, where the depend-
encies of adjacent Shearlet subbands are modeled using 
linear regression. To represent the Shearlet subbands for 
classification, energy descriptors are computed. However, 
the textured image retrieval consists of both statistics in 
the contourlet and Shearlet domains.

Meshkini and Ghassemian  [12] proposed to clas-
sify textured images using the inner product of the co-
occurrence matrix and magnitude coefficients of Shearlet 
transform. Different to many published studies, we do 
not only use the magnitude coefficients, but also the 
phase coefficients of the Shearlet transform in our work.

Deep feature descriptors  which are extracted from a 
pre-trained deep learning model (particularly, convolu-
tional neural network (CNN)) which are typically trained 
on non-medical images. As such, these models are either 
used without fine-tuning (i.e., as unsupervised feature 
extractors) or fully/partially retrained for biomedical 
images. For example, Song et  al.  [13] proposed classify-
ing the BreakHis dataset using feature vectors extracted 
from a CNN. As such, the extracted descriptors from 
the CNN are encoded using the Fisher Vector method. 
Similarly, Gupta et al.  [14] extracted deep features from 
a fine-tuned DenseNet, but from multiple layers to clas-
sify BreakHis dataset. Differently, Wang et  al.  [15] uti-
lized color deconvolution to obtain the hematoxylin and 
eosin channels separately. Subsequently, one CNN model 
is trained using hematoxylin components and another 
CNN trained using eosin components, and finally, the 
outputs of the two CNNs are fused to obtain the final 
prediction.

As has been discussed above, computational techniques 
have been applied previously to predict the class of a tis-
sue type in histological images. As such, conventional 
and deep learning (DL) techniques have been devel-
oped [16]. However, with the scarcity of well-curated his-
topathological datasets for training/testing deep neural 
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networks   [17, 18], training a deep learning model can 
be a challenging approach. Therefore, in our study, we 
present a novel Shearlet-based hand-engineered texture 
descriptors to classify tissue types. Namely, co-occur-
rence texture descriptors  [19, 20], Local Binary Patterns 
(LBP) [21], Local Oriented Statistics Information Booster 
(LOSIB)  [22], and Segmentation-based Fractal Texture 
Analysis (SFTA)  [23] are used in our study which each 
of these set of descriptors are computed in the Shearlet 
domain [24]. Then, these features are utilized to train/test 
two classifiers: Support Vector Machine (SVM) [25] and 
a Decision Tree Bagger (DTB) [26].

Notably, our modeling technique is taking advantage 
of the directionality in the complex Shearlet transform 
where we utilized both the magnitude and phase coef-
ficients. As such, those coefficients are summarized 
using various textural methods that can capture local 
and global attributes [19, 23] of histopathological tissues. 
Most interestingly, computing such statistics from the 
directional sub-bands can potentially lead to capturing 
significant information that can be missed in the spatial 
domain because of the complexity of histopathological 
tissues.

In our research, we investigate both parametric and 
non-parametric (i.e., robust in classification  [27]) clas-
sification models. We include DTB because it is a ML 
method that is considered to lead to explainable deci-
sions, unlike SVM which is considered as a block box 
classifier  [28]. We show that the fusion of some sets of 
descriptors can result in a vigorous feature representa-
tion. Thereafter, we employ principal component analysis 
to further enhance the classification results while having 
a reduced set of features.

This paper is an extension of work previously presented 
at the Biomedical and Health Informatics (BHI) Work-
shop 2019 [29]. Our main contributions in this extension 
are summarized below:

•	 We propose and present a comprehensive justifica-
tion for our feature space, namely, the Shearlet-based 

texture descriptors for histopathological image clas-
sification.

•	 We demonstrate that when these attributes are used 
to train a conventional ML model (i.e., SVM and 
DTB in this extended version), they provide bet-
ter classification performance than several existing 
methods on the four standard datasets used in this 
research.

•	 We present an extended study of our feature repre-
sentations expressed in principal components that 
decreases computational cost without significantly 
compromising accuracy.

Methods
Figure 1 provides an overview of our proposed system for 
the classification of histopathological images. A detailed 
description of each component of our method is pro-
vided in the following sections. MATLAB® 2017b is uti-
lized for the implementation of our techniques.

Our proposed method consists of three steps:

•	 Step 1: For a given histopathological image, we apply 
the complex Shearlet transform. With the complex 
coefficients, we calculate the magnitude and relative 
phase (RP).

•	 Step 2: We then extract four sets of features from the 
directional sub-bands of the RP and magnitude: co-
occurrence based texture features, local binary pat-
tern, local oriented statistics information, and seg-
mentation-based fractal texture analysis.

•	 Step 3: We then apply one of two different classifiers: 
DTB or SVM.

Datasets
Our proposed technique has been evaluated on four dif-
ferent histopathological datasets that exhibit different 
levels of complexity: 
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Fig. 1  Summary of our work approach



Page 4 of 19Alinsaif and Lang ﻿BMC Med Inform Decis Mak 2020, 20(Suppl 14):312

1	 Multi-class Kather’s dataset  [4] consists of a total of 
5000 images (i.e., each image has a size of 150× 150 
pixels). This dataset provides tissue types that belong 
to 8-types (i.e., tumor epithelium, simple stroma, 
complex stroma, immune cells, debris, normal 
mucosal glands, adipose tissue, and background (no 
tissue)) - there are 625 tissue samples for each type. 
An example of each tissue type is shown in Fig. 2a.

2	 Breast Cancer Histopathological dataset (BreakHis) 
dataset  [3] contains tissue from two categories: 
benign and malignant breast tumors (Examples 
are shown in Fig.  2b). The total number of samples 
from two tissue types is 7909 images (i.e., each image 
has a size of 700× 460 pixels). It worth noting that 
each histological slide is captured and stored with 
various magnification factors: 40× , 100× , 200× , and 
400× . The distribution of samples of the benign/
malignant in each magnification factor as follows: 
625/1370(40×) , 644/1437(100×) , 623/1390(200×) 
and 588/1232(400×) . Spanhol et al.  [3] proposed to 
use each magnification factor as a separate dataset. 
However, in our study, we combine all magnification 
factors as one dataset as Jonnalagedda  [30]. This is 

motivated by the fact that each magnification factor 
captures different information [31].

3	 Epistroma dataset contains variable size histo-pathol-
ogy images that belong to two tissue types (as shown 
in Fig. 2c): stroma (551 samples) and epithelium (825 
samples) [5].

4	 Warwick-QU dataset obtained with a magnification 
factor of 20× from colon histology sections. It is a 
binary dataset of benign (74 samples) or malignant 
(91 samples)  [32]. Examples of the tissue types are 
shown in Fig. 2d.

Complex Shearlet transform
In this study, we present a new perspective for computing 
attributes that summarize the statistical information/dis-
tribution of the Shearlet magnitude/phase coefficients for 
every scale and orientation  [24]. Given a complex coef-
ficient, C = x + iy where first term express the real part 
and the second term express the imaginary part, then 
we can compute the magnitude (as ρ = 2

√

x2 + y2 ) and 
phase (as θ = tan−1(y/x) ) components. In contrast to 
existing studies [9, 10], we do not only use the energy of 
the complex Shearlet transform, but we also examine the 

Fig. 2  Samples of each dataset that we have used in our study



Page 5 of 19Alinsaif and Lang ﻿BMC Med Inform Decis Mak 2020, 20(Suppl 14):312

usefulness of the phase components and their potential 
for providing more robust characterization for medical 
image classification. We experimentally verify that using 
phase alongside with magnitude coefficients can, in fact, 
boost the classification performance (See Section ).

Our work is motivated by research completed by 
Vo et  al.  [8]. Vo et  al. build a feature space (i.e., consist 
of magnitude and relative phase (RP)) that is computed 
from a complex directional filter bank for textured image 
retrieval. However, In our study, we acquire such an idea 
but alternatively compute the relative Shearlet phase 
components. The complex Shearlet transform can be 
applied on a histopathological image that has a size of 
M ×M to be transformed to S scales where every scale 
consists of K directionalities. Let θsk(i, j) at location (i,  j) 
to represent the phase angle component at at scale s and 
directionality k, where s = 1, 2, ..., S and k = 1, 2, ...,K  . In 
our study, we use S = 4 and K = 8 per scale.

