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Simple Summary: Since the micro-environment of colonic tumors, including their immune structure
would affect the response to treatments, we study the response of five groups of tumors clustered
based on their immune patterns to a common colon cancer treatment. We develop a data driven
mathematical model to investigate the behavior of key players in colonic tumors in each of these
clusters in response to the FOLFIRI treatment. Although the model shows clear differences in the
behavior of tumors in different clusters, it cannot suggest a unique optimal treatment strategy for
each cluster. The results show that there is not much difference in the dynamics of tumors in response
to 5-FU alone versus 5-FU plus Leucovorin. However, adding Irinotecan changes the dynamics of
T-reg and dendritic cells leading to a remarkably slower tumor recurrence, especially for tumors in a
cluster, which has the highest level of T-reg/T-helper ratio compared to the other clusters.

Abstract: Many colon cancer patients show resistance to their treatments. Therefore, it is important
to consider unique characteristic of each tumor to find the best treatment options for each patient.
In this study, we develop a data driven mathematical model for interaction between the tumor
microenvironment and FOLFIRI drug agents in colon cancer. Patients are divided into five distinct
clusters based on their estimated immune cell fractions obtained from their primary tumors’ gene
expression data. We then analyze the effects of drugs on cancer cells and immune cells in each group,
and we observe different responses to the FOLFIRI drugs between patients in different immune
groups. For instance, patients in cluster 3 with the highest T-reg/T-helper ratio respond better to
the FOLFIRI treatment, while patients in cluster 2 with the lowest T-reg/T-helper ratio resist the
treatment. Moreover, we use ROC curve to validate the model using the tumor status of the patients
at their follow up, and the model predicts well for the earlier follow up days.

Keywords: colon cancer; FOLFIRI treatment; data-driven mathematical model; precision medicine;
immune variations; gene expression profiles; digital cytometry; 5-FU; leucovorin; irinotecan

1. Introduction

Colorectal cancer (CRC), the third most common cancer diagnosed in both men
and women in the United States excluding skin cancers, is estimated to cause about
52,980 deaths during 2021 [1]. Surgical resection, radiation therapy and systemic therapies
that use medications such as chemotherapy, targeted therapy, and immunotherapy are
the treatment options depending on several factors such as the type and stage of the
disease, the molecular analysis of the tumor, possible side effects and overall health of
the patients [2,3]. Early stage tumors can be curable with surgical resection while many
patients with advance stage and metastatic CRC receive chemotherapy as a combination
of treatment [4]. Although overall mortality rate of CRC patients has been decreasing for
several decades, reduction rate slowed over the past decade (2008–2017) [5]. Survival rate
remains poor for patients with metastatic CRC despite advances in the primary treatment
of chemotherapy [6]. Predicting variability in response to treatments to increase survival
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rate and arrive at precision medicine, we need to understand disease progression and
determine the major drivers for each patient.

One of the major players in response to cancer treatments is immune system. Im-
mune cells in the tumor microenvironment contact with tumor cells directly or through
chemokine and cytokine signaling and they play essential roles in improvement and block-
ing of therapeutic efficacy and the behavior of the tumor [7]. Targeting tumor cells by
radiotherapy and chemotherapy causes the release of damage-associated molecular pattern
(DAMP) molecules such as high mobility group box 1 (HMGB1) as a result of necrotic
cell death [8–11], and it has been found that HMGB1 triggers immune responses [12,13].
Activated CD8+ T-cells release a high level of cytokines such as IFN-γ and FasL that
boost production of necrotic cells in colon cancer [14]. Dendritic cells are activated by
HMGB1 that can be released from macrophages [10] and activated dendritic cells, and
they cause activation of T-cells [15]. Moreover, tumor-associated macrophages (TAMs) are
known as key regulators of therapeutic response in the tumor microenvironment. CD4+

T-cells release IFN-γ that activates M1 macrophages [16,17], and CD4+ T-cells are acti-
vated by TNF-α, which is released by M1 macrophages [18]. In contrast, M2 macrophages
are activated by exposure to certain cytokines such as IL-4, IL-10 and IL-13 and elevate
tumorigenesis [19,20].

Many studies have reported a relationship between clinical outcome and immune cells
in colon cancer. For example, a high proportion of CD8+ T-cells, effector memory T-cells and
CD4+ T-cells is correlated with longer survival in colorectal cancer [21–23]. Furthermore, it
has been observed that radiotherapy mediates tumor regression because of the release of
IFN-γ by CD8+ T-cells [24,25]. In addition, patients with high expression levels of the Th17
markers show a poor prognosis, while a high expression of the Th1 markers is associated
with prolonged disease-free survival in colorectal cancer [26]. Moreover, it has been shown
that TAMs mediate resistance to some chemotherapeutic agents such as 5-fluorouracil,
doxorubicin [27].

Most chemotherapy treatments for colon cancer include Fluorouracil (5-FU), which is
a fluoropyrimidine antimetabolite drug used for different cancers types such as colorectal,
breast, head and neck cancers [28]. However, response rate of 5-FU-based chemotherapy
as a first-line treatment for advanced colorectal cancer remains only 10–15% [29,30]. To
overcome this therapeutic resistance, combinations of chemotherapy drugs such as FOLFIRI
(Folinic acid, Fluorouracil and Irinotecan) are used for targeting tumor cells and the
tumor microenvirinment simultaneously, and they have improved the response rates up to
40–50% for advanced colorectal cancer [29,31]. Accumulating evidence indicates that the
relative abundance of various immune cells and their interaction network with treatment
approaches are essential in the colonic tumors’ initiation and progression. Therefore, this
study focuses on the interaction between tumor-infiltrating immune cells and FOLFIRI
agents by dividing patients into similar cohorts based on their tumor-infiltrating immune
variations to model the response to the cancer treatment.

Mathematical models are used in many studies to understand tumor growth dynam-
ics, improve therapeutic responses, find the best treatment combination and overcome
drug resistance in different cancer treatments [32–40]. The effect of radiotherapy and
chemotherapy on tumor growth has been modelled using partial differential equations
(PDEs), ordinary differential equations (ODEs) and linear quadratic models in breast and
brain tumors [41–43]. Immune cell interactions with tumor cells are used as an alternative
approach for the mathematical modeling of the cancer treatments in a few studies that phar-
macokinetic ODEs are defined to predict the optimal dosing regimen and the combined
effect of chemotherapy and immunotherapy [44–47]. Many of these models such as [45]
can not be verified because of lack of time course data for the growth of treated and/or
untreated tumors. For this reason, some models such as [46] have simulated outcomes for
groups of virtual patients on treatment protocols for which clinical trial data are available,
using a range of biologically reasonable patient-specific parameter values.
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We have recently developed a data driven mathematical model of colon cancer with a
focus on the key players and the interaction network between immune cells and cancer
cells in order to discover differences in tumor growths of patients with different immune
profiles [48]. In this study, we found that there are five distinct groups of primary colon
tumors based on their immune profiles, which have been estimated from their gene expres-
sion profiles. To analyze the model’s predictions for tumors in each cluster, patient-specific
parameters have been estimated using the data of each cluster [48]. In this study, we
extend our previous model including the interaction between Fluorouracil, Leucovorin,
Irinotecan, and various cell types in tumor to investigate the effect of these drugs on tumors
in each cluster.

2. Materials & Methods
2.1. Mathematical Model

There is a complex web of numerous interactions in the colon cancer microenviron-
ment. To be able to analyse and study the role of key interactions in tumors’ progression,
the network of these interactions has been reduced to a clear and compact model in [48],
highlighting the key components. This network model contains 14 variables that can be
majorly grouped into T-cells, dendritic cells, macrophages, cytokines, cancer cells and
necrotic cells. In this paper, we add the interactions of three FOLFIRI agents to this network
to study the effect of these drugs on colonic tumors (Figure 1 and Table 1).

