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Despite efforts to develop novel treatment strategies, refractory and relapsing

sarcoma, and high-risk neuroblastoma continue to have poor prognoses and limited

overall survival. Monocyte-derived dendritic cell (DC)-based anti-cancer immunotherapy

represents a promising treatment modality in these neoplasias. A DC-based anti-cancer

vaccine was evaluated for safety in an academic phase-I/II clinical trial for children,

adolescents, and young adults with progressive, recurrent, or primarily metastatic

high-risk tumors, mainly sarcomas and neuroblastomas. The DC vaccine was loaded

with self-tumor antigens obtained from patient tumor tissue. DC vaccine quality was

assessed in terms of DC yield, viability, immunophenotype, production of IL-12 and

IL-10, and stimulation of allogenic donor T-cells and autologous T-cells in allo-MLR

and auto-MLR, respectively. Here, we show that the outcome of the manufacture of

DC-based vaccine is highly variable in terms of both DC yield and DC immunostimulatory

properties. In 30% of cases, manufacturing resulted in a product that failed to meet

medicinal product specifications and therefore was not released for administration to a

patient. Focusing on the isolation of monocytes and the pharmacotherapy preceding

monocyte harvest, we show that isolation of monocytes by elutriation is not superior to

adherence on plastic in terms of DC yield, viability, or immunostimulatory capacity. Trial

patients having undergone monocyte-interfering pharmacotherapy prior to monocyte

harvest was associated with an impaired DC-based immunotherapy product outcome.
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Certain combinations of anti-cancer treatment resulted in a similar pattern of inadequate

DC parameters, namely, a combination of temozolomide with irinotecan was associated

with DCs showing poor maturation and decreased immunostimulatory features, and

a combination of pazopanib, topotecan, and MTD-based cyclophosphamide was

associated with poor monocyte differentiation and decreased DC immunostimulatory

parameters. Searching for a surrogate marker predicting an adverse outcome of DC

manufacture in the peripheral blood complete blood count prior to monocyte harvest,

we observed an association between an increased number of immature granulocytes in

peripheral blood and decreased potency of the DC-based product as quantified by allo-

MLR. We conclude that the DC-manufacturing yield and the immunostimulatory quality

of anti-cancer DC-based vaccines generated from the monocytes of patients were not

influenced by the monocyte isolation modality but were detrimentally affected by the

specific combination of anti-cancer agents used prior to monocyte harvest.

Keywords: dendritic cells, anti-cancer medications, sarcoma, neuroblastoma, cell-based medicinal products,

investigator-initiated clinical trial, manufacturing outcome variability

INTRODUCTION

Several progressive and relapsing malignancies in pediatric
patients have dismal life prognosis. Refractory neuroblastoma
and refractory or metastatic sarcoma have an especially poor
prognosis, with no consistently curative treatments available.
Oberlin et al. (1) published a meta-analysis of North American
and European studies on primary metastatic sarcomas and well-
defined risk factors that—where two or more are present at
presentation—distribute patients into a subgroup with only a
14% event-free and overall survival probability at 3 years from
diagnosis. Patients over 10 years of age with limb primary
or “other site” primary tumors with the alveolar subtype
of rhabdomyosarcoma, bone marrow or bone involvements,
and more than three metastatic sites are defined as having
markers for a worse prognosis (1). Similar results were
published in a study of relapsed rhabdomyosarsomas, with
the prognosis for survival being < 10% at 5 years (2). In
high-risk neuroblastoma, survival after relapse is poor, and
the usual life expectancy is < 6 months. Based on our
experience, patients with neuroblastomas with a high MIBG
score after induction therapy have very poor 2-year survival (3).
High-risk rhabdomyosarcomas are treated according to several
globally accepted protocols with a combination of chemotherapy,
surgery, and radiotherapy. Chemotherapy regimens consist
of the alkylating agent ifosfamide or cyclophosphamide and
vinca alkaloids combined with either etoposide or doxorubicin
and actinomycin D. The cytotoxic chemotherapy regimens
for relapsed and refractory neuroblastoma typically use a
combination of camptothecins, topotecan, and irinotecan with
agents such as cyclophosphamide and temozolomide, and
achieve objective tumor responses but poor long-term outcomes.
For such poor-prognosis patients, treatments with innovative
and metronomic therapies (e.g., COMBAT, METRO) (4, 5),
cell-based immunotherapies (6, 7), and novel molecularly
targeted agents (8) are justified and are also effective in

many cases, although their long-term effect has yet to
be demonstrated.

DCs are essential antigen-presenting cells for the initiation,
maintenance, and regulation of immune response (9). Active
cancer immunotherapy directs the immune system to attack
tumor cells by targeting tumor-associated antigens. We
manufacture a fully personalized monocyte-derived dendritic
cell-based vaccine that was evaluated in the investigator-
initiated clinical trial “Combined antitumor therapy with ex
vivo manipulated dendritic cells producing interleukin-12
in children, adolescents, and young adults with progressive,
recurrent, or primarily metastatic high-risk tumors” (EudraCT
number 2014-003388-39). The primary endpoint of the trial was
an assessment of safety by analysis of the frequency of occurrence
of AESI (adverse events of special interest). Vaccines that meet
quality control (QC) requirements are registered for use and
applied intradermally every 2–4 weeks for up to 35 doses.

Dendritic cell-based medical products are mostly
manufactured through derivation from monocytes. Autologous
monocytes are readily accessible and can be obtained from
peripheral blood in sufficient amounts to prepare 107-108

DCs. Monocytes arise from hematological precursors in bone
marrow, with a maturation time of 50–60 h (10), and enter
the bloodstream for several days until their recruitment into
tissues, where they possess the property to mature into tissue
macrophages (11). Specifically, the classical CD14++ CD16–
subpopulation representing 80–95% of circulating monocytes
has a 1-day lifespan in circulation, the intermediate CD14+
CD16+ subpopulation (2–8% of circulating monocytes) has
a 4-day lifespan, and the non-classical CD14+ CD16++

subpopulation (2–11% of circulating monocytes) has a 7-day
lifespan in circulation (12–14). Monocyte count and function
are influenced by various anti-cancer agents. Nevertheless,
the published data on the impact of particular anti-cancer
agents on the development and function of monocytes are
scarce in comparison with those on hematologic toxicity
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toward neutrophils and lymphocytes. As most anti-cancer
agents target DNA, they interfere with dividing cells including
hematopoetic cells. Also, tyrosine kinase inhibitors (regorafenib,
sunitinib, sorafenib) are associated with adverse events including
hematological toxicities (15). Regorafenib hematological toxicity
has been explained by the TK inhibition of FMS like tyrosine
kinase 3 (FLT-3) and stem cell factor (c-KIT ligand), which
represent hematopoietic growth receptors (15, 16). Reduction in
the circulating monocyte count after sunitinib has been shown
(17). Monocytes are also highly sensitive to the methylating
agent temozolomide (TMZ) (18, 19). Cisplatin and carboplatin
have been shown to alter monocyte differentiation to favor the
generation of IL-10-producing M2 macrophages (20).