Now, we can compute the relative Shearlet phase for 
a phase component at position (i, j) of a directional sub-
band in the following manner:

We choose the differences of vertical and horizontal 
because of the orientation of shearing in the Shearlet 
transform. Such a transform has the advantage of being 
multi-scale and multi-directional which in turn can be 
a significant tool for a multi-resolution analysis of his-
topathological tissues. Therefore, we utilize each direc-
tional sub-band (i.e., from both magnitude and RP) to 
calculate statistical attributes.

The Shearlet coefficients localize spatially distributed 
discontinuities and are contrast invariant [33]. Although 
curvelets  [34] and contourlets  [35] have similar proper-
ties to Shearlets and have been used for image classifica-
tion [6, 7]. However, both have certain limitations [24].

In this study, we use a publicly available implementa-
tion of complex Shearlet transform, called the Shear-
Lab  [36]. After each histology image is transformed, we 
then summarize the magnitude and RP of the Shearlet 
components using four various techniques. Each tech-
nique is briefly detailed as follows:

Co‑occurrence matrix (CM)
The CM was introduced by Haralick et  al.  [20]. Later, 
other studies presented other types of statistics that can 
be computed from the CM [19, 37]. However, given two 
pixels (i.e., i and j) that are apart from each other by a dis-
tance (PD), then the content of a gray-level image can be 
formulated as a relative frequencies (i.e., Fij ) matrix. Also, 
there is another hyper-parameter that can be adjusted 

(1)

RPsk(i, j) =

{

θsk(i, j)− θsk(i, j + 1), if 1 � k �
K
2
.

θsk(i, j)− θsk(i + 1, j), if K
2
< k � K .

while computing the CM which is at which orientation 
to compute the relative frequencies. As a result, we have 
a CM that consists of relative frequencies for quantized 
orientation and distance between neighboring pixels.

In our application of CM on the directional sub-bands 
of Shearlet coefficients, we calculate the CMs using a 
constant distance of PD = 1 , but changing the orienta-
tion = ( 0◦ , 45◦ , 90◦ , and 135◦ ); hence, we have four CMs. 
To obtain rotation invariant statistics from the CMs, we 
compute the mean of those four CMs  [4]. Thereafter, 
from this CM, we extract twenty textural features (i.e., 
contrast, correlation, energy, autocorrelation, cluster 
prominence, cluster shade, dissimilarity, entropy, homo-
geneity, maximum probability, sum of squares, variance, 
sum average, sum variance, sum entropy, difference vari-
ance, difference entropy, information measure of correla-
tion, inverse difference normalized, and inverse difference 
moment normalized). Following such a common practice 
to compute those statistical information out of CM for 
each magnitude/RP components, we then have a total 
of 640 attributes for each magnitude and RP directional 
sub-bands (i.e., 20× 32(# of directional subbands).

In our study, we obtain the CM for the Shearlet mag-
nitude and RP coefficients for each directional sub-band 
instead of the spatial domain. In the spatial domain, 
CM analyzes the statistical information of the gray-
level image, but in our application, we analyze the cru-
cial directionality characteristics in the Shearlet domain 
which potentially leading to robust feature space for his-
topathological image classification.

Local binary pattern (LBP)
The LBP  [21] texture attributes are rotationally invari-
ant of the local occurrence of the gray-level of an image. 
Such, occurrence is naturally classified as ‘uniform’ pat-
terns. Again, we are rather concerned with the Shearlet’s 
magnitude and RP coefficients of a histopathological 
image (i.e., can exhibit complex patterns). Therefore, uti-
lizing the Shearlet coefficient which encapsulates field 
dominant direction chraterstics  [38, 39] can potentially 
lead to robust summarization of such directionalities (i.e., 
represent crucial structural details, e.g., step edges [40]).

Hence, we apply the LBP on the magnitude and RP of 
each directional sub-band of the Shearlet coefficients to 
encode the field dominant directions. For a given Shear-
let (SH) coefficient (i.e., representing the magnitude or 
RP) at the location (i, j), the LBP of the SH coefficient is 
computed as follows:

(2)

LBPP,R =

P−1
∑

p=0

s(SHp − SHc)2
p, s(x) =

{

1, x � 0.
0, x < 0.
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SHc and SHp are the central RP (or magnitude) values, 
and P represents the surrounding RP (or magnitude) val-
ues in the circular neighborhood.

In our application of LBP, we compute a feature vec-
tor for every directional sub-band while utilizing a 
radius of R = 2 and a neighborhood of P = 8 , where the 
window size is set to be equal to the directional sub-
band size. Therefore, we obtain a feature vector for each 
sub-band of length of (P + 2)  [21]. After concatenating 
all feature vectors of all directional sub-bands, we get 
a feature vector representing a histopathological image 
of length 10× 32 = 320 attributes for each magnitude 
and RP.

Local oriented statistic information booster (LOSIB)
The LOSIB  [22] technique first compute the absolute 
difference dp for a given central Shearlet coefficient 
with P neighboring coefficients (i.e., completed for all 
central magnitude (or RP) coefficients c of a directional 
sub-band) as follows: dp(ic, jc) = |SHc − SHp| where 
p ∈ 0, 1, ..., (P − 1).

Then, the mean of the differences across the same 
directionality is computed, as follows:

where N and M represent the height and width of the 
image, respectively.

In our application of LOSIB, we set the radius 
R = 1 and neighborhood P = 8 . Therefore, we 
obtain a feature vector for every directional sub-
band of length P. However, the total number of 
descriptors for each of the magnitude and RP is 
8× 32(# of directional subbands) = 256.

Segmentation‑based fractal texture analysis (SFTA)
Our application of SFTA on the directional sub-bands 
is adopted as provided by Costa et  al.  [23]. As such, 
SFTA first process the input directional utilizing a Two-
Threshold Binary Decompositions (TTBD). As a result, 
various binary images are generated from the following 
attributes are computed: the dimension of the fractal 
boundaries, the average gray level, and the count of pix-
els belonging to the region.

In our utilization of the technique by Costa 
et  al.  [23], we set the number of thresholds to 
nt = 4 . As a result, for every directional sub-band, 
we get a 21 attribute. Hence, in total, we have 
21× 32(# of directional subbands) = 672 attributes for 
each, magnitude and RP.

(3)µp =

∑M
xc=1

∑N
yc=1 dp(xc, yc)

M · N

Fusion of feature sets
The aforementioned set of descriptors are examined 
individually for their robustness while being used for 
training a classifier. It is worth noting that each set of 
descriptors captures different intrinsic statistical infor-
mation. Therefore, we examine some combinations of 
our descriptors which we expect to improve the clas-
sification performance. We investigate the following 
combinations:

•	 Fusion #1: (CM + LBP + LOSIB + SFTA) descrip-
tors of Shearlet RP and/or magnitude.

•	 Fusion #2: (CM + LOSIB) descriptors of Shearlet 
RP and/or magnitude.

•	 Fusion #3: (CM + LBP + LOSIB) of Shearlet RP 
and (CM + LBP + SFTA + CM Dot Shearlet coef-
ficients [12]) of Shearlet magnitude.

The aforementioned combinations are selected based 
on the merit of the individual set of features leading to 
good classification results.

Principal component analysis (PCA) for feature reduction
In the previous section, we investigate feature fusion. 
Evidently, with the combination of different descrip-
tors, the number of features increases. Therefore, the 
best achieving fusion strategy is processed with PCA 
to find a reduced subspace. The PCA coefficients are 
rotated to maximize the orthomax criterion  [41], and 
to obtain a final basis with simple structure [42]. Being 
the principal components (PCs) rotated to maximize 
varimax, then they are utilized to project the combined 
descriptors to a decorrelated space.