Notation
Proliferation

Inhibition

Activation

Secreted by

Figure 1. Interaction network of FOLFIRI drugs. Interaction network among the key players in tumor
microenvironment and FOLFIRI drugs.

The interaction network among some of the key players in colon cancer as modeled
in [48] is summarized below. In the model described in [48], individually modelled
cytokines include HMGB1 (H), IFN-γ (Iγ), and TGF-β (Gβ). The group of carcinogenic
cytokines including IL-6, IL-17, IL-21 and IL-22 is modeled as one variable µ1, while the
combined sum of immunosuppressive molecules, including IL-10 and CCL20 is modeled
as µ2. µ1 is collectively modelled as secreted by macrophages [49–52], helper T-cells [51–54]
and a sub-population of dendritic cells [55,56], and µ2 as produced by macrophages [57–59],
dendritic cells [55,60] and T-reg cells [53,61–63]. HMGB1 is modeled as passively released
from necrotic cells [64], or actively secreted from activated T-cells, and macrophages [65,66].
IFN-γ is secreted by a sub-population of macrophages [57,67–70], helper T-cells [16,17] and
cytotoxic cells [14]. TGF-β is produced by macrophages [57,58] and T-reg cells [53,61,62,71].
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As it has been described in [48], cells that have been modeled are T-cells, macrophages,
dendritic cells, necrotic cells, and cancer cells. Naive T-cells (TN) are included in the
system to make the system more stable by modeling the activation rates of sub-types of
T-cells proportional to the density of naive T-cells. Helper T-cells (Th) are modeled as they
are activated by dendritic cells or certain cytokines including IL-12, IL-6, and IL-23 [61].
Cytotoxic cells (TC) are activated by IL-12, IL-4, IL-5 and IL-13 [15,72,73], and regulatory
T-cells (Tr) are also shown to be activated by the cytokines IL-2 [61,74,75], CCL20 [59],
and TGF-β [61,71]. Additionally, T-reg cells inhibit both Th and TC cells by various means,
including the production of immunosuppresive cytokines [61]. The major effects on
dendritic cells are by HMGB1, which activates [10] them but also reduce their maturation
rate as shown by some sources [63,76]; and cancer cells, which indirectly may promote
their apoptosis [76–80]. Dendritic cells are modelled as two types of naive (DN) and
activated (D). Macrophages are either activated by IFN-γ or by interleukins (ILs) [57,81,82].
Proliferation in cancer is taken to be proportional to [C](1− [C]/C0), where C0 [83,84] is
the total capacity, with additional proliferation by cytokines [61,85], and IL-6 may cause
an additional loss of apoptosis in cancer cells [77,79,86,87]. While, cancer development is
suppressed by TGF-β, IL-12, IFN-γ and cytotoxic T-cells [61,88–91]. Here, necrotic cells are
considered to be all those cells that go through the process of necrotic cell death and are
modelled with a rate of production given by a fraction of dying cancer cells. This is because
they are produced either naturally by the tumor, or due to the indirect effect of cytotoxic
T-cells [14].

The ODE system obtained as a result of these interactions (presented in [48]) is:

d[TN ]

dt
=ATN −

(
λThD[D] + λTh M[M] + λThµ1 [µ1]

)
[TN ]−

(
λTCTh [Th] + λTC D[D]

)
[TN ]

−
(

λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

])
[TN ]− δTN [TN ] (1)

d[Th]

dt
=
(
λThD[D] + λTh M[M] + λThµ1 [µ1]

)
[TN ]−

(
δThµ2 [µ2] + δThTr [Tr] + δTh

)
[Th] (2)

d[TC]

dt
=
(
λTCTh [Th] + λTC D[D]

)
[TN ]−

(
δTCµ2 [µ2] + δTCTr [Tr] + δTC

)
[TC] (3)

d[Tr]

dt
=
(

λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[
Gβ

])
[TN ]−

(
δTrµ1 [µ1] + δTr

)
[Tr] (4)

d[DN ]

dt
=ADN − (λDH [H] + λDC[C])[DN ]− (δDH [H] + δD)[DN ] (5)

d[D]

dt
=(λDH [H] + λDC[C])[DN ]− (δDH [H] + δDC[C] + δD)[D] (6)

d[M]

dt
=
(

λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th]
)
(M0 − [M])− δM[M] (7)

d[C]
dt

=
(
λC + λCµ1 [µ1]

)
[C]
(

1− [C]
C0

)
−
(

δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C] (8)

d[N]

dt
=αNC

(
δCGβ

[
Gβ

]
+ δCIγ [Iγ] + δCTC [TC] + δC

)
[C]− δN [N] (9)

d[H]

dt
=λHN [N] + λHM[M] + λHTh [Th] + λHTC [TC] + λHTr [Tr]− δH [H] (10)

d[µ1]

dt
=λµ1Th [Th] + λµ1 M[M] + λµ1D[D]− δµ1 [µ1] (11)

d[µ2]

dt
=λµ2 M[M] + λµ2D[D] + λµ2Tr [Tr]− δµ2 [µ2] (12)

d[Iγ]

dt
=λIγTh [Th] + λIγTC [TC] + λIγ M[M]− δIγ [Iγ] (13)

d
[
Gβ

]
dt

=λGβ M[M] + λGβTr [Tr]− δGβ

[
Gβ

]
(14)
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As it has been mentioned in [48], this system includes 14 variables and 59 parameters,
where λ parameters correspond to proliferation, activation and production rates, while
δ parameters denote the degradation and cell death rates. The parameters ATN and ADN
respectively are the production rates of naive T-cells and dendritic cells (D), and M0 and
C0 are the total density of macrophages (naive and activated together) and cancer cells’
maximum capacity, respectively.

Table 1. Model’s Variables. Names and descriptions of variables used in the model.

Variable Name Description

TN Naive T-cells
Th Helper T-cells
TC Cytotoxic cells includes CD8+ T-cells and NK cells
Tr Regulatory T-cells
Dn Naive dendritic cells
D Activated dendritic cells antigen presenting cells
M Macrophages
C Cancer cells
N Nectrotic cells
H HMGB1
µ1 Carcinogenic cytokines includes effects of IL-6, IL-17, IL-21 and IL-22
µ2 Immunosuppresive agents includes effects of IL-10 and CCL20
Iγ IFN-γ
Gβ TGF-β

5-FU Fluorouracil
Ir Irinotecan

LV Leucovorin

To this given system, we add the individual interactions between the three drugs of
the FOLFIRI regimen - Leucovorin (Folinic Acid), Fluorouracil (5-FU), and Irinotecan; and
the variables of the above system. The metabolism and action pathways of these three
drugs are complex, involving a number of different molecules and enzymes. Therefore,
even though we initially attempted to have a comprehensive system with all of their
pharmacodynamical reactions, due to the lack of available parameter values in research,
we decided to simplify the model. Our condensed system focuses on the overall change
in the drug concentrations and their effect on cells in the tumor microenvironment. The
final condensed interaction network between FOLFIRI and the colon cancer environment
is given in Figure 1.