Various chemotherapeutics affect cell differentiation and the
antigen presentation of DCs when treated in vitro during the
differentiation process (21). Data are lacking on the potential
in vivo impact of hematotoxic agents on the properties of
medicinal products from monocyte-derived DCs. During the
manufacture of DC-based anti-cancer immunotherapy under
stringent GMP-compliant conditions, we experienced highly
variable final product parameters in terms of both DC yield
and immunostimulatory properties, and we hypothesized that
hematotoxic anti-cancer therapy preceding monocyte harvest
may influence the quality of DC-based medicinal products.
The issue of the effect of pharmacotherapy on the quality of
human monocyte-derived DCs cannot be reliably assessed in
mimicked conditions by in vitro pretreatment of monocytes by
anti-cancer agents. Thus, data addressing this issue can only be
gathered retrospectively from real-life clinical conditions, such
as our clinical trial, though with a limited number of patients
included. Here, the Phase-I/II clinical trial protocol designed for
heavily pre-treated cancer patients with heterogenic anti-cancer
therapeutic protocols allows us to observe and analyze the effect
of pharmacotherapy on the quality and presumably also on the
anti-cancer action of ex vivo-manufactured DCs.

Therefore, our primary aims were to analyze the impact of (i)
cytotoxic and targeted anti-cancer therapy preceding monocyte
harvest and (ii) variability in the complete blood count on the
quality of DC-based anti-cancer immunotherapy in high-risk
sarcoma and neuroblastoma patients, representing the two main
diagnoses in the DC clinical trial. A secondary aim was to
reveal whether monocyte isolation by elutriation is superior to
the isolation of monocytes through their adherence to plastic
cultivation flasks.

METHODS

Patients and Clinical Trial
Clinical Trial Eligibility and Allowed Medication
Patient eligibility/inclusion criteria for the clinical trial included
being 1–25 years old male/female with histologically confirmed
refractory, relapsing, or primarily metastatic high-risk tumors
and having a performance status (Karnofsky or Lansky score)
≥ 50 and a life expectancy of longer than 10 weeks. Patients
had to be clinically eligible for the surgical procedure to
harvest tumor tissue for histological verification and tumor
antigen extraction. Female patients had to have had a negative

pregnancy test. All patients had to have adequate bone marrow,
kidney, liver, and heart function, defined as absolute neutrophil
count (ANC) ≥ 0.75 × 109/L, thrombocytes ≥ 75 × 109/L,
hemoglobin 80 g/L, estimated glomerular filtration rate (eGFR)
≥ 70 mL/min/1.73 m2, serum creatinine ≤ 1.5-fold the upper
limit for the appropriate age, bilirubin ≤ 1.5-fold the upper
limit for the appropriate age, AST and ALT ≤ 2.5-fold the
upper limit for the appropriate age, ejection fraction ≥ 50%, and
fractional shortening ≥ 27% as assessed by echocardiography.
In the case of bone marrow infiltration, the allowable ANC
was ≥ 0.5 × 109/L and blood platelets 40 × 109/L. In
case of liver metastases, AST and ALT had to be ≤ 5-
fold the upper limit for the appropriate age. The exclusion
criteria were as follows: seropositivity to HIV1,2, Treponema
pallidum, hepatitis B or C, known hypersensitivity to the study
medication, autoimmune disease that was not adequately treated,
uncontrolled psychiatric disease, or uncontrolled hypertension
defined as systolic and diastolic blood pressure over the 95th
percentile for the appropriate age and height (patients ≤ 17
years old) or ≥ 160/90 mmHg or diastolic blood pressure ≥ 90
mmHg (patients≥ 17 years old). Patients previously treated with
dendritic cells or participating in another clinical trial during
the 30 days before enrollment were not eligible to enter this
clinical trial.

The allowed medication prior to monocyte harvest
(leukapheresis) was as follows: metronomic chemotherapy,
immune checkpoint inhibitors, and anti-CD20 antibodies
were allowed as concomitant medication for any time before
leukapheresis. Monoclonal antibodies (except anti-CD20),
high-dose chemotherapy, and high-dose corticoids had to have
been withdrawn at least 3 weeks prior to leukapheresis with
the exception of corticoid treatment of brain edema, which
was allowed. Since November 2017, an amendment has been
made to the procedure for monocyte harvest, and tyrosine kinase
inhibitors have to be withdrawn according to their half-life: drugs
with a short half-life of 3–14 h must be withdrawn at least 2 days
before leukapheresis (axitinib, dabrafenib, dasatinib, ibrutinib,
idelalisib, nintedanib, ruxolitinib, and trametinib), drugs with a
medium half-life of 15–35 h at least 7 days before leukapheresis
(alectinib, bosutinib, lapatinib, lenvatinib, nilotinib, osimertinib,
pazopanib, ponatinib, regorafenib, and non-TKI everolimus),
and drugs with a long half-life of 36–60 h at least 12 days before
leukapheresis (afatinib, ceritinib, erlotinib, gefitinib, imatinib,
cabozantinib, crizotinib, sorafenib, sunitinib, vemurafenib, and
non-TKI temsirolimus). Myelopoietic growth factors have to be
withdrawn at least 7 days before leukapheresis/monocyte harvest.

Evaluation of Preceding and Concomitant Therapy
A precise analysis was performed of preceding and/or
concomitant therapy 60 days before monocyte harvest for clinical
trial subjects with neuroblastoma and sarcoma diagnoses. Data
were mined from the clinical trial electronic case report form
and the subjects’ medical records. We particularly focused on
therapeutic agents with a potential impact on the generation of
DCs frommonocytes and on DC immunostimulatory properties.
These agents and the reports on their role in monocyte biology
are summarized in Supplementary Table 1.
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DC Manufacture and Quality Control
Dendritic cell vaccine manufacture encompassed two phases—
(i) preparation of tumor lysate as a source of the patient’s tumor
antigens and (ii) preparation of monocyte-derived DCs and their
loading with tumor lysate. Quality control tests evaluated safety
(negativity for pathogens), identity (cell immunophenotype),
viability, and functions (cytokine production, stimulation of T-
cells). The flow and decision tree of the manufacturing process is
shown in Supplementary Figure 1.

Self-Tumor Antigen Extraction
Tumor lysate was prepared from the tumor tissue obtained from
the patient during curative surgery or extended biopsy. In Clean
Rooms, necrotic areas and connective tissue were removed from
the tumor tissue with a surgical scalpel, keeping the specimen
immersed in buffered solution. The remaining tissue was sliced
into fragments of about 0.5mm with a scalpel and forceps and
then further crushed with the back of a syringe. Each suspension
of tumor fragments and cells in HBSS was lysed through repeated
(5 times) freezing in liquid nitrogen and thawing at 37◦C. The
crude tumor lysate was centrifuged at 450 g/7 min/4◦C to remove
particulate components. The tumor lysate was released for DC
manufacture if the following criteria were met: (i) presence of
viable tumor cells reported by a histopathologist, (ii) protein
concentration, and (iii) microbiological sterility.