Classification algorithms
In this work, we introduce a new enhanced technique 
for analysis and feature extraction from the Shearlet 
transform. We also analyze the performance of two 
classifiers for different tissue types and show that the 
classifier has a minimal effect once robust features are 
extracted. In particular, we consider one of widely used 
in many of bio-medical research: a Support Vector 
Machine (SVM). In addition to SVM, we consider one 
type of decision tree which is a Decision Tree Bagger 
(DTB)  [26] that has the trait of being non-parametric. 
As such, the distance between feature vectors is not 
computed in constructing decision trees. In contrast, 
SVM performance is based on kernels which can influ-
ence the classification performance [43]. Both SVM and 
DTB are briefly described below:
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Support vector machine (SVM)
In our study, we utilize a SVM with pairwise classifica-
tion (i.e., one-versus-one class decisions) [44]. Prior to 
training, we normalize all feature vectors to have equal 
mean and variance. The kernel function transforms the 
input data into a higher-dimensional feature represen-
tation, from which a hyperplane is formulated for clas-
sifying the input tissue dataset.

SVM training requires the solution of a quadratic pro-
gramming (QP) problem. To simplify the solution of 
the problem, a sequential minimal optimization (SMO) 
solver is used in our study [45]. This solver simplifies the 
QP into a smaller series of QP for the training of SVM.

SVM training is impacted by the choice of the kernel 
function. In our study, we choose a radial basis function 
as a kernel function as it universally approximates the 
training dataset accurately. Therefore, the regularization 
parameter (C) is the only remaining parameter that can 
be optimized. In the attempt of choosing the best value 
of C, trials of values between [1,  5] with an increment 
of 1 were conducted. We found that in general C = 5 
delivered the best classification performance on the test-
ing dataset. Therefore, the value of C = 5 is set for all of 
our experiments. More details about SVM can be found 
in [46].

Decision tree bagger (DTB)
DTB is an ensemble classifier where each classifier in 
the ensemble is a classic decision tree generated using a 
random selection of attributes at each node to determine 
the split as in a random forest [47]. DTB generates multi-
ple bootstraps (i.e., replicas of the training set) to train a 
decision tree with replacement from the provided train-
ing set. Thereafter, a bagging technique is used to com-
bine the results of several decision trees, as an advantage 
this minimizes the susceptibility to over-fitting.

Cross‑validation (CV)
We utilize cross-validation (CV) to obtain robust statisti-
cal results and to be able to generalize the classification 
results with each classification model. This approach is 
commonly used in the literature to examine a proposed 
technique. Therefore, our choice of the number of folds to 
split a dataset is based on previous studies. As such, the 
following dataset are divided using 10-fold CV:  multi-
class Kather’s(as Kather et  al.  [4]), Epistroma(as 
Ramalho et al. [48]), Warwick-QU(as Ribeiro et al. [7]).

The datasets are divided into mutually exclusive folds 
with approximately equal size (i.e., some of the datasets 
are imbalanced): 9-folds are used to build a model, and 
1-fold is used to test the model. The process is repeated 
10-times, such that the test set is different each time. 

Finally, the overall performance metrics are estimated 
by taking the mean from the tested 10 independently 
built models. However, the BreakHis dataset is split 
into 7-folds CV for training and testing as in a previous 
study [30].

Performance metric
To evaluate the performance of each built model, com-
monly used measures are computed in our study: accu-
racy (ACC), AUC (area under the receiver operating 
characteristic (ROC) curve), sensitivity (Sen), and Preci-
sion (Prec). The computation of each evaluation metric is 
calculated as follows:

•	 ACC = TP + TN/N  . This metric represents the 
test examples that are correctly classified over all 
the number of test examples available. As such, true 
positive (TP) and true negative (TN) are the correct 
examples, and N = (TP + TN )+ (FP + FN ) , where 
false positive and false negative are denoted as FP 
and FN, respectively.

•	 AUC: This metric relies on the plot of ROC (i.e., 
false-positive rate (=FP/(TN+FP)) on the x-axis 
against sensitivity on the y-axis). Therefore, the accu-
mulated area under the ROC curve yields the AUC 
value (i.e., between 0 & 1, where 1 is a good perform-
ing model).

•	 Sen = TP/(TP + FN ) measures the ability of a 
model to correctly predict the positive condition, 
when it is actually positive.

•	 Prec = TP/(TP + FP) measures the ability of a 
model to correctly identify positive cases.

Results and discussion
We first apply the Shearlet transform as detailed previ-
ously to four different datasets. We compute the RP and 
magnitude from the complex Shearlet coefficients. Then, 
to evaluate the strength of our proposed techniques, we 
utilize four commonly used measures for classification: 
ACC, AUC, Sen, and Prec.

In the literature, there exist descriptors extracted from 
multi-directional and multi-resolution wavelets (e.g., 
Shearlet, contourlet, and others). In this regard and to the 
best of our knowledge, we have implemented descriptors 
of previously published studies. These descriptors are 
applied on the transformed (i.e., using complex Shearlet 
transform) histopathological dataset:

•	 Vo et  al.  [8]: proposed to compute from the RP the 
circular mean and circular variance, but computed 
only the mean from the magnitude of the decom-
posed textured image while using a complex direc-
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tional filter bank. However, we adopt the same 
descriptors, but we compute them from each of the 
Shearlet directional sub-band and then concatenate 
them to form the feature vector.

•	 Meshkini and Ghassemian [12]: proposed first to find 
the magnitude of the Shearlet coefficients and gray-
level co-occurrence matrix. Then, the inner product 
of both is used as a feature vector.

•	 Zhou et  al.  [10]: proposed to compute three sets of 
descriptors from the magnitude coefficients only: 
(1) the co-occurrence matrix is computed (i.e., from 
which the following texture features are obtained: 
entropy, correlation, contrast and, energy) from 
the first layer only of the horizontal cone of Shear-
let transform; (2) the mean, variance, and energy are 
calculated from the Shearlet transform, only, from 
the first and third layer in the horizontal and verti-
cal cones; (3) The maximal values are obtained from 
each column only from the high-frequency of the 

Shearlet transform. Then, these three sets of descrip-
tors are concatenated to form the feature vector.

•	 Dong et  al.  [11]: proposed to calculate from the 
Shearlet magnitude coefficients the following statis-
tics: the mean and standard deviation. As such, these 
statistics are computed from each directional sub-
band and concatenated to form the feature vector of 
an image.

Part (1) in Figs. 3, 4, 5, and 6 presents the classification 
performance of the techniques as detailed above for 
Kather, BreakHis, Epistroma, and Warwick-QU data-
sets, respectively. Further, we provide the classification 
results in form of tables in the appendix (i.e., the vari-
ants shown in italic in Part (1) of the Tables 1, 2, 3, and 
4 are not examined in the original research papers but 
we have included them for comparison). We notice that 
utilizing both of the magnitude and RP of the Shear-
let transform enhance the classification performance 
irrespective of the classifier (i.e., SVM or DTB) model 

Fig. 3  Classification performance on Kather’s dataset

Fig. 4  Classification performance on BreakHis dataset
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and enhances the performance of other techniques. As 
such, the attributes proposed by Vo et  al., using both 
magnitude and RP, attain exceeding performance than 
other baseline techniques.

When utilizing the multi-class Kather’s dataset, 
our proposed descriptors computed from the Shear-
let coefficients of both magnitude and RP can accom-
plish reasonable accuracy between   82% to 86% when 
using an SVM model, but DTB yields accuracy spans 
only between   79% to 81% as presented in Part (2) of 
Fig.  3 (See Table  1). The highest AUC value = 0.9773 
is obtained while classifying Kather’s dataset utiliz-
ing LOSIB attributes coupled with the SVM model. 
Furthermore, we compute the Sen and Prec which the 
highest values are achieved using LOSIB coupled with 
SVM (i.e., 0.8632 & 0.8664, respectively). However, 
when incorporating various descriptors together, for 
instance Fusion #3 improves the accuracy about 6.22% 
points as presented in Part (3) of Fig. 3 & Table 1 when 
using an SVM model.