Since we are adding the drugs to the system already developed in [48], we employ
the same formula as given by the mass action law for defining the terms in our ordinary
differential equations. Namely, for any biochemical process A + B → C, the differential
equation for C is given by dC

dt = λAB, where λ is the production rate of C [48,92,93].
Similarly, an inhibition process D a E is given by dE

dt = −δDE, where δ is the inhibition rate
of E. Additionally, alphas (α) are included as constant parameters in the drug equations to
necessarily differentiate between the inhibition rates on the targeted cells and the decay
effect on the drug concentration itself. In the following, we explain the derived equations
for the dynamics of each drug and the cells effected by them, with concentrations given in
time, per unit day (changes to the equations from [48] have been highlighted in bold).
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2.1.1. Cancer & Necrotic Cells

We model the effects of FOLFIRI drugs (5-FU, Leucovorin, and Irinotecan) on cancer
by modifing the Equation (8) in the following way.

d[C]
dt

=(λC + λCµ1 [µ1])[C](1−
[C]
C0

)− (δCGβ
[Gβ] + δCIγ

[Iγ] + δCTC [TC] + δC

+ δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM [5FU][M]

+ δCLV5 f u[5FU][LV ] + δCIr[Ir])[C],

(15)

where the decay rates represent the following: δC5 f u and δCIr are the direct cytotoxic effects
of 5-FU and Irinotecan respectively; δC5 f uIγ

is the rate of cancer cell death due to the
increased activation of 5-FU by IFN-γ; and lastly δCLV5 f u is the combined inhibitory effect
of 5-FU and Leucovorin.

Note, 5-FU causes damage to cancer cells by inhibiting essential processes in DNA
and RNA synthesis [28,29]. This is done by two main pathways, either by the missin-
corporation of fluoronucleotides in both RNA and DNA, or by inhibiting the enzyme
thymidylate synthase (TYMS), which is a crucial component of DNA replication and re-
pair [28,29,94]. These pathways are aided by IFN-γ, which up-regulates the activities
of 5-FU anabolic enzymes, increasing its cytotoxic effect [29]. Hence, Equation (15) in-
cludes the terms δC5 f u[5FU][C], δC5 f uIγ

[5FU][Iγ][C]. Meanwhile, macrophages have
been shown to decrease the inhibitory effect of 5-FU on cancer cells [95–97]; modeled by
the term δ5 f uM [5FU][M][C] in the above Equation (15).

Leucovorin is often administered simultaneously with 5-FU in the treatment of colon
cancer, because it has been shown to increase the efficacy of 5-FU and the overall survival
rate in patients [94,98,99]. This effect is due to the fact that it helps to further stabilize the
complex formed between TYMS and the 5-FU derivative, and thus increasing the retention
of 5-FU toxicity [29,100]. Therefore, the effect of Leucovorin on cancer is modeled by the
term δCLV5 f u[5FU][LV ][C] in Equation (15).

The effect of Irinotecan on cancer is modeled by δCIr[Ir][C], because Irinotecan pre-
vents DNA replication by inhibiting the topoisomerase 1 gene (TOP1) causing subsequent
cell death [101–103]. Although used as a part of the FOLFIRI regimen, it is also given
individually in the treatment of cancer.

Consequently, the equation for necrotic cells becomes:

d[N]

dt
=αNC(δCGβ

[Gβ] + δCIγ
[Iγ] + δCTC [TC] + δC

+ δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM [5FU][M]

+δCLV5 f u[5FU][LV ] + δCIr[Ir])[C]− δN [N]

(16)

2.1.2. T-Cells

Within the tumor-microenvironment, 5-FU is known to help in the activation of T-cells,
along with dendritic cells [104], and Irinotecan depletes the number of T-reg cells [105].
As reported in [104], the interaction between 5-FU, dendritic cells and T-cells is rather
complex, but there is an overall increase in the activation and generation of helper T-cells
and cytotoxic cells due to the indirect transfection of dendritic cells by 5-FU, modelled by
introducing activation rates λThD5 f u and λTC D5 f u into the Equations (2) and (3), respectively.

d[Th]

dt
=(λThD[D] + λThD5 f u[5FU][D]+ λTh M[M] + λThµ1 [µ1])[TN ]

−(δThµ2 [µ2] + δThTr [Tr] + δTh)[Th]
(17)

d[TC]

dt
=(λTCTh [Th] + λTC D[D] + λTC D5 f u[5FU][D])[TN ]

−(δTCµ2 [µ2] + δTCTr [Tr] + δTC )[TC]
(18)
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In [48], activation rates for T-cells were made proportional to the density of naive
T-cells in order to help stabilize the system. Therefore, we also add the above activation
rates to the Equation (1).

d[TN ]

dt
=ATN − (λThD[D] + λThD5 f u[5FU][D]+ λTh M[M] + λThµ1 [µ1])[TN ]

− (λTCTh [Th] + λTC D[D] + λTC D5 f u[5FU][D])[TN ]

− (λTrTh [Th] + λTrµ2 [µ2] + λTrGβ
[Gβ])[TN ]− δTN [TN ]

(19)

Among the major effects of Irinotecan on the tumor microenvironment, it is also shown
to be the reduction of the abundance of regulatory T-cells [105]. There are other sources
that report a significant reduction in T-regs after the chemotherapy using FOLFIRI [106].

d[Tr]

dt
= (λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[Gβ])[TN ]− (δTrµ1 [µ1] + δTr + δTr Ir[Ir])[Tr] (20)

2.1.3. 5-FU & Leucovorin

Thus, combining the above individual interactions with 5-FU, the overall effect on the
5-FU concentration can be modeled by

d[5FU]

dt
=A5 f u

inj (t)− α5 f u(δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM[5FU][M]

+ δCLV5 f u[5FU][LV])[C]− δ5 f uD[5FU][D]− δ5 f u[5FU]
(21)

Along with the parameters from the equation for cancer cells, 5-FU is modelled with
additional parameters, δ5 f uD for the amount of 5-FU used to help dendritic cells activate T
helper cells, δ5 f u to represent the elimination rate (about 80% of 5-FU is consumed in the

liver [28,107,108]), α5 f u as the amount of 5-FU used to kill a unit of cancer cells and A5 f u
inj (t)

is a function in time to model the repetitive cycle of 5FU dosages.

d[LV]

dt
= ALV

inj (t)− δLV [LV]− αLV δCLV5 f u[C][5FU][LV] (22)

Leucovorin is similarly modelled with ALV
inj (t), a function for the dosage intake, a

natural decay rate represented by δLV , δCLV5 f u from the cancer equation since Leucovorin
increases the cytotoxic effect of 5-FU and αLV the effectiveness of Leucovorin in killing
cancer cells.

2.1.4. Irinotecan

Dynamics of Irinotecan is modeled in a similar way with a natural decay rate of
Irinotecan denoted by δIr, the death rate of cancer cells by Irinotecan as δCIr and the
effectiveness of killing cancer cells by the constant αCIr. Since we also know that Irinotecan
depletes T-reg cells [105], we include the parameters δTrIr, the depletion of T-reg cells by
Irinotecan, and αIrTr, the effectiveness of Irinotecan in the depletion of T-reg cells.

d[Ir]
dt

= AIr
inj(t)− αIrC δCIr[C][Ir]− αIrTr δTr Ir[Ir][Tr]− δIr[Ir] (23)

2.2. Non-Dimensionalization

Non-dimensionalization is used for additional numerical stability and to eliminate
scale dependence [48]. The original system in [48] was non-dimensionalized by considering
a non-dimensional variable X such that,

X =
X

X∞
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for each variable X, where X∞ is its steady-state value. For the new variables, namely the
FOLFIRI drugs, we introduce new non-dimensional variables in the form of D for each
drug D, defined as:

D =
δD[D]〈

AD
inj

〉
daily median

,

where δD is its natural decay rate and
〈

AD
inj

〉
daily median

is its daily median dose per cycle

from patient data (See Appendix A for further details).

2.3. Data of the Model

There are several popular tumor deconvolution methods to estimate immune cell
frequencies using the gene expression profile of the tumors, and it has been shown in
recent studies that CIBERSORTx method [109] has the highest accuracy among these meth-
ods [110–112]. In this study, we download RSEM normalized RNA-seq gene expression
profiles in log2 scale of the primary tumors of the 329 colon cancer patients from the TCGA
project of COAD from UCSC Xena web portal [113] and transform it to the linear space.
Then, we apply CIBERSORTx B-mode on the gene expression data to estimate immune
cells frequencies.