Peripheral Mononuclear Cell Collection
Monocytes were harvested as part of the mononuclear white
blood cell (WBC) fraction. Mononuclear cells were collected
from the peripheral blood of the patient using the Terumo
BCT Spectra Optia Apheresis System. For collection, we used
either an intermittent or continuous leukapheresis system. Due
to its superior collection efficacy and easier procedure settings,
we have preferred the continuous leukapheresis system since
April 2018. A citrate dextrose solution, solution A (ACD-A),
was used as an anticoagulant. In patients with a body weight
of < 20 kg, anticoagulation with heparin was used to prevent
citrate toxicity. The requirement for the minimal WBC count
was 3 × 109/L before the initiation of leukapheresis. To prevent
risk of bleeding or ischemic complications during and after the
procedure, hemoglobin of at least 80 g/L and platelets of at least
30 × 109/L were required. In case of a patient with a body
weight of < 20 kg, the leukapheresis set was pre-filled with donor
erythrocytes. The aim of the leukapheresis was to obtain 60–
80mL of concentrate of mononuclear cells with a content of at
least 0.5 × 109 monocytes. Subsequent addition of 5% human
albumin to the minimum required volume of 80mL for further
processing was allowed.

DC Manufacture in Clean Rooms
The numbers of WBCs, B-cells and T-cells, monocytes, and
granulocytes in the leukapheretic product were evaluated using
a hematology analyzer (XT-4000i, Sysmex) and flow cytometer
(FC-500, Beckman Coulter) with staining for CD3 (clone
UCHT1, Beckman Coulter) and CD19 (clone J3-119, Beckman
Coulter). Monocytes for DC manufacture were separated from
the leukapheresis product by either elutriation or adherence

to a plastic surface. During elutriation (using an Elutra cell
separator, Gambro BCT), blood cells were separated on the
basis of sedimentation velocity into six fractions, where the
last fraction rich in monocytes was used for DC manufacture.
Contaminating cells after elutriation were mainly granulocytes
with similar sedimentation velocity to monocytes. Five hundred
million monocytes adhered for 2–4 h in three 175-cm2 tissue
culture flasks with 35mL of CellGenix R© GMP DC Medium at
37◦C/5% CO2 and were then washed with HBSS and processed
further. Monocytes seeded from the elutriation product or
attached by plastic adherence were then cultivated in three 175-
cm2 tissue culture flasks with 70mL of CellGenix R© GMP DC
medium supplemented with GM-CSF (1000 U/mL, CellGenix R©)
and IL-4 (320 U/mL, CellGenix R©) at 37◦C/5% CO2/6 days.
On day 3, a fresh 70mL of medium supplemented with the
same concentration of GM-CSF and IL-4 was added to the
culture. On day 6, immature DCs were exposed to autologous
tumor lysate antigens (10µg/mL) with added keyhole limpet
haemocyanin (KLH, 1µg/mL), IL-4 (320 U/mL), and GM-
CSF (1000 U/mL) at 37◦C/5% CO2/for 1.5–2 h. Maturation was
induced by lipopolysaccharide (200 U/mL) and interferon-γ
(50 ng/mL) for an additional 6 h at 37◦C/5% CO2. Finally, cells
were collected using accutase (Accutase R©, Corning), counted in
a Bürker cell chamber and frozen in aliquots of 2 × 106 DCs in
100 µL of freezing medium CryoStor R© CS2 at -80◦C. All doses
of the DC-based investigational medical product (IMP) named
“MyDendrix R©” were stored at -150◦C until administration to
the patient.

Quality Control of DC-Based Investigational

Medicinal Product
DC characteristics were evaluated as a part of the quality control
process of IMP from an aliquot of manufactured DC from
each batch. The cryotube with DC was removed from a deep
freezing box (-150◦C) into a laminar flow box, quickly and
gently thawed in hand while avoiding shaking, 1mL of cold (2–
8◦C) DC medium (CellGenix R© GMP-grade) was slowly added
to the thawed DCs, and the DC suspension was transferred
into 2mL of cold DC medium. The DC suspension was
handled at room temperature and processed immediately. DCs
(8 × 105 cells) were seeded into 1 well of a 6-well culture
plate for sensitive adherent cells (Sarstedt, TC Plate 6-well,
Cell+, growth area 8.87 cm2) and cultured in 3mL of DC
medium for 2 days (37◦C/5% CO2) to obtain (i) medium
containing cytokines produced by DCs during cultivation and
(ii) mature DCs for phenotypic evaluation after 2 days of post-
thaw cultivation. A 0.5mL volume of medium containing DC-
produced cytokines was collected after 23–25 h upon DC seeding
andwas centrifuged (10min/410 g/4◦C), and the supernatant was
stored at -25◦C for no longer than 30 days prior to analysis. For
immunophenotypic evaluation of mature DCs, both detached
and adherent DCs were harvested 47–49 h after DC seeding. The
culture medium was collected and pooled with DCs harvested
by accutase (0.5 mL/well 8.87 cm2/37◦C) and centrifuged (5
min/410 g/20◦C). The pellet was resuspended in 800 µL HBSS
with 0.25% human albumin (Grifols) and processed immediately
for immunophenotypic evaluation. Viability quantification was
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performed by propidium iodide (PI) exclusion assay. Briefly,
105 DCs were stained with 10 µL of 1% PI in HBSS followed
by immediate flow cytometric (Cytomics FC500) analysis of PI-
positive events (= non-viable cells). The immunophenotype of
DCs was evaluated in post-thaw DCs and in post-cultivation
mature DCs. For the detection of each surface molecule, 0.5
× 105 DCs were incubated for 20min in the dark with the
following antibodies: CD80-PC7 (clone MAB104, 10 µL), CD83-
FITC (clone HB15e, 10 µL), CD86-PE (clone HA5.2B7, 10
µL), CD197-PE (clone G043H7, 10 µL), HLA-DR-PC5 (clone
Immu357, 10 µL), CD14-PE (clone RMO52, 10 µL), or isotype
controls IgG-PC5 (clone 679.1Mc7, 10 µL), IgG-PC7 (clone
679.1Mc7, 10 µL), IgG2a-FITC (clone 7T4-1F5, 10 µL), or
IgG2a-PE (7T4-1F5, 10 µL), all from Beckman Coulter. Flow
cytometric analysis was performed using a Cytomics FC500 with
CXP software by manual gating on individual parameters, and
the discrimination by appropriate isotype control was used to
gate and quantify positive events. The concentrations of IL-12
and IL-10 in the DC culture medium were measured by flow
cytometric bead assay (BD Biosciences) using internal quality
controls (Quantikine R© Immunoassay Control Group 1, R&D
Systems). Absolute production of IL-12 or IL-10 per 106 DC and
the IL-12/IL-10 ratio were calculated. The allogenic (allo) and
autologous (auto) stimulatory properties of DCs were examined
by mixed lymphocyte reaction (MLR). In allo-MLR, the target
cells were the peripheral blood mononuclear cells (PBMCs)
obtained from pooled buffy coats from healthy donors. In auto-
MLR, the target cells were the patient’s lymphocytes separated
by centrifugation in a density gradient using Histopaque-1077
(SigmaAldrich, density 1,077 g/mL) from the leukapheresis
product obtained for DC manufacture. These pre-vaccination
lymphocytes were cryopreserved using CryoStor CS5 medium
(BioLife solutions) at -150◦C and thawed prior to auto-MLR
seeding. A sample of 107 target lymphocytes were stained with
250 µL 10µM carboxyfluorescein succidimidyl ester (CFSE,
SigmaAldrich) and seeded into a sterile 96-well culture plate
(Sarstedt, TC Plate 96-well, Suspension, F) at 105 cells/well in
200 µL of complete X-vivo 10 medium (Lonza) containing
5% inactivated human male AB serum (SigmaAldrich) for
the following: (i) 104 DC/well in 10:1 target:effector MLR,
(ii) positive control (PC) with phytohemagglutinin (PHA,
SigmaAldrich) at a final concentration of 10µg/mL, or (iii)
negative control (NC) with complete X-vivo medium only. MLR
experiments were seeded in triplicate and cultured for 6 days at
37◦C/5% CO2. 2 × 104 cells from each well were stained with
CD3-PC7 (clone UCHT1, 10 µL/test, Beckmann Coulter) for
flow cytometric detection of CFSE fluorescence on CD3+ T cells.
Discrimination for dividing cells was set up using NC. T-cell
proliferation was calculated as follows: [(average % of dividing
T-cells in 10:1 MLR) – (average % of dividing T-cells in NC)]
× 100/[(average % of dividing T-cells in PC) – (average % of
dividing T-cells in NC)].