We outline the classification performance on the 
BreakHis dataset, such that we consider all four mag-
nification factors as one dataset (as seen in Fig.  4). We 
observe that SFTA has attained the highest accuracy of 
89.72% on the validation split (with a corresponding 
AUC = 0.9527, Sen = 0.8040, and Prec = 0.8593) while 
utilizing both magnitude and RP. As presented in Part 
(3) of Fig.  4 (See also Table  2), Fusion #1 has led to a 
higher accuracy of 91.28% (with an AUC = 0.9650, Sen 
= 0.8391, and Prec = 0.8775). Evidently, due to the high 
skewness in the BreakHis dataset, the classifier is biased 
toward the majority class (i.e., malignant cases) as it is 
observed with lower values in sensitivity and precision.

Similarly, we conduct our technique on the Epistroma 
dataset (results reported in Fig. 5 & Table 3). We observe 
when descriptors extracted from both, magnitude and 
RP, utilizing CM leads to an accuracy of 97.24% with 
AUC = 0.9917, Sen = 0.9733, and Prec = 0.9807. In Part 
(3), Fusion #3 enhances the accuracy to 97.46% with a 
AUC value = 0.9925, Sen = 0.9769, and Prec = 0.9809.

Fig. 5  Classification performance on epistroma dataset

Fig. 6  Classification performance on Warwick-QU dataset
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Moreover, the classification performance on Warwick-
QU are is presented in Fig.  6 (See also Table  4). Once 
more, CM textural features of both, magnitude and RP 
lead to the best accuracy of 95.70% (with correspond-
ing AUC = 0.9860, Sen = 0.9446, and Prec = 0.9589) of 
our proposed individual feature representation. Part (3) 
presents that Fusion #2 leads to the highest accuracy of 
96.29% with an AUC = 0.9860, Sen = 0.9571, and Prec = 
0.9589. It is worth noting that the outlined standard devi-
ations corresponding with classification performance on 
Warwick-QU dataset are higher than the other datasets 
because the number of validation examples of this data-
set is significantly smaller.

Further, Fig.  7 shows the classification performance 
while attempting to find a reduced set of our feature 
space for each dataset. In the previous sections, we have 
identified the best achieving fusion descriptors. There-
fore, we further process these descriptors with PCA. 
As such, we aim to retrieve the PCs that maintain or 
improve the classifier performance in comparison to 
using all attributes. We have established from Tables  1, 
2, 3 and 4 that the SVM model has strong capabilities to 
classify histopathological tissues which therefore cou-
pled with the best fusion of the corresponding dataset 
to find a reduced set of features. However, we are able to 

utilize a reduced set of descriptors to classify multi-class 
Kather’s dataset with an accuracy of 92.56%(±1.29%) 
(with a corresponding AUC = 0.9905(±0.0020) , Sen = 
0.9256(±0.0130) , and Prec = 0.9270(±0.0125) ) while 
using only 7500 descriptors (out of 7648) from Fusion 
#3. For classifying BreakHis dataset, a drastic pruning 
of descriptors (i.e., only 1750 out of 3776 are needed) 
while somewhat enhancing the classification accuracy 
to = 91.73%(±00.59%) with AUC = 0.9654(±0.0057) , 
Sen = 0.8363(±0.0188) , and Prec = 0.8936(±0.0169) . 
Again, the classification accuracy of Epistroma improves 
rather to 98.04%(±1.03%) with AUC = 0.9960(±0.0043) , 
Sen = 0.9867(±0.0120) , and Prec = 0.9809(±0.0136) 
when reducing the number of descriptors from 7648 to 
6400. Furthermore, to classify the Warwick-QU dataset, 
only 900 (out of 1792 attributes) are needed to achieve 
the highest accuracy of 96.29%(±7.89% ) with AUC = 
0.9860(±0.0353 ), Sen = 0.9571(±0.0964) , and Prec = 
0.9589(±0.0945) . For a completion for feature reduction, 
we provide the confusion matrices of each best perform-
ing SVM model while using the reduced set of features as 
shown in Fig. 8.

Furthermore, the complexity of histopathological 
images differs from one dataset to another. Although 
our proposed individual Shearlet-based descriptors are 
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capable of achieving reasonable accuracy across the four 
histopathological image datasets, the best fusion which 
can be used to achieve the highest potential accuracy 
classifying the histological image dataset is not always 
the same (as shown in Fig. 7). Considering Fusion #3 of 
our Shearlet-based descriptors expressed in the principal 
components, we can observe different patterns of clas-
sification performance while using an increment of 50 
PCs in Fig.  9. Therefore, our Shearlet-based descriptors 
appear to be general enough for any histological image 
analysis, and carefully choosing a type of fusion that 
maximize the recognition of the tissue type is sufficient.

In the literature exist state-of-the-art techniques that 
use the same datasets that we have used in our study. 
We report their results in this section to show that 

our proposed techniques are on par with those tech-
niques and achieve excellent performance when report-
ing performance in terms of accuracy and AUC. Our 
Shearlet-based descriptors can attain robust classifica-
tion performance in different scenarios; hence, it can be 
an appealing system in the clinical settings for medical 
image classification. In comparison, Wang et al. [15] pro-
posed to use a bilinear CNN model for classifying multi-
class Kather’s dataset. The reported accuracy was 92.6% 
(and AUC = 0.985). However, our proposed technique 
can achieve similar accuracy, yet better AUC = 0.9905.

When it comes to the BreakHis dataset, Jonnalagedda 
et al. [30] trained a CNN model with tumor nuclei infor-
mation while utilizing data augmentation. Jonnalagedda 
et  al. approach led to an accuracy of 92.2% (and AUC 
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= 0.92). Our approach on BreakHis dataset is efficient 
to achieve higher AUC value, but with somewhat lower 
accuracy.

When it comes to Epistroma dataset classification, 
Ramalho et al. [48] proposed a structural approach using 
co-occurrence statistics. Their approach led to an accu-
racy of ≈ 95%; our approach attains better classification 
accuracy.

In the case of Warwick-QU dataset classification, 
Ribeiro et al. [7] proposed to extract descriptors from the 
spatial and curvelet domain (i.e., Fractal measures and 
Haralick features) for which they report a higher AUC of 
0.994 but they did not report accuracy.

Evidently, our proposed descriptors compete with the 
state-of-the-art including those based on CNN in terms 
of classification accuracy and AUC. In contrast to the 
resource extensive CNN-based techniques, we hand-
engineer our descriptors, yet realize similar results. Our 
approach is based on different descriptors in the Shaer-
let domain which is capable of handling the scarcity 
of biomedical datasets. The highest accuracies in our 
study are obtained using an SVM model which is con-
sidered as a black box and the classifications made by 
such models are difficult to interpret and explain [28]. In 
addition to SVM, we explored DTB which is capable of 

achieving reasonable results, and might be a more favora-
ble approach in certain applications as they have higher 
interpretability  [49]. However, navigating through a rule 
to understand a decision made by a DTB is still a chal-
lenge since our main descriptors are computed based on 
Shearlet coefficients. Therefore, linking the computed 
statistical information from the Shearlet transform into a 
particular region of interest in a tissue type can be dif-
ficult. It is worth noting that our main concern in this 
study is to establish a robust approach for classifying his-
tological images.

Conclusion and future work
In this study, we have constructed a novel feature rep-
resentation for classifying histology tissues. Our tech-
nique integrates various sets of textural descriptors 
which are obtained in the complex Shearlet domain 
instead of directly computing the descriptors from the 
gray-level images. Those computed sets of descriptors 
are based on methods that capture local and global 
statistics: descriptors from the co-occurrence matrix, 
local binary patterns, local oriented statistic informa-
tion booster, and segmentation-based textural features. 
As a result, we exploit the multi-directionality and 
multi-resolution of complex Shearlet transform; hence, 
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we investigate the benefits of not only using the mag-
nitude but also the relative phase (RP) components of 
the complex Shearlet coefficients. We have concluded 
that in general using both the magnitude and RP can 
lead to rigorous and effective classification results for 
histopathological image datasets. We utilize PCA to 
obtain a reduced set of our proposed integrated fea-
ture representation in the Shearlet domain which on 
some dataset can reduce feature set size while main-
taining or increasing classification performance with 
traditional machine learning. We also show that the 
machine learning method has only limited influence on 
the results and hence it is possible to use DTB if desired 
because decisions of the classifier are considered inter-
pretable. Our proposed method attains state-of-the-art 
classification results on the four histopathological data-
sets that we have utilized in this research. Our expecta-
tion that our technique is capable to generalize also on 
other histopathological datasets.