In our previous study, K-means clustering of colon tumors based on their immune cells’
frequencies indicates that there are five distinct immune patterns of colonic tumors [48]. In
this paper, we investigate the effect of FOLFIRI drugs on the same five distinct clusters. In
each cluster, average immune cell frequencies that we use in the dynamical model have
been shown in Figure 2, where the vertical bars show the standard deviations.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

Tn
Tc
M
Th
Tr
D
Dn

Figure 2. Model immune cells fractions. Clusters are obtain based on variations in 22 immune cell
types of colonic tumor.

The data used in Figure 2 only gives us the ratio of immune cells so that we download
TCGA biospecimen data from GDC portal that includes tumor dimension and necrotic cell
percentage of the tumors to obtain the values of the model variables as described below.

Assuming the average amount of cancer cells is twice the average amount of total
immune cells (TIC) and using the given necrosis percentage from TCGA biospecimen data,
the average ratio of immune cells: cancer cells: necrotic cells is approximately 0.3:0.6:0.1 for
colon cancer tumors. Also, we define size of tumor for each patient (P) as the product of the
longest and the shortest dimension of the tumor, and total cell density (TCD) is assumed to
be proportional to the size of the tumor.

TCDP = αdim
tumor size(P)

1
K ∑all P tumor size(P)

Using TCD and necrotic cell percentage (Np), we calculate the value of N and C in the
following way:
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N = TCD.Np , C =
2
3

TCD(1−Np) and TIC = 0.5C.

For scaling factor αdim, we choose 7.5 × 104 to approximately match the average den-
sity of cancer cells for all patients to be 4.5 × 104 cells/cm3, which is reported in [114]. We
determine the smallest tumors in each cluster and use their values as the initial conditions
of the model for each cluster. As we solve the non-dimensionalized system, Table 2 shows
the initial values of the non-dimensionalized variables, i.e., X/X∞ for each cluster.

Table 2. The smallest tumor initial conditions in each cluster. Values of initial conditions for the dimensionless system are
derived from the patients with the smallest tumor size.

Cluster TN/T∞
N Th/T∞

h TC/T∞
C Tr/T∞

r DN/D∞
N D/D∞ M/M∞

1 3.66 × 10−2 4.90 × 10−2 9.67 × 10−2 2.70 × 10−2 6.41 × 10−2 1.23 × 10−5 2.64 × 10−2

2 2.63 × 10−2 2.81 × 10−2 3.25 × 10−2 1.09 × 10−2 4.37 × 10−2 5.95 × 10−2 2.76 × 10−2

3 1.38 × 10−1 2.20 × 10−1 8.59 × 10−2 6.26 × 10−2 1.53 × 10−1 2.61 × 10−1 1.56 × 10−1

4 1.58 × 10−1 1.71 × 10−2 6.35 × 10−2 9.72 × 10−2 6.20 × 10−1 4.68 × 10−1 1.01 × 10−1

5 1.36 × 10−2 5.24 × 10−2 3.27 × 10−2 3.78 × 10−2 4.72 × 10−5 9.11 × 10−3 1.55 × 10−2

C/C∞ N/N∞ µ1/µ∞
1 µ2/µ∞

2 H/H∞ Iγ/I∞
γ Gβ/G∞

β

1 4.64 × 10−2 1.55 × 10−2 4.97 × 10−1 5.12 × 10−1 1.47 3.89 2.55 × 10−1

2 2.38 × 10−2 1.46 × 10−3 7.58 × 10−1 1.79 × 10−1 6.04 × 10−1 9.38 × 10−1 5.57 × 10−1

3 1.83 × 10−1 0 7.51 × 10−1 7.14 × 10−1 1.03 4.90 × 10−1 3.87
4 1.22 × 10−1 0 4.14 × 10−1 5.77 × 10 1.46 × 10 0 2.56 × 10
5 2.69 × 10−2 7.03 × 10−3 4.59 × 10−1 2.30 1.18 4.08 × 10−1 3.46 × 10−1

Treatment Data

For modeling FOLFIRI, we have downloaded the clinical drug data from the GDC
portal that includes prescribed treatment information such as drug dosages, number of
cycles of a specific treatment the patient received, days to start treatment and days to end
treatment. To model each cluster, we have used patients average prescribed treatment
information (Table 3). Note that minimum dosages values are used in parameter estimation
of the model explained with more details in Appendix A.

Table 3. Drug dosages in mg.

Fluorouracil Leucovorin Irinotecan

median 770 725 300
min 598 75 208

number of cycles 12 12 12
cycle length 14 14 14

2.4. Numerical Methods

To solve the system and study the dynamics of the variables, the previously developed
code in [48] is modified to include the new equations, variables and parameters. The
values for the parameters of the ODE system are either derived from research or by making
appropriate assumptions based on biological information. The code uses SciPy solve_ivp
function in python [115] to solve the system and the drug information is obtained from the
treatment data as given in Table 3, to be used as the initial infusion rates. The infusion step
function is modelled after the FOLFIRI chemotherapy regimen given in [116]. FOLFIRI is
administered first with one hour drip of Irinotecan followed by one hour drip of Leucovorin,
after which 5-FU is continuously infused into the bloodstream for 46 h. This treatment is
repeated for the designated ‘number of cycles’, each cycle lasting over the period of the
‘cycle length’.
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2.5. Sensitivity Analysis

To analyze the effect of parameter values on the dynamics of the system, we perform
sensitivity analysis [117–119]. For the system dX

dt = F(X, θ, t) consider (first order) sensi-
tivity S of non-dimensional solution X with respect to the model parameters θ = {θi}i=1, N
to be defined as a vector

Si =
dX
dθi

, i = 1, N.

As within the introduced model, the effects of the treatment do not extend to the
steady state. Therefore, we consider time-dependent sensitivity satisfying the equation

dSi
dt

=
∂F
∂θi

+
∂F
∂X

Si.

Additionally, we look at the “relative” sensitivity given by the formula

S̄i(t) = Si(t)
θi

X(t)
.

Relative sensitivity approach is commonly used in metabolic control analysis for
biological reaction networks [120]. Then, for finite time T, we consider average sensitivity
of each type:

Si =
1
T

∫ T

0
Si(t)dt, S̄i =

1
T

∫ T

0
S̄i(t)dt.

3. Results
3.1. Dynamics

We study the individual dynamics of each of the 17 variables and ‘Total cells’ (Immune
cells, cancer and necrotic cells), with most of the parameter values obtained from [48]
(using steady-state assumptions) and the new 19 parameters derived from parameter
assumptions (as given in Appendix A). The drug inputs are the median drug dosages from
patients treated with FOLFIRI—770, 725 and 300 mg of 5-FU, Leucovorin and Irinotecan,
respectively. The average number of cycles and cycle length respectively are 12 and 14, as
given in Table 3. In Figure 3, the initial conditions for the cells in each cluster are taken to
be their steady-state values from [48], which correspond to the values of large tumors in
each cluster.

Figure 3. Whole system dynamics with initial conditions as median drug doses from patient data
and steady-state values for the cells. The different colour lines depict the different dynamics of each
cluster. ‘Total cells’ is the sum of all immune, cancer and necrotic cells excluding cytokines.
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Here, we study two different periods in the dynamics, during treatment and about
two years after treatment has been stopped. We can observe that during the treatment,
there is a decline in the number of Naive T-cells, T-reg cells, TGF-β and cancer cells. On the
other hand, helper T-cells, cytotoxic cells, necrotic cells, HMGB1 and IFN-γ increase during
treatment. Macrophages and µ1 group of cytokines increase only by a small amount during
treatment while µ2 group of cytokines decrease slightly and this effect is most prominent
for cluster 3 as compared to the other clusters. The effect of the treatment on both naive and
active dendritic cells is not distinctly discernible, although we are able to observe smaller
spikes during the time of treatment.