Statistical Analysis
The Spearman correlation coefficient with a significance test
was used to measure the strength of the relationship between
patient CBC prior to leukapheresis, the parameters of the

leukapheresis product, the DC yield, and the quality control
parameters. Differences in parameter values between groups
were assessed by the non-parametric Mann-Whitney or Kruskal-
Wallis test. Hierarchical clustering analyses were performed
using the complete linkage method with the distance based on
the Spearman correlation coefficient. The Spearman correlation
distance was used for clustering of batches, and the absolute
Spearman correlation distance was used for clustering DC
parameters. For clustering analyses, DC parameters were
centered and scaled (Z-score of parameters). P < 0.05 were
considered statistically significant. All statistical analyses were
performed with R 3.5.3 software (22).

RESULTS

Clinical Trial Accrual and Course
As of May 2019, 47 subjects were enrolled in the clinical trial, and
the manufacturing process of DC-based vaccine was performed
in 31 cases. Of these 31, the most common diagnoses were
sarcoma, with 19 cases (61%), and high-risk neuroblastoma, with
4 cases (Table 1). In this group of 23 patients, we performed
analysis of the manufacturing issues presented here. Sarcomas
were specifically: seven Ewing sarcomas (36% of sarcoma pts),
five (26%) osteosarcoma, two (11%) alveolar rhabdomyosarcoma,
two (11%) embryonal rhabdomyosarcoma, and three (16%)
synovial sarcoma (Table 1). The median enrollment age of the
clinical trial was 14 years; 15 years for sarcoma patients and 5
years for neuroblastoma patients (Table 1). All 23 study subjects,
i.e., 19 with sarcoma and four with neuroblastoma, underwent
initial surgery to obtain tumor tissue for the tumor lysate-
manufacturing process, and tumor lysates were manufactured
without any tumor antigen extraction failure. Monocyte harvest
and the subsequent manufacturing of DC-based IMP were
performed for all 23 subjects. Out of the 23, 16 DC-based
IMPs successfully passed through the manufacturing process
and met the quality control criteria for administration to the
patients. DC-based IMPs from seven subjects (six sarcoma,
one neuroblastoma) were not manufactured or failed to pass
quality control due to inadequate immunostimulatory properties
(Table 1). The basic patient characteristics are described in
Table 1, and the detailed clinical course is summarized in
Supplementary Table 2.

Dendritic Cell Manufacturing, Its Yield, and
DC Quality Including Immunostimulatory
Properties
We achieved DC yields ranging from 0 to 43.6%, with a mean
of 17.2% and an s.d. of 12.7% in this specific cohort. A DC
yield equal to 0 represented a manufacturing process that was
unsuccessful, with all DCs detached from the flasks. The quality
control parameters involved microbial sterility and Mycoplasma
spp. negativity, the viability and phenotype of thawed DCs,
the phenotype of thawed DCs after 2-day cultivation, the
production of IL-12 and IL-10 during 24-h cultivation of thawed
DCs, and 6-day allo-MLR and auto-MLR. All batches of DCs
fulfilled the microbiological criteria of QC and the criteria
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TABLE 1 | DC-based vaccine-manufacturing outcome, basic patient characteristics, therapy preceding monocyte harvest.

Primary diagnosis Date of study enrollment/Age in

years at study enrollment/Pt No

Treatment line prior to monocyte

harvest/Treatment and its duration/Date of

monocyte harvest

DC-based vaccine-

manufacturing

outcome

EWING SARCOMA

Ewing sarcoma of the mandible 09/2015;

14;

KDO-0101

2nd;

VCR/Irino + pazopanib, 09/2015–04/2016;

01/2016

Passed QC

Localized Ewing sarcoma of the left femur 02/2016;

12;

KDO-0109

3rd;

ARST08P1 + sunitinib, 03/2016–06/2016;

03/2016

Did not pass QC

Localized Ewing sarcoma of the left distal

humerus

02/2016;

12;

KDO-0111

2nd;

AEWS1031 + pazopanib, 02/2016–08/2016;

05/2016

Did not pass QC

Localized Ewing sarcoma of the spine

C5-Th2, extradural, and intraspinal

involvement

08/2016;

24;

KDO-0118

2nd;

AEWS1031, 08/2016–02/2017, 2 cycles VTC, 2 cycles

VCR/Irino;

01/2017

Passed QC

Ewing sarcoma of the pelvis 12/2016;

14;

KDO-0121

1st;

Euro Ewing 2008, 11/2016–05/2017;

06/2017

Did not pass QC

Ewing sarcoma of the left proximal tibia 12/2016;

15;

KDO-0122

2nd;

VTC cycles, 01/2017–05/2017;

03/2017

Did not pass QC

Localized Ewing sarcoma of the left tibia 08/2018;

22;

KDO-0144

2nd;

2x TMZ/Irino, 08/2018–10/2018; 10/2018

Did not pass QC

OSTEOSARCOMA

Localized high-grade osteosarcoma of the

right distal femur

09/2015;

10;

KDO-0102

4th;

VCR/Irino + pazopanib;

12/2015

Passed QC

High grade osteoblastic osteosarcoma of

the left distal femur

10/2016;

8;

KDO-0120

1st;

AOST 0331, 10/2016–07/2017;

03/2017

Not manufactured

Localized osteoblastic osteosarcoma of

the right proximal tibia

01/2017;

18;

KDO-0124

3rd;

AOST 1321 + VBL + CPM, 02/2017–10/2017;

3/2017

Passed QC

Localized osteosarcoma of the right

proximal femur

02/2018;

25;

KDO-0133

2nd;

COMBAT III, 04/2018–12/2018;

04/2018

Passed QC

High-grade osteoblastic osteosarcoma of

the left distal femur

05/2018;

22;

KDO-0139

2nd; AOST0331 – cycle IE 07/2018;

09/2018

Passed QC

ALVEOLAR RHABDOMYOSARCOMA

Alveolar rhabdomyosarcoma of the right

calf

10/2015;

14;

KDO-0103

2nd;

ARST 0921 + TEM, 11/2015–01/2016;