In the future, we plan to further benchmark our pro-
posed techniques with different classification models 
(e.g., multilayer perceptron, Random Under Sampling 
Boost decision tree, and others). Additionally, we plan 
to investigate other feature reduction methodolo-
gies to aggressively reduce the number of descriptors 
without compromising the classification performance. 
Finally, the problem of a highly imbalanced dataset (i.e., 
observed in the BreakHis dataset) can be eliminated 
using sampling methods (e.g., Synthetic minority over-
sampling (SMOTE) technique) on the training dataset.
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Table 1  Classification performance on Kather dataset

The results shown in italic are of experiments that are not explored in the original research papers

The underlined classification results represent the highest results for each corresponding section

Method Perf RP + Magnitude RP Magnitude

SVM DTB SVM DTB SVM DTB

(1): Baseline performance of existing Shearlet-based methods

Vo et al. ACC% 82.34%± 1.87% 79.42%± 1.27% 78.46%± 2.11% 75.22%± 2.17% 71.10%± 1.65% 68.28%± 1.09%

AUC​ 0.9658± 0.0038 0.9646± 0.0038 0.9545± 0.0049 0.9552± 0.0066 0.9283± 0.0092 0.9340± 0.0036

Sen 0.8234± 0.0186 0.7943± 0.0127 0.7846± 0.0212 0.7522± 0.0218 0.7111± 0.0161 0.6828± 0.0107

Prec 0.8263± 0.0191 0.7961± 0.0131 0.7858± 0.0218 0.7568± 0.0213 0.7102± 0.0180 0.6826± 0.0131

Meshkini and 
Ghassemian

ACC% 80.06%± 1.54% 83.06%± 1.33% 37.72%± 1.78% 77.84%± 1.17% 83.38%± 1.81% 83.74%± 1.79%

AUC​ 0.9648± 0.0055 0.9800± 0.0081 0.7553± 0.0115 0.9649± 0.0028 0.9738± 0.0036 0.9816± 0.0027

Sen 0.8006± 0.0154 0.8307± 0.0134 0.3772± 0.0179 0.7784± 0.0117 0.8338± 0.0181 0.8374± 0.0179

Prec 0.8111± 0.0128 0.8325± 0.0124 0.4338± 0.0193 0.7792± 0.0105 0.8385± 0.0170 0.8400± 0.0168

Zhou et al. ACC% 64.26%± 2.20% 67.78%± 1.38% 51.34%± 2.35% 54.68%± 1.79% 60.06%± 1.43% 64.42%± 1.82%

AUC​ 0.9016± 0.0074 0.9337± 0.0051 0.8519± 0.0104 0.8846± 0.0045 0.8764± 0.0050 0.9132± 0.0061

Sen 0.6425± 0.0222 0.6778± 0.0138 0.5134± 0.0233 0.5468± 0.0177 0.6006± 0.0143 0.6442± 0.0183

Prec 0.6494± 0.0240 0.6842± 0.0208 0.5112± 0.0235 0.5540± 0.0210 0.6182± 0.0198 0.6511± 0.0197

Dong et al. ACC% 81.10%± 1.90% 77.50%± 1.17% 70.66%± 1.81% 72.10%± 0.97% 76.62%± 1.86% 72.08%± 1.65%

AUC​ 0.9621± 0.0046 0.9620± 0.0033 0.9297± 0.0082 0.9457± 0.0037 0.9504± 0.0063 0.9448± 0.0046

Sen 0.8110± 0.0188 0.7751± 0.0116 0.7066± 0.0179 0.7210± 0.0100 0.7662± 0.0185 0.7207± 0.0166

Prec 0.8146± 0.0187 0.7753± 0.0140 0.7114± 0.0187 0.7263± 0.0106 0.7681± 0.0190 0.7210± 0.0172

(2): Proposed Shearlet-based methods for textured bio-medical image classification

CM ACC% 86.24%± 1.27% 80.98%± 1.54% 82.82%± 1.47% 78.48%± 1.30% 80.28%± 1.64% 76.30%± 1.16%

AUC​ 0.9761± 0.0027 0.9712± 0.0031 0.9697± 0.0035 0.9636± 0.0046 0.9603± 0.0039 0.9568± 0.0051

Sen 0.8624± 0.0128 0.8098± 0.0155 0.8282± 0.0148 0.7849± 0.01274 0.8028± 0.0166 0.7630± 0.0114

Prec 0.8649± 0.0130 0.8127± 0.0141 0.8322± 0.0147 0.7884± 0.0115 0.8037± 0.0157 0.7642± 0.0127

LBP ACC% 84.24%± 0.91% 77.90%± 1.75% 81.36%± 1.16% 75.10%± 2.20% 79.36%± 1.39% 75.38%± 1.71%

AUC​ 0.9724± 0.0026 0.9630± 0.0043 0.9649± 0.0039 0.9559± 0.0053 0.9590± 0.0037 0.9541± 0.0064

Sen 0.8424± 0.0092 0.7791± 0.0174 0.8136± 0.0115 0.7511± 0.0216 0.7936± 0.0140 0.7537± 0.0172

Prec 0.8454± 0.0106 0.7829± 0.0185 0.8171± 0.0129 0.7551± 0.0231 0.7964± 0.0131 0.7573± 0.0164

LOSIB ACC% 86.32%± 1.36% 79.78%± 2.11% 82.36%± 1.82% 79.76%± 1.35% 76.52%± 1.69% 71.24%± 1.01%

AUC​ 0.9773± 0.0021 0.9703± 0.0046 0.9671± 0.0045 0.9689± 0.0024 0.9495± 0.0048 0.9402± 0.0037

Sen 0.8632± 0.0134 0.7978± 0.0209 0.8236± 0.0180 0.7976± 0.0136 0.7653± 0.0169 0.7124± 0.0098

Prec 0.8664± 0.0128 0.8017± 0.0216 0.8274± 0.0169 0.8008± 0.0127 0.7672± 0.0191 0.7128± 0.0123

SFTA ACC% 82.92%± 1.41% 78.24%± 1.21% 78.10%± 1.43% 75.04%± 1.44% 79.72%± 1.07% 75.42%± 2.23%

AUC​ 0.9682± 0.0030 0.9645± 0.0035 0.9554± 0.0031 0.9570± 0.0047 0.9597± 0.0032 0.9574± 0.0054

Sen 0.8292± 0.0143 0.7825± 0.0124 0.7810± 0.0141 0.7504± 0.0144 0.7972± 0.0110 0.7543± 0.0224

Prec 0.8331± 0.0139 0.7845± 0.0117 0.7877± 0.0144 0.7539± 0.0133 0.7986± 0.0109 0.7587± 0.0248

(3): Integrating Shearlet-based existing techniques with our proposed methods

Fusion #1 ACC% 87.54%± 1.85% 81.40%± 1.21% 85.32%± 1.72% 80.30%± 1.52% 83.92%± 1.84% 77.76%± 1.21%

AUC​ 0.9823± 0.0042 0.9734± 0.0019 0.9774± 0.0043 0.9707± 0.0024 0.9740± 0.0049 0.9619± 0.0031

Sen 0.8755± 0.0186 0.8141± 0.0122 0.8533± 0.0173 0.8029± 0.0155 0.8392± 0.0185 0.7776± 0.0121

Prec 0.8764± 0.0189 0.8154± 0.0135 0.8539± 0.0179 0.8078± 0.0153 0.8397± 0.0178 0.7798± 0.0127

Fusion #2 ACC% 88.46%± 1.14% 82.28%± 1.46% 85.14%± 1.05% 80.26%± 2.11% 83.54%± 1.30% 77.20%± 1.92%

AUC​ 0.9804± 0.0023 0.9746± 0.0034 0.9749± 0.0029 0.9699± 0.0049 0.9693± 0.0033 0.9606± 0.0040

Sen 0.8846± 0.0113 0.8228± 0.0148 0.8514± 0.0105 0.8026± 0.0211 0.8354± 0.0133 0.7720± 0.0195