Based on our ODE system, we can infer that the increase in helper T-cells and cytotoxic
cells is due to the activation rates λTh5 f uD and λTC5 f uD, that are modelled after the indirect
activation of T-cells by dendritic cells and 5-FU [104]. On the other hand, the decline in
T-reg cells must be due to the inhibitory effect of Irinotecan on T-reg cells, modelled in
Equation (20) by the parameter δTr Ir. We have described macrophages to have an inhibitory
effect on the cytotoxic action of 5-FU, but they themselves are not affected by this interaction,
because this is the only interaction modelled between macrophages and the drugs in our
network (as seen in Figure 1). Note, the small spikes of macrophages may be attributed
to the activation rate of macrophages by T-helper cells, λMTh , as 5-FU has an interaction
with T-helper cells. Since we include the activation rates for helper and cytotoxic T-cells in
the equation for naive T-cells (Equation (19)), the decrease in the density of naive cells is
also reasonable. The small effect on dendritic cells, both naive and active can be explained
by the parameter λDC, since this parameter is linked to the density of cancer cells. For all
the clusters, there is a rapid decline in the cancer cell density during treatment. Cluster 3
reaches the minimum cancer value among the clusters which is quite close to zero. Since
the amount of necrotic cells increases with the decrease in cancer cells, it is reasonable to
see it increases during treatment. Moreover, IFN-γ is not directly affected by any of the
drugs, however, since helper T-cells increase during treatment this must also increase the
value of IFN-γ. Cytokines, µ1, µ2, HMGB1 and TGF-β are all indirectly affected as per their
interactions with macrophages, T-cells and dendritic cells in the tumor network Figure 1.

After the treatment stops, all the cells continue growing as per the model without any
treatment, which is basically the system in [48], eventually reaching steady state. While the
clusters generally show a common pattern, we are able to observe some unique behaviour
in certain cell dynamics. Cluster 3 shows a slight increase in helper T-cells, cytotoxic cells,
dendritic cells, macrophages, µ1, µ2 and TGF-β, right after treatment and remains almost
flat in its growth until the end of time period, decreasing again by a small amount. These
combined changes could explain the decline in naive T-cells, as can be observed through
Equation (19), and subsequently the decline in T-reg cells modeled by Equation (20), which
depends on naive T-cells. Cluster 3 also reaches the lowest density of cancer cells, necrotic
cells and ‘Total cells’ among all the clusters at the lowest point as well as by the end of
the time period. While cluster 2 has the highest number of cancer cells and ‘Total cells’ at
the lowest point and by the end of the time period. Importantly, comparing our results to
that in [48], we can observe that cluster 3 shows a unique behavior for the model without
treatment. In Figures 4 and 5 in [48], cluster 3 also shows similar patterns to that observed
in our model with treatments, which further confirms that while the cell dynamics change
during treatment, it does not change the overall dynamics.

3.2. Different Treatment Options

We investigate the individual and combined effect of the three drugs by plotting the
cell dynamics with different combinations of the drugs. The initial conditions for the cells
in each cluster are taken to be the steady state values, i.e., the values of large tumors [48].
For Figure 4A, we study the individual effect of 5-FU by keeping the other two drug values
at zero. For Figure 4B, we study the combined effect of 5-FU and Leucovorin by keeping
the Irinotecan dose at zero. For Figure 4C, we now study the combination of 5-FU and
Irinotecan, keeping Leucovorin dose at zero. Finally, in Figure 4D, we study the combined
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effect of the three FOLFIRI drugs together. The drug values are their corresponding median
dose values as given in Table 3. The number of cycles and cycle length respectively are 12
and 14 for all the drug combinations (given in Table 3).

Figure 4. Varying combinations of the FOLFIRI drugs. In (A), we use the median dosage for 5-FU
as the initial infusion dose, keeping the values of Leucovorin and Irinotecan zero. In (B), we add
the median dose of Leucovorin to that of 5-FU, keeping Irinotecan dose at zero. Similarly in (C),
5-FU and Irinotecan are infused at the median dosage, while keeping Leucovorin at zero. (D) is the
model results obtained from infusing all three drugs at median dosages. Median dosages are given
in Table 3.

There is not much differences in the dynamics of key players when using 5-FU alone
versus 5-FU plus Leucovorin, except for a clear decrease only during and right after the
treatments in cancer cells and consequently ‘Total cells’, which is to be expected since
Leucovorin aids 5-FU in killing cancer cells but does not have any other direct interaction
with other cells in the tumor microenvironment, as can be seen in Figure 1. With the
addition of Irinotecan to 5-FU, there is a dramatic change in most of the cells, and especially
T-reg cells. Adding Irinotecan changes the dynamics of T-reg and dendritic cells leading to
slower tumor recurrence, especially for tumors in cluster 3. This is also an expected result,
since Irinotecan is assumed to be 40% efficient in killing cancer cells, which is much higher
than the other two drugs. Irinotecan also specifically targets T-reg cells, as is modelled by
the parameter δTrIr in the Equation (20).

3.3. Varying Treatment Start Time

We also investigate the effect of the treatment start time on dynamics of immune and
cancer cells, since different patients start chemotherapy at different stages of their cancer.
The initial conditions for the cells and cytokines for each cluster is obtained from taking
the treatment data for the patient with the smallest tumor in each cluster (Table 2). The
initial conditions for the drugs are taken to be their median dosages and the average for
the number of cycles and cycle length as given in Table 3.
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Giving the treatment at a later time, delays the time it takes for the cells to reach
their steady states. As discussed previously, the cell dynamics are effected only during
treatment, but the treatment does not change the overall dynamics, and we can observe
the same effect here. In Figure 5A, cluster 5 has the lowest number of cancer cells after
treatment, while in the other Figure 5B–D when the treatment is given after 3 years or
later, cluster 3 reaches the lowest number of cancer cells after treatment. In Figure 5C,D,
all cells seem to have already reached or very close to reaching their steady-states. Hence,
there is not much of a difference between the dynamics in these cells between the plots
C and D, except that the effect of the treatment is seen at a later time. In Figure 5D, since
the treatment is given after about 7 years all the cells, including cancer and necrotic cells
have already reached their steady states and therefore the dynamics is identical to that
in Figure 3. As also observed in Figures 3 and 4, cluster 3 shows some unique behavior
compared to the other clusters. The number of dendritic cells in the other clusters is much
higher than their initial value, but for cluster 3 it decreases after treatment and reaches to
the same steady state value as cluster 5. Cluster 3 has the lowest number of total cells after
the treatment in all plots, but cluster 5 has the lowest steady state value for cancer, necrotic
and total cells.

Figure 5. Varying treatment start-time. In the corresponding (A–D), the treatment is given after 1, 3, 5
and 7 years respectively. Seven years is the approximate time for the cancer to reach the steady state.

3.4. Validating Model Using Patient Data

We have used clinical follow up data of the colon cancer patients downloaded from
the GDC portal that includes tumor status and corresponding days of the follow up in
different times to see if the number of cancer cells of the patients obtained from our model
would match with their follow up data. Not every patients’ treatment information such
as drug dosages and number of cycles are available, and there are only 4 patients who
used Fluorouracil, Leucovorin and Irinotecan that we know their prescribed treatment
information. For this reason, we validate our model with 36 patients that use Fluorouracil
and Leucovorin. Note that most of these patients have also used other drugs such as
Oxaliplatinum that are not included in the model.
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We validate our model based on patients’ tumor status in their two different follow
up days (Table 4). We consider patients who had only one follow up date in both groups.
We exclude patients in the early follow up group, if their treatments have not been ended
before their follow up day.

Table 4. Number of patients in the validation data.