12/2015

Passed QC

Alveolar rhabomyosarcoma, primum

ignotum

10/2016;

12;

KDO-0119

1st;

ARST08P1 + TEM, 10/2016–05/2018;

04/2017

Passed QC

EMBRYONAL RHABDOMYOSARCOMA

Embryonal rhabomyosarcoma of the pelvis 09/2017;

18;

KDO-0131

1st; EpSSG RMS 2005, 09/2017–06/2018;

01/2017

Passed QC

Localized embryonal rhabomyosarcoma of

the pelvis

07/2018;

15;

KDO-0143

3rd;

- rEECur - Topo/CYC, 08/2018–12/2018;

09/2018

Passed QC

(Continued)
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TABLE 1 | Continued

Primary diagnosis Date of study enrollment/Age in

years at study enrollment/Pt No

Treatment line prior to monocyte

harvest/Treatment and its duration/Date of

monocyte harvest

DC-based vaccine-

manufacturing

outcome

SYNOVIALOSARCOMA

Synovial sarcoma of the left thigh 04/2016;

14;

KDO-0114

1st followed by COMBAT III 05/2015–12/2016;

12/2016

Passed QC

Localized synovial sarcoma of the neck 04/2018;

17;

KDO-0137

2nd;

Modified COMBAT III from 04/2018 + pazopanib from

08/2018;

06/2018

Passed QC

Localized synovial sarcoma of the left calf 06/2018;

21;

KDO-0141

2nd;

COMBAT III modified, 08/2018–02/2019;

10/2018

Passed QC

NEUROBLASTOMA

Neuroblastoma in the retroperitoneum 04/2016;

12;

KDO-0115

2nd;

METRO-NB2012, 05/2016–10/2016;

07/2016

Passed QC

High-risk neuroblastoma in the left

glandula suprarenalis

02/2018;

4;

KDO-0135

1st followed by dinutuximab + retinoic acid,

11/2018–02/2019;

02/2019

Passed QC

Neuroblastoma in the right

retroperitoneum

07/2018;

3;

KDO-0142

2nd;

ANBL 1221 - 3 cycles TMZ/Irino + dinutuximab,

08/2018–11/2018;

08/2018

Did not pass QC

Neuroblastoma in the right glandula

suprarenalis

10/2018;

6;

KDO-0147

4th; METRO-NB2012, 05/2017–12/2018;

11/2018

Passed QC

CPM, cyclophosphamide; Irino, irinotecan; TEM, temsirolimus; TMZ, temozolomide; Topo, topotecan; VBL, vinblastine; VCR, vincristine; IE, ifosfamide etoposid; VTC,

vincristine, topotecan, cyclophosphamide; Pt. No., patient number; QC, quality control. Chemotherapy protocols: AEWS1031 (Ewing sarcoma)—vincristine, doxorubcin,

cyclophosphamide, ifosfamide, etoposide; AOST0331 (osteosarcoma)—cisplatin, doxorubicine, methotrexate; AOST1321 (osteosarcoma)—denosumab; ARST0921 (refractory

or relapsed rhabdomyosarcoma)—bevacizumab, vinorelbine, cyclophosphamide and temsirolimus; ARST1321 (non-rhabdomyosarcoma soft tissue sarcomas)—ifosfamide,

doxorubicin, pazopanib; COMBAT III (metronomic)—celecoxib, etoposide, temozolomide, fenofibrate, ergocalciferol, bevacizumab, vinorelbine, cis-retinoic acid; EpSSG RMS 2005

(rhabdomyosarcoma)—ifosfamide, vincristine, actinomycin, doxorubicin; Euro Ewing (Ewing sarcoma)—vincristine, ifosfamide, doxorubicin, etoposide, actinomycin, cyclophosphamide;

METRO-NBL2012 (metronomic treatment for neuroblastoma)—etoposide, celecoxib, propranolol, cyclophosphamide, vinblastine; rEECur protocol (relapsed soft tissue sarcoma)—

topotecan, cyclophosphamide, irinotecan, temozolomide. Details on anti-cancer therapy dosing are summarized in Supplementary Table 2.

of viability, ranging from 85 to 100% with a mean of 95%.
Their variability in phenotype and immunostimulatory property
is shown in Supplementary Table 3. The mean phenotype of
the manufactured DCs immediately after thawing for selected
parameters was as follows: CD8019 (range: 2–86%), CD86 91%
(76–100%), CD83 21% (0–86%), CD14 20% (1–69%), and CD197
90% (73–99%). The mean phenotype of thawed DCs after 2-
day cultivation for selected parameters was as follows: CD80
77% (range: 25–97%), CD86 99% (95–100%), CD83 61% (12–
89%), and MHC II 93% (63–100%). Mean cytokine production
was as follows: IL-12 8,327 pg/106 DC (range: 9–80,824 pg/106

DC), IL-10 280 pg/106 DC (6–1,731 pg/106 DC), and IL-12/IL-
10 ratio 35 (1–246). The mean in vitro proliferation of T-cells
stimulated bymanufactured DCs was 67% (29–98%) in allo-MLR
and 9% (−3–37%) in auto-MLR. Due to inappropriate results for
the immunostimulatory parameters of QC (phenotype, cytokine
production, MLR), six out of 22 (27%) of the manufactured
batches of DCs were not released for use in the clinical trial. The
parameter values of the manufactured batches of DCs are shown
in Supplementary Table 3.

Isolation of Monocytes by Adherence vs. Elutriation

and Its Impact on Manufacturing Process Yield and

the Immunostimulatory Parameters of DCs
Isolation of monocytes for DC manufacture was performed by
elutriation in 14 cases and by plastic adherence in nine (39%)
cases based on the real-world situation. Until March 2017, we
performed elutriation of the leukapheresis product in all cases (11
cases: KDO-0101, -0102, -0103, -0109, -0111, -0114, -0115, -0118,
-0120, -0122, -0124). Between April and September 2018, we
performed elutriation in cases KDO-0121, -0137, and -0139, and
adherence to plastic in cases KDO-0133, -0142, and -0144 due
to there being > 10% neutrophils in the leukapheresis product
or technical issues with the Elutra device for KDO-0119 and
-0131. After October 2018, we isolated monocytes exclusively by
adherence to the plastic surface in all cases: KDO-0135, -0141,
-0144, and -0147.

Addressing the issue of whether the elutriation process is
superior to adherence to plastic retrospectively, we compared
the proportions of batches passing QC and their DC yield
and phenotypic and immunostimulatory properties under the
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two methods. Adherence to plastic resulted in two (22%)
batches not being released, and elutriation resulted in five (36%)
batches not being released (four did not pass QC and one was
not manufactured). The OR (odds ratio) for passing QC in
the plastic-adherence modality was 1.94 (95% CI: 0.29–13.19).
The DC yield, viability, phenotype, and immunostimulatory
properties (IL-12, IL-10, the IL-12/IL-10 ratio, allo-MLR, auto-
MLR) in adherence to plastic vs. elutriation are summarized
in Figure 1. A statistically significant difference was observed
between QC results and monocyte isolation modality for the
following post-thaw parameters (i) DC expression of CD86
on day 0 that was higher in the manufacturing process with
plastic adherence, and (ii) borderline significant expression of
CD14 on day 0 that was higher with elutriation. The values
of both parameters were in favor of adherence to plastic. It is
of note here that the subgroup with isolation of monocytes by
the adherence to plastic was not biased by including a higher
proportion of cases without potentially monocyte-interfering
pharmacotherapy (“m” vs. “0” as described later; p = 0.643).
Thus, we conclude that the isolation of monocytes by adherence

to plastic is comparable to a manufacturing process with
monocyte elutriation.