Prec 0.8874± 0.0108 0.8253± 0.0149 0.8551± 0.0107 0.8070± 0.0198 0.8375± 0.0130 0.7744± 0.0182

Fusion #3 ACC% 92.54%± 1.32% 88.60%± 2.03% - - - -

AUC​ 0.9906± 0.0019 0.9900± 0.0020 - - - -

Sen 0.9254± 0.0132 0.8860± 0.0203 - - - -

Prec 0.9267± 0.0129 0.8881± 0.0194 - - - -
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Table 2  Classification performance on BreakHis dataset

The results shown in italic are of experiments that are not explored in the original research papers

The underlined classification results represent the highest results for each corresponding section

Method Perf RP + Magnitude RP Magnitude

SVM DTB SVM DTB SVM DTB

(1): Baseline performance of existing Shearlet-based methods

Vo et al. ACC% 85.69%± 1.18% 80.65%± 1.05% 83.63%± 0.99% 78.95%± 0.74% 76.10%± 0.66% 76.52%± 0.64%

AUC​ 0.9121± 0.0053 0.8687± 0.0079 0.8915± 0.0103 0.8443± 0.0183 0.7717± 0.0123 0.7926± 0.0175

Sen 0.7210± 0.0276 0.4855± 0.0346 0.6766± 0.0231 0.4496± 0.0157 0.4698± 0.0213 0.4056± 0.0301

Prec 0.8035± 0.0301 0.8268± 0.0296 0.7732± 0.0201 0.7881± 0.0208 0.6701± 0.0192 0.7247± 0.0159

Meshkini and 
Ghassemian

ACC% 78.06%± 0.80% 79.43%± 1.09% 77.33%± 1.23% 79.76%± 0.71% 76.44%± 0.96% 77.46%± 0.85%

AUC​ 0.8339± 0.0030 0.8523± 0.0055 0.8111± 0.0086 0.8579± 0.0078 0.7991± 0.0139 0.8357± 0.0112

Sen 0.5177± 0.0194 0.4927± 0.0213 0.4899± 0.0291 0.4980± 0.0237 0.4722± 0.0232 0.4218± 0.0246

Prec 0.7049± 0.0223 0.7688± 0.0313 0.6973± 0.0284 0.7779± 0.0300 0.6788± 0.0215 0.7496± 0.0181

Zhou et al. ACC% 68.66%± 1.23% 70.21%± 0.36% 65.20%± 1.47% 69.64%± 0.47% 66.47%± 0.88% 70.58%± 0.49%

AUC​ 0.6426± 0.0245 0.6781± 0.0173 0.5832± 0.0193 0.6154± 0.0116 0.6022± 0.0198 0.6709± 0.0165

Sen 0.2875± 0.0310 0.0677± 0.0139 0.2290± 0.0273 0.0456± 0.0096 0.2415± 0.0326 0.0956± 0.0123

Prec 0.4996± 0.0357 0.7915± 0.0314 0.4035± 0.0391 0.7728± 0.1106 0.4361± 0.0291 0.7436± 0.0687

Dong et al. ACC% 79.49%± 1.39% 78.40%± 0.54% 73.54%± 1.61% 75.58%± 0.78% 78.40 ± 1.20% 77.56%± 0.97%

AUC​ 0.8390± 0.0163 0.8359± 0.0110 0.7641± 0.0172 0.8018± 0.0069 0.8090± 0.0114 0.8082± 0.0156

Sen 0.5980± 0.0342 0.4360± 0.0139 0.4860± 0.0312 0.3328± 0.0327 0.5176± 0.0270 0.4380± 0.0129

Prec 0.7077± 0.0226 0.7855± 0.0169 0.6011± 0.0324 0.7600± 0.0155 0.7204± 0.0243 0.7480± 0.0307

(2): Proposed Shearlet-based methods for textured bio-medical image classification

CM ACC% 87.26%± 1.18% 79.33%± 1.17% 86.93%± 0.75% 79.95%± 0.39% 78.85%± 1.42% 75.08%± 0.80%

AUC​ 0.9365± 0.0104 0.8679± 0.0134 0.9283± 0.0052 0.8687± 0.0085 0.8350± 0.0143 0.7823± 0.0148

Sen 0.7391± 0.0286 0.4137± 0.0351 0.7520± 0.0242 0.4677± 0.0188 0.5649± 0.0371 0.2911± 0.0208

Prec 0.8358± 0.0230 0.8500± 0.0270 0.8166± 0.0108 0.8140± 0.0164 0.7021± 0.0253 0.7717± 0.0274

LBP ACC% 89.51%± 0.69% 81.63%± 0.96% 87.15%± 0.51% 79.58%± 1.05% 86.07%± 1.04% 80.01%± 1.11%

AUC​ 0.9477± 0.0043 0.8905± 0.0101 0.9296± 0.0054 0.8665± 0.0131 0.9153± 0.0080 0.8630± 0.0075

Sen 0.7964± 0.0233 0.5081± 0.0180 0.7508± 0.0173 0.4484± 0.0305 0.7177± 0.0355 0.4641± 0.0296

Prec 0.8590± 0.0149 0.8444± 0.0299 0.8241± 0.0126 0.8182± 0.0212 0.8158± 0.0132 0.8200± 0.0219

LOSIB ACC% 87.81%± 0.63% 80.63%± 1.03% 85.78%± 0.52% 78.94%± 1.47% 80.31%± 1.09% 78.49%± 0.90%

AUC​ 0.9295± 0.0056 0.8771± 0.0073 0.9092± 0.0042 0.8516± 0.0174 0.8486± 0.0085 0.8206± 0.0119

Sen 0.7585± 0.0252 0.4972± 0.0225 0.7234± 0.0177 0.4315± 0.0284 0.5665± 0.0274 0.4617± 0.0170

Prec 0.8380± 0.0163 0.8121± 0.0220 0.8036± 0.0116 0.8071± 0.0436 0.7447± 0.0220 0.7580± 0.0247

SFTA ACC% 89.72%± 0.63% 81.83%± 0.79% 87.95%± 0.57% 79.90%± 1.20% 83.53%± 1.04% 80.39%± 1.14%

AUC​ 0.9527± 0.0055 0.8880± 0.0071 0.9393± 0.0065 0.8769± 0.0070 0.8943± 0.0090 0.8424± 0.0158

Sen 0.8040± 0.0243 0.4992± 0.0265 0.7701± 0.0239 0.4601± 0.0251 0.6645± 0.0332 0.4665± 0.0220

Prec 0.8593± 0.0112 0.8641± 0.0137 0.8332± 0.0112 0.8197± 0.0324 0.7787± 0.0264 0.8355± 0.0323

(3): Integrating Shearlet-based existing techniques with our proposed methods

Fusion #1 ACC% 91.28%± 0.51% 81.78%± 0.73% 89.58%± 0.83% 80.98%± 0.71% 87.29%± 0.37% 80.30%± 0.62%

AUC​ 0.9650± 0.0031 0.8981± 0.0053 0.9515± 0.0031 0.8853± 0.0102 0.9346± 0.0051 0.8719± 0.0084

Sen 0.8391± 0.0147 0.5085± 0.0087 0.8121± 0.0119 0.4855± 0.0252 0.7561± 0.0214 0.4504± 0.0163

Prec 0.8775± 0.0120 0.8508± 0.0259 0.8495± 0.0219 0.8412± 0.0185 0.8244± 0.0094 0.8516± 0.0198

Fusion #2 ACC% 89.33%± 0.61% 80.33%± 0.89% 87.82%± 0.36% 80.24%± 0.84% 83.23%± 0.93% 77.80%± 0.51%

AUC​ 0.9503± 0.0053 0.8763± 0.0138 0.9354± 0.0037 0.8742± 0.0072 0.8872± 0.0098 0.8446± 0.0071

Sen 0.7964± 0.0245 0.4544± 0.0202 0.7690± 0.0132 0.4726± 0.0171 0.6536± 0.0155 0.3694± 0.0173

Prec 0.8537± 0.0105 0.8471± 0.0213 0.8304± 0.0098 0.8216± 0.0252 0.7770± 0.0256 0.8270± 0.0170