Tumor Free With Tumor

Early follow up day 23 8
Last follow up day 24 12

3.4.1. Predicting Tumor Status—ROC Curve

Data includes the start date of treatments and the last follow up date that the patients’
tumor status has been recorded. Therefore, to validate the model, we use the predicted
numbers of cancer cells from the model at the exact number of days after each patient’s
start date of treatments that their tumor status has been recorded. We then define a range
of threshold values using minimum and maximum predicted values to create a ROC curve
and predict patients’ tumor status as tumor free if the estimated number of values are less
than the threshold value. As seen in Figure 6, area under the curve (AUC) for the first
follow up days ROC curve (Figure 6A) is greater than the one for the last follow up days
ROC curve (Figure 6B). As this Figure shows, the model’s predictions are good for the first
follow up dates, but not for the second follow up dates. The bad prediction of the model
for the last follow up date might be due to the fact that these patients might have had some
other treatments, including surgery between the first and the last time of follow-up.

A B

Figure 6. ROC Curves of the model. (A,B) are generated using predicted cancer cells number in the
first day of follow up and the last day of follow up of the patients , and AUC values are 0.53 and 0.41,
respectively.

3.4.2. Individual Patients

We investigate the effect of dosages on the number of cancer and immune cells. From
the same data set of 36 patients who were treated with 5-FU and Leucovorin, we choose
one patient from each cluster. If the patient is ‘tumor-free’ on a particular follow-up day,
then we expect that in our model results, the cancer on that day is at least less than the
initial cancer value for small and medium size tumors and half of their initial values for
large tumors. While for a ‘with-tumor’ patient, the number of cancer cells on the follow-up
day should be greater than their initial values for small or medium size tumors or half of
their initial values for large tumors. We find 10 patients satisfying these conditions among
15 patients from cluster 1, one patient among the 5 patients from each of the clusters 2
and 3 respectively, and 5 patients among the 10 patients from cluster 5. Note, there is
no follow-up information available for cluster 4 and hence, cluster 4 patients have been
excluded from the data. We investigate the effect of varying the dose on cancer and immune
cells for some of patients that model predicts well to provide alternative optimal treatment
options for these patients.
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The drug dosages and initial conditions for the cells used in the model are based on the
individual patient’s treatment data. In Figure 7, sub-figures A are plotted by keeping the
5-FU dose constant at the patient’s administered dose, while Leucovorin is varied between
a range of 0.1 and 10 times the prescribed dose. Sub-figures B are plotted by keeping the
Leucovorin dose at zero while varying the 5-FU dose between a range of 0.1 and 10 times
the patient’s prescribed dose.

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Figure 7. Cancer cells dynamics with varying doses for individual patients in each cluster. (A) are
obtained by varying the Leucovorin dose while keeping the 5-FU dose constant. (B) are obtained
by varying 5-FU and keeping the Leucovorin dose at zero. (A1,B1), (A2,B2), (A3,B3), and (A5,B5)
respectively show the results of a tumor-free patient in the clusters 1, 2, 3 and 5. Note, the patient in
cluster 3 (A3,B3) is tumor-free at the first follow-up day, but is with-tumor at the last follow-up day.
(A4,B4) show the results of a with-tumor patient in the cluster 5.

Among the patients in cluster 1, we investigate the results for the patient ‘TCGA-
CM-6172’, since we know from the treatment data that this patient was treated with only
5-FU and Leucovorin without the aid of any other drug. Therefore, this patient is an ideal
candidate for validating our model. This patient was administered a 662.5 mg dose of 5-FU
and 574.17 mg dose of Leucovorin in 12 cycles and is reported to be ‘tumor-free’ at both
the first and last follow-up days. As can be observed in the Figure 7(A1), the cancer at both
follow-up days is less than the initial cancer value and therefore the follow-up information
matches our model results.
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We investigate the effect of varying the dose for the patient ‘TCGA-A6-6141’ in cluster 2
whose follow-up data matches our model results. This patient is treated with a 850 mg dose
of 5-FU and 408.3 mg of Leucovorin in 12 cycles. This patient has also been reported ‘tumor-
free’ at the follow-up day, and this is consistent with our results shown in Figure 7(A2)
obtained for cancer.

We plot the dynamics for the patient ‘TCGA-A6-6142’ in cluster 3 whose tumor status
matches our model results. This patient was administered 628.75 mg of 5-FU and 420.67 mg
of Leucovorin in 12 cycles. This patient is reported to be ‘tumor-free’ at the first follow-up
day, but is reported to be ‘with-tumor’ at the last follow-up day. This can also be confirmed
through Figure 7(A3), where for the prescribed dose, the cancer is lower than the initial
value at the first follow up day but grows back again surpassing the initial value, and
are much higher on the last follow-up day. The increase in the total immune cells with
increasing doses is much higher for this patient. Figure 7(A3,B3) also indicate a significant
delay in reaching steady state for cancer when the dose increases. From these sub-figures,
we can also recommend a higher dose of Leucovorin at 2103.33 mg or 5-FU alone at
3143.76 mg, or higher to achieve ‘tumor-free’ results on the last follow-up day.

We investigate the dynamics of one ‘with-tumor’ patient from cluster 5. Patient
‘TCGA-G4-6303’ was administered a dose of 660 mg of 5-FU and Leucovorin in 6 cycles.
Figure 7(A4) shows that at the prescribed dose, the cancer is higher than the initial value.
Note, the patient’s prescribed dosage does not even reduce the number of cancer cells
much during treatment. 5-FU alone, does not have any significant effect in reducing the
cancer for this patient, we instead recommend a dose of 3300 mg of Leucovorin along with
the original 5-FU dose, or higher to achieve ‘tumor-free’ results for a long period of time.

Although the cancer initially decreases with treatment, it grows back again after a
period of time according to the tumor recurrence rate modelled into the system. And
therefore as one can observe for the above patients, the steady state values are always
higher than the initial value, which means that the patient may once again have cancer
years after receiving treatment. However, depending on the age of the patient, the tumor
might not reach a visible size in the patients’ life time. In general, the best outcome is to
achieve a steady-state value for cancer that remains below the initial value. In order to
demonstrate this, we plot the patient ‘TCGA-A6-6781’ from cluster 5, for whom, according
our model, its steady state value is less than its initial value. This patient is treated with
902.67 mg of 5-FU and 166.67 mg of Leucovorin in 12 cycles. Although there is nothing
distinctive to predict such results, in fact this patient has the highest initial cancer value
among all the patients in the dataset. Interestingly, it seems 5-FU alone in a higher dose is a
better treatment option for this patient, while for most patients the combination of 5-FU
and Leucovorin works better than 5-FU alone.

3.4.3. Effect of Sensitive Parameters

We perform sensitivity analysis of the non-dimensional system with respect to treatment-
related parameters. Cells are assumed to be at their “no treatment” steady states (i.e., large
tumors) for the initial conditions. The resulting time-averaged sensitivity for most sensitive
parameters is presented on Figure 8.

These results show that the most sensitive parameter is δC5 f uLV , and δ5 f uM is the most
sensitive among immune parameters. We investigate their effect on cancer cells and ‘Total
cells’, by varying them between a range of 0.1 and 5 times their original value obtained
from parameters’ assumptions, and plotting them against the number of cells at different
time points. In these plots, the initial conditions for the cells were chosen to be their steady
state values, i.e., values of large tumors.
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Figure 8. Sensitivity analysis. The first and second columns of (A) respectively present the results
of non-dimensional sensitivity of cancer cell density and total cell density. (B) shows the relative
sensitivity of the same quantities. Each row of plots shows the most sensitive parameters for each
cluster of patients.