Parameters of CBC Prior to Monocyte Harvest, and

Parameters of the Leukapheresis Product and Their

Impact on Manufacturing Process Yield and the

Immunostimulatory Properties of DCs
With the aim of identifying the CBC parameters (shown for
each batch in Supplementary Table 3) associated with adequate
DC characteristics and thus predicting whether the DC-
manufacturing process would pass QC, we analyzed CBC prior
to monocyte harvest in the context of batches that fail to pass QC
and DC yield, phenotype, and immunostimulatory properties.
The presence of immature granulocytes in CBC was associated
with unsuccessful manufacturing (p = 0.046). DC yield was not
associated with any single parameter of CBC. Expression of CD14
on manufactured cells was negatively correlated with relative
lymphocyte count in CBC (p = 0.001) (Figure 2). The level of
allogenic MLR was negatively associated with both the presence
of immature granulocytes (p = 0.010) and NRBC (p = 0.018)

FIGURE 1 | Comparison of two monocyte isolation modalities with respect to dendritic cell (DC) production. Elutriation (white box plots) and adherence to plastic (gray

box plots) were compared based on QC parameters: (A) DC yield, and post-thaw: (B) viability, (C) DC phenotype on day 0: CD14, CD197, CD80, CD86, and CD83

and on day 2: MHC II, CD80, CD86, and CD83, and immunostimulatory properties presented by (D) IL-12 production, IL-10 production, and IL-12/IL-10 production

ratio, (E) allo-MLR and auto-MLR. Median values are shown for each parameter for each monocyte isolation modality. Black dots show QC results of manufactured

DCs that passed quality control, and red dots show results of manufactured DCs that did not pass quality control.
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FIGURE 2 | Association of patient CBC prior to monocyte harvest and parameters of leukapheresis product with DC yield and quality control. Red color represents a

positive correlation and blue color a negative correlation; strength of relationship is represented by size of square and intensity of color—larger squares with intense

color have a stronger association; *p < 0.05, **p < 0.01, ***p < 0.001.

in pre-leukapheresis CBC (Figure 2). The level of autologous
MLR was positively associated with absolute leukocyte count (p
= 0.016) (Figure 2). Similarly, a high proportion of monocytes
(p < 0.001) and low proportion of T-cells (p = 0.001) in the
leukapheresis product were associated with increased expression
of CD14 on manufactured cells (Figure 2). A high proportion
of monocytes in the leukapheresis product was associated with
increased production of IL-10 by manufactured cells (p =

0.027) (Figure 2).

Therapy Preceding and/or Concomitant With

Monocyte Harvest and Its Association With

Manufacturing Process Yield and the

Immunostimulatory Properties of DCs
The patient history of anti-cancer treatment and the outcome
of DC manufacture were evaluated for an association between
DC parameters and lines of therapy classified as 1st, 2nd,
and 3rd or subsequent lines that were followed by monocyte

harvest for DCs. The history of anti-cancer treatment had
no observed impact on the quality of manufactured DCs
(Supplementary Figure 2). Pharmacotherapeutics 60 days prior
to and/or concomitant to monocyte harvest were classified
into two groups and designated as follows (i) “m” (n =

17) for administration of therapy potentially interfering with
monocyte viability and/or differentiation, namely TKI, mTOR
inhibitors, chemotherapy in cell biology-interfering doses, i.e.,
MTD-based dose, anti-RANKL mAb, retinoic acid, and/or G-
CSF (Supplementary Table 1) < 60 days prior to monocyte
harvest, (ii) “0” (n = 6) for metronomic therapy/chemotherapy
or no potentially monocyte-interfering therapy concomitantly or
< 60 days prior to monocyte harvest. All batches from the “0”
category passed QC, whereas seven out of 17 (41%) monocyte-
derived DCs from the “m” category failed to be released for
patient administration. The OR for passing QC in category “0”
was 9.3 (95% CI: 0.5–191). DC yield, DC immunophenotype on
day 0 and day 2, and production of IL-10 did not differ between
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FIGURE 3 | Treatment prior to monocyte harvest and immunostimulatory properties of manufactured DCs. Manufacturing subgroup from monocytes harvested after

MTD-based therapy potentially interfering with monocyte biology (listed in Supplementary Table 1; “m” treatment, gray box plots) and manufacturing subgroup from

monocytes from untreated patients or after non-interfering treatment (“0” treatment, white box plots) were compared based on QC parameters: (A) IL-12 production,

(B) IL-12/IL-10 production ratio, (C) allo-MLR and (D) auto-MLR. Median values are shown for each parameter for each treatment subgroup. Black dots show QC

results of manufactured DCs that passed quality control, and red dots show results of manufactured DCs that did not pass quality control.

the “0” and “m” categories (Supplementary Figure 3). Median
IL-12 production was 2,424 pg/106 DCs in the “0” category and
743 pg/106 DCs in category “m” (p = 0.083). The median IL-
12/IL-10 ratio was 71 in the “0” category and 9 in the “m”
category (p = 0.002). The median T-cell proliferation in allo-
MLR was 86% in the “0” category and 63% in the “m” category
(p = 0.027), and the in auto-MLR was 12% in the category “0”
and 5% in category “m” (p= 0.036) (Figure 3).

In the analyzed study cohort, therapeutic regimens were
heterogenic, with patients often treated with a combination
of various compounds prior to monocyte harvest, and thus
further categorization into single agent-defined subgroups
and their analysis were impossible. Therefore, we performed
cluster analysis of DC parameters in the context of therapy
prior to monocyte harvest (Figure 4). Here we observed a
cluster defined mainly by a superior IL-12/IL-10 ratio but
low DC yield comprising batches KDO-0133 without any
anti-cancer treatment, KDO-0137 treated with metronomic
modified COMBAT with celecoxib, fenofibrate, low-dose
cyclophosphamide, and low-dose vinblastine, and KDO-0115
treated with metronomic therapy with low-dose vinblastine,
celecoxib, low-dose cyclophosphamide, and propranolol (see
Supplementary Table 2 for details on the treatment schedule
and dosing). Furthermore, we observed a very similar pattern
in DC properties in two batches, KDO-0142 and KDO-0144,
that were manufactured from monocytes obtained from patients
treated with temozolomide and irinotecan. These batches
exhibited robust monocyte differentiation, as represented by

their low CD14 expression, but failed to produce IL-12 or an

immunostimulatory phenotype when matured, as represented
by CD80 on post-cultivation DCs on day 2, and therefore did not

meet the QC criteria. A pattern of relatively low DC yield, high

production of IL-12, and notable monocyte differentiation and

DC immunostimulatory phenotype and function was observed
for batches KDO-0147, generated from monocytes from