Fusion #3 ACC% 90.10%± 0.87% 85.08%± 0.80% - - - -

AUC​ 0.9560± 0.0053 0.9256± 0.0065 - - - -

Sen 0.8028± 0.0113 0.5992± 0.0175 - - - -

Prec 0.8723± 0.0281 0.8887± 0.0161 - - - -
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Table 3  Classification performance on Epistroma dataset

The results shown in italic are of experiments that are not explored in the original research papers

The underlined classification results represent the highest results for each corresponding section

Method Perf RP + Magnitude RP Magnitude

SVM DTB SVM DTB SVM DTB

(1): Baseline performance of existing Shearlet-based methods

Vo et al. ACC% 96.44%± 1.47% 95.42%± 1.03% 95.50%± 1.52% 94.26%± 1.95% 94.48%± 1.54% 94.26%± 1.35%

AUC​ 0.9895± 0.0082 0.9897± 0.0047 0.9873± 0.0078 0.9839± 0.0087 0.9830± 0.0083 0.9763± 0.0102

Sen 0.9685± 0.0131 0.9443± 0.0162 0.9685± 0.0117 0.9467± 0.0268 0.9588± 0.0182 0.9564± 0.0152

Prec 0.9722± 0.0170 0.9787± 0.0083 0.9577± 0.0260 0.9576± 0.0220 0.9501± 0.0219 0.9487± 0.0193

Meshkini and 
Ghassemian

ACC% 96.08%± 1.24% 96.29%± 1.86% 95.35%± 1.37% 96.37%± 2.30% 95.35%± 1.49% 96.44%± 2.20%

AUC​ 0.9926± 0.0046 0.9929± 0.0041 0.9887± 0.0058 0.9919± 0.0077 0.9899± 0.0050 0.9908± 0.0068

Sen 0.9710± 0.0190 0.9600± 0.0222 0.9685± 0.0207 0.9600± 0.0269 0.9722± 0.0161 0.9564± 0.0274

Prec 0.9642± 0.0169 0.9778± 0.0151 0.9550± 0.0183 0.9791± 0.0184 0.9517± 0.0186 0.9840± 0.0181

Zhou et al. ACC% 89.68%± 1.33% 88.30%± 2.68% 81.69%± 2.53% 79.65%± 3.11% 84.45%± 2.98% 87.13%± 2.95%

AUC​ 0.9506± 0.0158 0.9400± 0.0223 0.8748± 0.0222 0.8721± 0.0367 0.9110± 0.0194 0.9416± 0.0244

Sen 0.9370± 0.0219 0.9103± 0.0287 0.8934± 0.0363 0.8666± 0.0343 0.9236± 0.0141 0.9102± 0.0327

Prec 0.8961± 0.0183 0.8968± 0.0275 0.8186± 0.0251 0.8088± 0.0301 0.8357± 0.0330 0.8799± 0.0282

Dong et al. ACC% 95.72%± 1.54% 95.28%± 1.66% 94.84%± 1.59% 93.39%± 2.11% 95.86%± 1.32% 93.75%± 1.15%

AUC​ 0.9882± 0.0071 0.9837± 0.0089 0.9836± 0.0071 0.9776± 0.0132 0.9884± 0.0082 0.9836± 0.0101

Sen 0.9551± 0.0162 0.9503± 0.0271 0.9503± 0.0218 0.9187± 0.0300 0.9685± 0.0103 0.9600± 0.0182

Prec 0.9735± 0.0227 0.9707± 0.0178 0.9637± 0.0211 0.9697± 0.0201 0.9630± 0.0194 0.9381± 0.0231

(2): Proposed Shearlet-Based Methods For Textured Bio-medical Image Classification

CM ACC% 97.24%± 1.27% 94.41%± 1.48% 96.66%± 1.14% 94.99%± 1.43% 96.00%± 1.30% 94.19%± 2.19%

AUC​ 0.9917± 0.0067 0.9819± 0.0126 0.9925± 0.0064 0.9828± 0.0116 0.9863± 0.0087 0.9828± 0.0091

Sen 0.9733± 0.0126 0.9419± 0.0258 0.9672± 0.0129 0.9503± 0.0134 0.9636± 0.0163 0.9418± 0.0294

Prec 0.9807± 0.0150 0.9646± 0.0202 0.9769± 0.0130 0.9658± 0.0175 0.9696± 0.0116 0.9607± 0.0186

LBP ACC% 95.64%± 1.32% 95.57%± 2.04% 95.50%± 1.06% 94.04%± 1.56% 95.71%± 1.39% 93.90%± 1.75%

AUC​ 0.9890± 0.0073 0.9905± 0.0069 0.9871± 0.0076 0.9850± 0.0054 0.9876± 0.0088 0.9800± 0.0113

Sen 0.9624± 0.0146 0.9479± 0.0261 0.9661± 0.0178 0.9394± 0.0221 0.9600± 0.0153 0.9406± 0.0239

Prec 0.9653± 0.0203 0.9779± 0.0210 0.9594± 0.0133 0.9607± 0.0176 0.9687± 0.0206 0.9573± 0.0194

LOSIB ACC% 96.29%± 1.47% 95.13%± 1.61% 95.50%± 1.32% 96.65%± 1.51% 95.35%± 1.85% 93.10%± 1.29%

AUC​ 0.9900± 0.0069 0.9870± 0.0074 0.9868± 0.0073 0.9911± 0.0065 0.9892± 0.0087 0.9825± 0.0103

Sen 0.9733± 0.0096 0.9454± 0.0245 0.9721± 0.0152 0.9624± 0.0218 0.9758± 0.0141 0.9503± 0.0276

Prec 0.9656± 0.0215 0.9729± 0.0179 0.9541± 0.0203 0.9816± 0.0132 0.9487± 0.0239 0.9362± 0.0194

SFTA ACC% 95.71%± 1.54% 93.90%± 1.81% 95.28%± 2.16% 91.57%± 1.91% 94.33%± 1.52% 92.01%± 2.07%

AUC​ 0.9881± 0.0064 0.9841± 0.0106 0.9870± 0.0068 0.9775± 0.0093 0.9824± 0.0080 0.9732± 0.0125

Sen 0.9661± 0.0137 0.9297± 0.0282 0.9624± 0.0145 0.9006± 0.0265 0.9636± 0.0114 0.9455± 0.0221

Prec 0.9628± 0.0169 0.9676± 0.0184 0.9593± 0.0233 0.9572± 0.0266 0.9438± 0.024 0.9232± 0.0178

(3): Integrating Shearlet-based existing techniques with our proposed methods

Fusion #1 ACC% 96.59%± 1.24% 95.93%± 1.95% 96.37%± 1.14% 94.98%± 0.73% 95.71%± 1.25% 95.13%± 1.37%

AUC​ 0.9889± 0.0111 0.9910± 0.0070 0.9889± 0.0103 0.9838± 0.0131 0.9877± 0.0104 0.9841± 0.0104

Sen 0.9612± 0.0126 0.9624± 0.0224 0.9612± 0.0179 0.9406± 0.0194 0.9563± 0.0155 0.9503± 0.0201

Prec 0.9816± 0.0140 0.9696± 0.0175 0.9780± 0.0135 0.9752± 0.0139 0.9721± 0.0185 0.9682± 0.0172

Fusion #2 ACC% 97.09%± 1.49% 94.98%± 1.56% 96.37%± 1.45% 95.86%± 2.11% 96.73%± 1.33% 95.28%± 1.54%

AUC​ 0.9910± 0.0099 0.9829± 0.0111 0.9908± 0.0092 0.9884± 0.0113 0.9892± 0.0097 0.9872± 0.0106

Sen 0.9660± 0.0205 0.9382± 0.0211 0.9600± 0.0182 0.9527± 0.0271 0.9685± 0.0192 0.9612± 0.0124

Prec 0.9853± 0.0111 0.9778± 0.0213 0.9791± 0.0128 0.9779± 0.0201 0.9771± 0.0158 0.9607± 0.0250