Figure 9 shows a decline in the number of cancer cells with an increase in the δC5 f uLV
value, and this decline is observed to be smaller in cluster 2 as compared with the other
clusters. The lowest number of cancer cells can be observed at 169 days, which is right after
the treatment ends. Total cells seem to only be effected by increasing values at the 2nd and
3rd year time points, while for the other time-points there is barely any effect. This must be
due to the fact that after treatment ends, the cancer starts to grow back again. In clusters
1 and 5, although the total number of cells first decreases at the year three, it increases at
higher δC5 f uLV values.

A1

B5

A3

B4B3B2B1

A5A4A2

Figure 9. Cancer and total cells as a function of δC5 f uLV . (A1–A5) depict number of cancer cells and
(B1–B5) depict number of total cells, at different time points.

Varying δ5 f uM does not seem to have any significant change in the cancer or total cells
(Figure 10), which is consistent with noticeably lower sensitivity level of this parameter
compared to δC5 f uLV (Figure 8). We similarly see the lowest number of cancer cells at
169 days, right after stopping the treatment, and the cancer increases after treatment.
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A1

B5

A3

B4B3B2B1

A5A4A2

Figure 10. Cancer and total cells as a function of δ5 f uM. (A1–A5) depict cancer cells and (B1–B5)
depict Total cells, at different time points.

4. Discussion

Cancer is a heterogeneous disease that includes different components such as immune
cells, cancer cells or lymphatic vessels [121]. Drug resistance is one of the main problems
in cancer studies [122]. Mechanisms or components of cancer are usually investigated one
by one in traditional in vitro and in vivo studies. Although these studies provide valuable
information about a mechanism, each of these studies alone is not able to provide necessary
and sufficient information to explain cancer complexity [123]. Having more accessible
biological experimental data set and new advances in tumor deconvolution methods lead
to increase demand in data driven mathematical models that help us to model several
mechanisms together and study the complexity of the system in a more effective way [124].
Tumor microenvironment components have an essential role in the explanation of poor
prognosis and immune escape in CRC [21–23,125], and they have been used to explain
chemotherapy and immunotherapy sensitivity in many studies [44,126,127]. In this study,
we develop a data driven mathematical model that takes each tumor’s characteristic into
consideration for the treatment. We have used interaction between TME components
and drug mechanism to model the response to the FOLFIRI treatment in colon cancer
using gene expression profiles of the CRC primary tumors to estimate immune patterns.
Our results demonstrate how leucovorin increases the efficiency of 5-FU on cancer cells
(Figure 4A,B) that has been shown in many studies [94,98,99]. Also, the impact of the
combination of irinotecan, 5-FU, and leucovorin can be seen clearly on cancer cells in our
model (Figure 4D) as reported in other studies [31,128]. In addition, we have applied
treatment in different time points to show how cancer comes back aggressively if the
treatment starts late (Figure 5).

The mathematical model demonstrates the relation between immune infiltration and
drug’s effects on CRC primary tumors. Relative change in T-reg/T-helper ratio has been
found as clinical index for response prediction; colon cancer patients with higher T-reg/Th
ratio respond better to treatments [129]. Cluster 2 that has the lowest level of T-reg/T-helper
ratio (Figure 2) is more resistant to FOLFIRI treatment since after the treatment the number
of cancer cells increase faster and the values are not close to zero right after the treatment,
while in other clusters the number of cancer cells approaches zero and their growth rate is
slower (Figure 3). In contrast, the FOLFIRI treatment works better for cluster 3 that has
the highest level of T-reg/T-helper ratio compared to the other clusters. Also, a decrease
in regulatory T-cells after FOLFIRI treatment in colon cancer compared to pre-treatment
level has been found to be associated with better survival months [130]. We observe a
similar decrease for regulatory T-cells in tumors in cluster 3 that have a good response to
the FOLFIRI treatment (Figure 3).

It has been observed that the number of T-reg cells significantly decreases for colon can-
cer patients who have a high number of regulatory T-cells before FOLFIRI treatment [106].
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We divide patients into two groups based on their regulatory T-cells values as high T-reg
and low T-reg. When we compare T-reg values before and after the treatment, we also see
a decrease but it is not significant. In our validation data, there are only a few number of
patients in the high T-reg group, and that might be the reason for not observing a significant
p-value. It is important to mention that it would be ideal to use the gene expression of
the patients after the treatment or data from patients who do not use other drugs rather
than FOLFIRI to validate the model. However, follow up gene expression values are
mostly unavailable, and we have only a small number of patients with all their treatment
information available. Thus, we validate our model based on patients tumor status at
follow up date. As we see in Figure 6, our model predicts much better for the first follow
up data compare to the last follow up. That might be reasonable, because patients might
have had other treatments such as surgery between their first and last time of follow ups.

In general, this work has some limitations that should be considered when these
results are used. As mentioned above, patients included in the validation were also treated
with other drugs such as oxaliplatin. Moreover, only 31 patients have early follow up data,
and only 36 patients have late follow up data. Therefore, the validations have been done
on a small number of patients who might have undergone other treatments. We have not
had any data to validate the predictions of the model for the responses to Irinotecan.

Although our model has some limitation due to the lack of time course data, it
presents valuable insight about the interactions between FOLFIRI treatment and the tumor
micro-environment. Moreover, many studies can build upon on this one to provide the
best treatment options for patients using only patients’ gene expression data. One way
to improve this model is adding other chemotherapy options such as Oxaliplatinum,
and different parameter fitting algorithm can be applied to increase the accuracy of the
model [131–134]. Another possible way might be including other drug resistance factors in
the model and extend it to a powerful model that considers other mechanisms and other
types of patients’ data.
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HMGB1 High mobility group box 1
DAMP damage-associated molecular pattern
TAM Tumor-associated macrophages
ODE Ordinary differential equation
TYMS thymidylate synthase
TCD Total cell density
TIC Total immune cell

Appendix A. ODE System & Non-Dimensionalization

The entire ODE system, which has been modeled in this paper is given below. The
activation and proliferation rates are denoted by λ, while death and degradation rates are
denoted by δ. Changes and additions to the system modeled in [48] are highlighted in bold.

d[TN ]

dt
=ATN − (λThD[D] + λThD5 f u[5FU][D]+ λTh M[M] + λThµ1 [µ1])[TN ]

− (λTCTh [Th] + λTC D[D] + λTC D5 f u[5FU][D])[TN ]

− (λTrTh [Th] + λTrµ2 [µ2] + λTrGβ
[Gβ])[TN ]− δTN [TN ]

(A1)

d[Th]

dt
=(λThD[D] + λThD5 f u[5FU][D]+ λTh M[M] + λThµ1 [µ1])[TN ]

−(δThµ2 [µ2] + δThTr [Tr] + δTh)[Th]
(A2)

d[TC]

dt
=(λTCTh [Th] + λTC D[D] + λTC D5 f u[5FU][D])[TN ]

−(δTCµ2 [µ2] + δTCTr [Tr] + δTC )[TC]
(A3)

d[Tr]

dt
=(λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[Gβ])[TN ]− (δTrµ1 [µ1] + δTr + δTr Ir[Ir])[Tr] (A4)

d[DN ]

dt
=ADN − (λDH [H] + λDC[C])[DN ]− (δDH [H] + δD)[DN ] (A5)

d[D]

dt
=(λDH [H] + λDC[C])[DN ]− (δDH [H] + δDC[C] + δD)[D] (A6)

d[M]

dt
=
(

λMµ2 [µ2] + λMIγ [Iγ] + λMTh [Th]
)
(M0 − [M])− δM[M] (A7)

d[C]
dt

=(λC + λCµ1 [µ1])[C](1−
[C]
C0

)− (δCGβ
[Gβ] + δCIγ

[Iγ] + δCTC [TC] + δC

+ δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM [5FU][M]

+δCLV5 f u[5FU][LV ] + δCIr[Ir])[C]

(A8)

d[N]

dt
=αNC(δCGβ

[Gβ] + δCIγ
[Iγ] + δCTC [TC] + δC

+ δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM [5FU][M]