patients treated with celecoxib, and KDO-0141, from patients

pretreated with combined metronomic therapy with low-dose

vinblastine, low-dose etoposide, celecoxib, cholecalciferol,

and fenofibrate. Batches KDO-0103 and KDO-0122 similarly
exhibited poor yield, poor monocyte differentiation, a rather low
IL-12/IL-10 ratio, and very low immunostimulatory functions
toward donor T-cells. Monocytes from both batches were
pretreated with an MTD-based combination of topoisomerase
inhibitor and alkylating agent, with last administration from
day 21 to 17, namely etoposide and ifosfamide in KDO-0103
and topotecan and cyclophosphamide in KDO-0122. This
was followed in both cases by 9 days of administration of
G-CSF filgrastim up to 7 days prior to monocyte harvest.
High DC yield and viability but low markers of differentiation,
immunostimulatory phenotype and IL-12/IL-10 ratio were
similarly observed for batches KDO-0111 and KDO-0109 treated
with topotecan, cyclophosphamide, and pazopanib. Based on
features such as good DC yield and viability but low monocyte
differentiation and a below-average IL-12/IL-10 ratio, these
two batches clustered with KDO-0139 (treated with etoposide,
ifosfamide, and filgrastim), KDO-0121 (etoposide, ifosfamide,
and filgrastim), KDO-0118 (irinotecan and sunitinib), and
KDO-0119 (cyclophosphamide, temsirolimus, and filgrastim).
Notably, monocytes affected by retinoic acid (KDO-0135)
or anti-RANKL denosumab (KDO-0124) produced DCs of
average quality. In summary, monocyte-interfering MTD-based
treatment of the clinical trial patients prior to monocyte harvest
was associated with an impaired DC-based immunotherapy
manufacturing process outcome. Certain combinations of
anti-cancer treatments elicited a similar pattern of inadequate
DC parameters. Namely, a combination of temozolomide
and irinotecan was associated with poor DC maturation
and immunostimulatory features, and a combination of
pazopanib, topotecan, and MTD-based cyclophosphamide
was associated with poor DC differentiation maturation and
immunostimulatory parameters.

DISCUSSION

Here we show that despite strict adherence to the validated
manufacturing protocol, the outcome of the manufacture of
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FIGURE 4 | Cluster analysis of DC parameters in the context of therapy prior to monocyte harvest. The heatmap on the right shows the immunostimulatory properties

of manufactured DCs centered and scaled in the column direction (Z-score of parameters). Clusters are based on correlations. For clustering of DC parameters, but

not batches, an equal meaning to positive and negative correlations was considered, and therefore strongly correlated parameters in the positive or negative manner

clustered together. The left panel shows the treatment administered within 60 days of monocyte harvest. The day of the mononuclear harvest was set as day 0. An

interactive version of the left panel with a detailed description of treatment including dosing is provided in Supplementary Material 1. Metronomic doses of

chemotherapeutic drugs and supportive therapy such as vitamins and probiotics are not shown here but are summarized in Supplementary Table 2. Batches that

did not pass quality control are indicated in red.

the medicinal product with monocyte-derived DCs is highly
variable in terms of both DC yield and immunostimulatory
properties. Moreover, in 30% of cases, manufacture of DC-
based immunotherapy for advanced sarcoma and high-risk
neuroblastoma patients resulted in a product that did not meet
the specifications for themedicinal product and therefore was not
released for application. This product failure rate was higher than
in published studies (23, 24). Thus, in an attempt to improve the
manufacturing process, to predict DC-manufacturing outcome,
and, subsequently, to avoid laborious and costly DCmanufacture
that would not meet QC specifications, we addressed key
variables in the manufacturing process. Namely, we focused
on the issues of (i) monocyte isolation from the mononuclear
leukapheresis product, (ii) parameters of the patient’s CBC
prior to monocyte harvest and parameters of the leukapheresis
product, and (iii) anti-cancer therapy preceding monocyte
harvest that may interfere with the ability of monocytes to
differentiate into immunostimulatory DCs.

Regarding the method of monocyte isolation, we assessed
whether monocyte extraction by a simple method of adherence
to a plastic surface is comparable to the elaborate method of
elutriation. During elutriation, monocytes can be contaminated
with granulocytes with a similar sedimentation velocity to
monocytes. Based on this observation, we validated the
DC-manufacturing process with isolation of monocytes by
adherence to plastic (25) to avoid contaminants that may
interfere with DC differentiation by altering the levels of
pro-differentiation cytokines and/or the formation of a
suppressing microenvironment through generating decay
products during cultivation. By comparative analysis of DC yield
and immunostimulatory properties from the manufacturing
processes of isolation of monocytes by elutriation vs. adherence
to plastic, we conclude that the adherence method is comparable
to the elutriation method. The method of adherence to plastic is
simple in terms of the equipment, material, and manufacturing
steps required and therefore is less costly, less prone to errors,
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and more GMP-friendly than the elutriation process. In healthy
adult volunteers, monocyte-derived DC yield with monocyte
elutriation has been shown to be superior to adherence to
plastic (26); this was not observed under our manufacturing
conditions of heavily pretreated pediatric sarcoma and
neuroblastoma patients.

With regards to the pharmacotherapy preceding monocyte
harvest, we observed that therapy with agents interfering with
the biology of monocytes 60 days prior to monocyte harvest
was associated with reduced production of IL-12 and deficient
functional immunostimulatory properties of the manufactured
DC-based vaccine and subsequently often resulted in QC failure.
It is of note here that failures in DC production occurred
more often prior to the implementation of stricter criteria for
non-allowed pharmacotherapy preceding monocyte harvest.
Specifically, we observed impaired monocyte differentiation
and, subsequently, inadequate immunostimulatory features
in monocytes pretreated with a combination of an MTD-
based dose of the alkylating agent cyclophosphamide,
topoisomerase I inhibitor topotecan, and TKI pazopanib.
We have previously shown that TKI pazopanib in vitro impairs
the immunostimulatory properties of monocytes, including
up-regulation of the immunoinhibitory surface molecule ILT-3
and decreased capability to up-regulate MHC II in response to
LPS (27). Interestingly, however, pretreatment of monocytes in
vivo with pazopanib without any other immediate treatment
(KDO-0101) did not result in attenuated DC vaccine quality.
Topotecan has been shown to partially activate monocyte-
derived DCs but to prevent the full maturation of DCs
stimulated with a cocktail of proinflammatory mediators (28). A
different pattern was observed for DCs from cases treated with a
combination of the alkylating agent temozolomide (TMZ) and
the topoisomerase I inhibitor irinotecan (iri), and we observed
monocyte differentiation but not DC immunostimulatory
properties, resulting in a medicinal product that did not pass
QC and was not administered. It is of note that one case was
a sarcoma and one a neuroblastoma patient. Moreover, we
also observed a similar pattern of poor DC parameters in a
case of synovialosarcoma with TMZ/iri therapy in a cohort
of patients outside this clinical trial. It has been shown that
monocytes are particularly sensitive to the methylating agent
temozolomide, undergoing apoptosis, while monocyte-derived
DCs and macrophages are resistant to TMZ (19). Briegert and
Kaina and Bauer et al. showed that monocytes accumulated
single-strand DNA breaks due to failure of the re-ligation step
in base excision repair and showed a lack of DNA repair protein
expression (18, 19). Following TMZ treatment, monocytes
demonstrated an unbalanced expression of DNA repair proteins,
impairing base excision repair and the accumulation of double-
stranded breaks (18, 19). In vitro studies of TMZ/iri cytotoxicity
to neuroblastoma cells have revealed single- or double-stranded
DNA damage to be mostly due to SN-38 (the active metabolite of
irinotecan) and to be further enhanced through the addition of
TMZ (29). Thus, we hypothesize that DNA damage caused by the
combination of irinotecan and TMZ in the context of particular
hypersensitivity of monocytes to temozolomide may underlie
the unfavorable effect of anti-cancer therapy with TMZ/iri on