Fusion #3 ACC% 97.46%± 1.24% 96.22%± 1.60% - - - -

AUC​ 0.9925± 0.0093 0.9920± 0.0047 - - - -

Sen 0.9769± 0.0156 0.9551± 0.0229 - - - -

Prec 0.9809± 0.0165 0.9814± 0.0103 - - - -
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Table 4  Classification performance on Warwick-QU dataset

The results shown in italic are of experiments that are not explored in the original research papers

The underlined classification results represent the highest results for each corresponding section

Method Perf RP + Magnitude RP Magnitude

SVM DTB SVM DTB SVM DTB

(1): Baseline performance of existing Shearlet-based methods

Vo et al. ACC% 93.35%± 5.23% 86.14%± 6.10% 92.13%± 8.53% 85.55%± 6.83% 73.31%± 11.27% 73.97%± 12.26%

AUC​ 0.9802± 0.0351 0.9362± 0.0347 0.9829± 0.0345 0.9338± 0.0437 0.8157± 0.0998 0.8163± 0.1047

Sen 0.8929± 0.1349 0.8804± 0.1107 0.8661± 0.1661 0.8018± 0.1201 0.6750± 0.1976 0.6625± 0.1872

Prec 0.9639± 0.0583 0.8294± 0.0786 0.9579± 0.0690 0.8696± 0.0766 0.7256± 0.1569 0.7324± 0.1391

Meshkini and 
Ghassemian

ACC% 82.54%± 8.52% 87.90%± 6.25% 86.14%± 7.25% 84.23%± 9.54% 81.95%± 8.73% 84.38%± 8.86%

AUC​ 0.9462± 0.0326 0.9331± 0.0592 0.9293± 0.0512 0.8800± 0.0676 0.9013± 0.0455 0.9329± 0.0546

Sen 0.7214± 0.1475 0.7821± 0.1380 0.7589± 0.1892 0.7286± 0.1828 0.7196± 0.1409 0.8196± 0.1896

Prec 0.8707± 0.0937 0.9389± 0.0811 0.9324± 0.0921 0.8973± 0.1164 0.8574± 0.1125 0.8519± 0.1161

Zhou et al. ACC% 63.60%± 7.56% 75.85%± 8.72% 55.15%± 8.52% 67.76%± 10.21% 58.79%± 6.61% 72.21%± 9.57%

AUC​ 0.6752± 0.1375 0.8544± 0.1017 0.5771± 0.1091 0.6769± 0.1280 0.6006± 0.1252 0.7699± 0.1103

Sen 0.4571± 0.1358 0.5964± 0.1550 0.4054± 0.1296 0.4804± 0.1944 0.3375± 0.1814 0.5821± 0.1092

Prec 0.6442± 0.1660 0.8349± 0.1336 0.5157± 0.1430 0.6812± 0.1553 0.5764± 0.1998 0.7665± 0.1601

Dong et al. ACC% 91.58%± 6.33% 86.07%± 11.08% 79.96%± 6.46% 83.57%± 12.54% 83.13%± 5.94% 75.74%± 5.06%

AUC​ 0.9777± 0.0372 0.9345± 0.0743 0.9234± 0.0547 0.9297± 0.0829 0.9342± 0.0507 0.8575± 0.0826

Sen 0.9589± 0.0663 0.8125± 0.1831 0.8089± 0.1007 0.7536± 0.2074 0.8143± 0.1381 0.6625± 0.1112

Prec 0.8844± 0.1172 0.8661± 0.1076 0.7673± 0.0976 0.8843± 0.1575 0.8252± 0.0942 0.7731± 0.0968

(2): Proposed Shearlet-based methods for textured bio-medical image classification

CM ACC% 95.70%± 7.80% 86.76%± 5.35% 92.61%± 8.25% 84.82%± 8.92% 85.40%± 6.56% 78.20%± 13.74%

AUC​ 0.9860± 0.0353 0.9427± 0.0347 0.9709± 0.0457 0.9372± 0.0451 0.9440± 0.0462 0.8992± 0.0653

Sen 0.9446± 0.0983 0.8679± 0.1226 0.9304± 0.0736 0.7946± 0.1404 0.7946± 0.0782 0.7214± 0.2090

Prec 0.9589± 0.0945 0.8483± 0.0682 0.9181± 0.1222 0.8691± 0.1277 0.8708± 0.1060 0.7756± 0.1485

LBP ACC% 88.49%± 5.25% 86.69%± 7.24% 84.12%± 7.49% 80.00%± 11.99% 89.71%± 9.45% 82.43%± 8.30%

AUC​ 0.9592± 0.0544 0.9418± 0.0416 0.9500± 0.0670 0.8944± 0.0836 0.9419± 0.0538 0.9248± 0.0388

Sen 0.8821± 0.1152 0.7982± 0.1223 0.8518± 0.1021 0.7625± 0.1762 0.8946± 0.1305 0.7304± 0.1685

Prec 0.8770± 0.0955 0.9000± 0.0905 0.8292± 0.1426 0.7921± 0.1434 0.8825± 0.1080 0.8649± 0.1017

LOSIB ACC% 92.57%± 9.24% 87.21%± 5.39% 89.52%± 7.85% 87.43%± 10.53% 79.34%± 5.33% 76.80%± 10.66%

AUC​ 0.9798± 0.0395 0.9346± 0.0432 0.9671± 0.0554 0.9344± 0.0570 0.9153± 0.0601 0.8679± 0.0907

Sen 0.9446± 0.0983 0.7964± 0.1155 0.8464± 0.1258 0.8411± 0.1442 0.7732± 0.1465 0.7125± 0.1685

Prec 0.9042± 0.1255 0.9177± 0.0902 0.9264± 0.1119 0.8792± 0.1265 0.7983± 0.1328 0.7579± 0.1123

SFTA ACC% 94.52%± 7.47% 87.76%± 5.95% 92.68%± 7.06% 84.23%± 10.17% 85.99%± 7.09% 82.39%± 6.18%

AUC​ 0.9846± 0.0350 0.9353± 0.0469 0.9739± 0.0416 0.9192± 0.0937 0.9515± 0.0410 0.9119± 0.0692

Sen 0.9196± 0.0968 0.8196± 0.1576 0.9179± 0.0710 0.7821± 0.1301 0.7946± 0.0979 0.8286± 0.1203

Prec 0.9589± 0.0945 0.9107± 0.0869 0.9246± 0.1059 0.8767± 0.1447 0.8798± 0.0881 0.8186± 0.1372

(3): Integrating Shearlet-based existing techniques with our proposed methods

Fusion #1 ACC% 95.11%± 7.67% 88.42%± 7.84% 92.65%± 8.26% 92.06%± 7.23% 87.83%± 5.07% 79.45%± 10.88%

AUC​ 0.9860± 0.0353 0.9527± 0.0475 0.9721± 0.0511 0.9645± 0.0603 0.9651± 0.0302 0.8867± 0.0704

Sen 0.9321± 0.0985 0.8750± 0.0807 0.9321± 0.0718 0.9196± 0.0968 0.8661± 0.0597 0.7429± 0.1543

Prec 0.9589± 0.0945 0.8833± 0.1277 0.9181± 0.1222 0.9125± 0.1006 0.8724± 0.0991 0.8111± 0.1621

Fusion #2 ACC% 96.29%± 7.89% 90.99%± 7.13% 92.02%± 7.86% 90.81%± 8.42% 87.79%± 5.90% 79.26%± 8.62%

AUC​ 0.9860± 0.0353 0.9580± 0.0446 0.9734± 0.0525 0.9696± 0.0369 0.9601± 0.0322 0.8843± 0.0919

Sen 0.9571± 0.0964 0.9232± 0.0887 0.9304± 0.0736 0.9446± 0.0983 0.8786± 0.0436 0.7411± 0.1399

Prec 0.9589± 0.0945 0.8913± 0.1026 0.9069± 0.1189 0.8783± 0.1274 0.8682± 0.1247 0.7994± 0.1370

Fusion #3 ACC% 94.49%± 7.47% 85.48%± 9.86% - - - -

AUC​ 0.9860± 0.0353 0.9523± 0.0570 - - - -

Sen 0.9304± 0.0998 0.8161± 0.1473 - - - -

Prec 0.9478± 0.0957 0.8718± 0.1454 - - - -
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