the monocyte-derived immunostimulatory DC-manufacturing
process. Monocytes from a patient treated with methotrexate,
doxorubicin, and cisplatin failed to produce viable dendritic cells,
but monocytes from another patient treated with methotrexate
did not fail to produce DC vaccine. Methotrexate has reportedly
inducedl apoptosis, reduced viability, induced differentiation,
and reduced inflammatory properties of monocytes (30–33),
and we may speculate, although based on anecdotal observation,
that if combined with cisplatin, thereby shifting monocyte
differentiation into an immunosuppressive phenotype (20),
methotrexate may result in failure of monocyte-derived
DC generation.

Regarding the composition of pre-leukapheresis CBC and
the derived leukapheresis product and the outcome of DC
manufacture, we observed that three interconnected features, i.e.,
(i) a low relative lymphocyte count, (ii) a high relative neutrophil
count in CBC, and (iii) a high proportion of monocytes in the
leukapheresis product, were associated with unfavorably high
expression of CD14 on the manufactured cell product. Moreover,
the presence of an increased number of immature granulocytes
was associated with decreased potency of the DC-based product
as quantified by allo-MLR. These observations may be underlain
by emergency myelopoesis stimulated by G-CSF, which leads to
a quantitative and qualitative change in all circulating myeloid
cell types including neutrophils, monocytes, andmyeloid-derived
suppressor cells (34, 35). While fostering granulocyte effector
functions, G-CSF also seems to promote immunosuppressive
and tolerogenic properties in monocytes and monocyte-derived
cells including increased production of IL-10 (36–39). In this
context, it is of note that six out of seven cases treated with G-
CSF within 60 days prior to monocyte harvest exhibited donor
T-cell stimulation below the average and that the level of T-
cell stimulation decreased with the intensity of G-CSF prior to
monocyte harvest. Although the effect of G-CSF treatment on the
DC-manufacturing process in our study cannot be dissected from
the effect of preceding chemotherapy and targeted therapy, the
tentative interpretation is that stimulation of myelopoesis with
growth factors of granulocytes may have a rather negative impact
on the outcome of the DC-based vaccine-manufacturing process.

Here, we show that treatment of patients with certain anti-
cancer agents in MTD-based doses prior to monocyte harvest
often leads to failure of manufacture of the immunostimulatory
DC-based vaccine. We propose that the optimal time for
monocyte harvest for generating DCs is prior to a cell-
interfering treatment. With respect to the DC-manufacturing
workflow, this would mean, in a majority of cancer patients,
the implementation of DC manufacture from cryopreserved
monocytes. Several studies have investigated the effect of
cryopreservation on monocyte differentiation into DCs,
but results have been conflicting. Some studies observed
cryopreservation to have no effect on monocyte-derived DC
production (40, 41). On the other hand, Silveira et al. showed
that, when compared to fresh monocytes, cryopreserved
monocytes exhibited impaired differentiation into dendritic
cells, with lower rates of maturation and cytokine production
in response to LPS and lower lymphocyte proliferation in
allo-MLR (42). Thus, the cryopreservation of monocytes for
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DC generation may decrease the quality of manufactured
DCs, and the level of this decrease needs to be specified for a
particular manufacturing protocol. In case of a minor drop in DC
maturation and immunostimulatory parameters and function
due to the cryopreservation of monocytes, this manufacturing
modality should be considered, as it would allow harvesting of
therapy-naïve monocytes and avoid a potentially detrimental
effect of certain anti-cancer and supportive treatment on the
quality of DC-based anti-cancer immunotherapy.

Another issue in the context of the concurrence of anti-cancer
treatment and monocyte-derived DC manufacture is the length
of the pharmacotherapy-free period prior to monocyte harvest.
From our real-life experience gained on this study group,
we conclude that a 30-day interval without treatment is not
sufficient for the combination of temozolomide and irinotecan
to sufficiently wash out the monocyte biology-interfering effect
of this combination. However, the issue of a safe therapy-free
window is not likely to be addressable through the establishment
of a wash-out period for a particular drug. The fitness of
monocytes and their capacity to differentiate and mature into
DCs with high antigen-presenting effect is a matter of their
biological function in the context of iatrogenic affection, which
is complexly shaped by the need for immediate treatments,
their combinations, their cumulative doses, and the long-term
history of treatment. Therefore, identifying a marker revealed
from a patient’s peripheral blood that predicts the outcome of
DC-generation would help to avoid an unproductive anti-cancer
DC-manufacturing process. Here we show that a high monocyte
count in CBC is not predictive of an efficacious outcome for DC
generation. Nevertheless, we find that the presence of immature
granulocytes in CBC may predict decreased immunostimulation
elicited by DCs and, subsequently, unsuccessful preparation of
DC-based IMP. However, closer evaluation ofmonocyte function
prior to their collection for DC generation may be considered.
A surrogate marker for the immunostimulatory capacity of
monocytes may be evaluated in (i) their phenotype, e.g., the level
of HLA-DR or ILT-3 expression on monocytes or the proportion
of particular monocyte subsets according to CD14 and CD16
expression, or (ii) their ability to produce pro-inflammatory
cytokines upon TLR stimulation (27).

In summary, monocytes represent a key starting material
for anti-cancer DC-based vaccine manufacture. Therefore,
monocyte conditions have an impact on the manufacturing
yield, the differentiation into DCs, and the level of maturation
and subsequent immunostimulatory functions. For DC
manufacture from heavily pretreated pediatric patients with
high-risk sarcomas and neuroblastoma, we conclude that the
manufacturing yield and immunostimulatory quality of anti-
cancer DC-based vaccine generated from patient’s monocytes
were not influenced by the monocyte isolation modality but were
detrimentally affected by certain combinations of anti-cancer
agents. Thus, the combination of chemotherapy or targeted
therapy with DC-based immunotherapy needs to be scheduled
not only with respect to the likely beneficial role of anti-cancer
agents on the immunogenicity of tumor antigens for both in
vitro DC generation via induction of immunogenic cell death
and in vivo for effector response of DC-activated T-cells but

also with respect to optimal monocyte immunostimulatory
functions. Finally, these findings may also have implications
for the general pharmacology of anticancer treatment. As our
model of ex vivo-activated DC preparation generally parallels
the in vivo differentiation pathways of monocytes to the antigen-
presenting cells, we may imply that drug combinations at doses
used clinically may result in an impairment of patient DCs and
possibly immune competence in general. In conclusion, these
findings may stimulate further research on dose and mechanism-
of-action-based drug combination in patient-centered trials
to optimize the treatment modalities currently available in
clinical oncology.
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