+δCLV5 f u[5FU][LV ] + δCIr[Ir])[C]− δN [N]

(A9)

d[H]

dt
=λHN [N] + λHM[M] + λHTh [Th] + λHTC [TC] + λHTr [Tr]− δH [H] (A10)

d[µ1]

dt
=λµ1Th [Th] + λµ1 M[M] + λµ1D[D]− δµ1 [µ1] (A11)

d[µ2]

dt
=λµ2 M[M] + λµ2D[D] + λµ2Tr [Tr]− δµ2 [µ2] (A12)

d[Iγ]

dt
=λIγTh [Th] + λIγTC [TC] + λIγ M[M]− δIγ [Iγ] (A13)

d
[
Gβ

]
dt

=λGβ M[M] + λGβTr [Tr]− δGβ

[
Gβ

]
(A14)
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d[5FU]

dt
=A5 f u

inj (t)− α5 f u(δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM [5FU][M]

+ δCLV5 f u[5FU][LV ])[C]− δ5 f uD[5FU][D]− δ5 f u[5FU]
(A15)

d[Ir]
dt

=AIr
inj(t)− αIrC δCIr[C][Ir]− αIrTr δTr Ir[Ir][Tr]− δIr[Ir] (A16)

d[LV ]

dt
=ALV

inj(t)− δLV [LV ]− αLV δCLV5 f u[C][5FU][LV ] (A17)

We introduce non-dimensional variables,

5FU =
δ5 f u[5FU]〈

A5 f u
inj

〉
daily median

Ir =
δIr[Ir]〈

AIr
inj

〉
daily median

LV =
δLV [LV]〈

ALV
inj

〉
daily median

,

then we have the following non-dimensional equations (only the new and altered ones
have been included, the rest of non-dimensionalized equations are exactly the same as the
ones provided in [48]):

d[5FU]

dt
=A5 f u

inj (t)− α5 f u(δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM [5FU][M]

+ δCLV5 f u[5FU][LV ])[C]− δ5 f uD[5FU][D]− δ5 f u[5FU]

(A18)

d[Ir]
dt

=AIr
inj(t)− αIrC δCIr[C][Ir]− αIrTr δTr Ir[Ir][Tr]− δIr[Ir] (A19)

d[LV ]

dt
=ALV

inj(t)− δLV [LV ]− αLV δCLV5 f u[C][5FU][LV ] (A20)

d[Tr]

dt
=(λTrTh [Th] + λTrµ2 [µ2] + λTrGβ

[Gβ])[TN ]

− (δTrµ1 [µ1] + δTr + δTr Ir[Ir])[Tr]

(A21)

d[Th]

dt
=(λThD[D] + λThD5 f u[5FU][D]+ λTh M[M] + λThµ1 [µ1])[TN ]

− (δThµ2 [µ2] + δThTr [Tr] + δTh)[Th]

(A22)

d[TC]

dt
=(λTCTh [Th] + λTC D[D] + λTC D5 f u[5FU][D])[TN ]

− (δTCµ2 [µ2] + δTCTr [Tr] + δTC )[TC]

(A23)

d[TN ]

dt
=ATN − αTN Th(λThD[D] + λThD5 f u[5FU][D]+ λTh M[M] + λThµ1 [µ1])[TN ]

− αTN TC (λTCTh [Th] + λTC D[D] + λTC D5 f u[5FU][D])[TN ]

− αTN Tr (λTrTh [Th] + λTrµ2 [µ2] + λTrGβ
[Gβ])[TN ]− δTN [TN ]

(A24)

d[C]
dt

=(λC + λCµ1 [µ1])[C]
(

1− [C]
C0

)
− (δCGβ

[Gβ] + δCIγ
[Iγ] + δCTC [TC] + δC

+ δC5 f u[5FU] + δC5 f uIγ
[5FU][Iγ]− δ5 f uM [5FU][M]

+ δCLV5 f u[5FU][LV ] + δCIr[Ir])[C]

(A25)

where the newly introduced non-dimensional parameters are:
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A5 f u
inj =

A5 f u
inj δ5 f u〈

A5 f u
inj

〉
daily median

α5 f u =
α5 f uC∞δ5 f u〈

A5 f u
inj

〉
daily median

λTh D5 f u =
λTh D5 f uD∞T∞

N

〈
A5 f u

inj

〉
daily median

δ5 f uT∞
h

δ5 f uD = δ5 f uD D∞

λTC D5 f u =
λTC D5 f uD∞T∞

N

〈
A5 f u

inj

〉
daily median

δ5 f uT∞
C

δC5 f u =
δC5 f u

〈
A5 f u

inj

〉
daily median

δ5 f u

δC5 f uIγ =
δC5 f uIγ I∞

γ

〈
A5 f u

inj

〉
daily median

δ5 f u
δ5 f uM =

δ5 f uM M∞
〈

A5 f u
inj

〉
daily median

δ5 f u

δCLV5 f u = δCLV5 f u ·
[5FU]

〈
A5 f u

inj

〉
daily median

δ5 f u
·
[LV]

〈
ALV

inj

〉
daily median

δLV
ALV

inj =
ALV

inj δLV〈
ALV

inj

〉
daily median

αLV =
αLV C∞δLV〈

ALV
inj

〉
daily median

δCIr =
δCIr

〈
AIr

inj

〉
daily median

δIr

AIr
inj =

AIr
inj δIr〈

AIr
inj

〉
daily median

δTr Ir =
δTr Ir

〈
AIr

inj

〉
daily median

δIr

αIrC =
αIrCC∞δIr〈

AIr
inj

〉
daily median

αIrTr =
αIrTr T∞

r δIr〈
AIr

inj

〉
daily median

Note that Ainj(t) represents the infusion step function and
〈

Ainj
〉

daily min/median is the
corresponding drug minimum or median administered dose based on patients’ data as
given in Table 3.

For the natural decay rates of the drugs, we use the same formula from [48] by using
their respective terminal/elimination half-lives as reported in available studies.

From available studies, we know that the terminal half-life of 5-FU is in between 8
and 20 min [135]. Therefore, using the average half-life as 14 min, we have

δ5 f u =
ln 2
t1/2

=
ln 2

14 mins
= 71.3 day−1.

Since Leucovorin is a mixture of the two isomers [6R]-5-formyl-tetrahydrofolate and
[6S]-5-formyl-tetrahydrofolate, both with very different half-lives, to determine its half-life,
we use [136], which reports it as 5.7 h and the terminal half-life as given by [137] for the
total folates and metabolites of 7.59 h. Therefore, taking the average half-life as 6.5 h
(approx. 5–8 h) we have

δLV =
ln 2

6.5 hrs
= 2.56 day−1

And the reported terminal half-life of Irinotecan ranges between 5 and 18 h [103,138,139],
giving an average half-life of 11.5 h. Therefore,

δIr =
ln 2

11.5 hrs
= 1.45 day−1

The median dosages are used for the parameters
〈

Ainj
〉

daily median corresponding to
each drug by dividing them by the average cycle length to obtain the daily dose:

〈
Ainj

〉5 f u
daily median = median dosage per cycle per day =

770
14〈

Ainj
〉Ir

daily median = median dosage per cycle per day =
300
14
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〈
Ainj

〉LV
daily median = median dosage per cycle per day =

725
14

Similarly, the minimum daily dose per cycle from patients’ data for each corresponding
drug is the minimum dose divided by the average cycle length:

〈
Ainj

〉5 f u
daily min = min. dosage per cycle per day =

598
14〈

Ainj
〉Ir

daily min = min. dosage per cycle per day =
208
14〈

Ainj
〉LV

daily min = min. dosage per cycle per day =
75
14

We used the following assumptions for the parameter values (all in dimensional form).
Values for αs have been derived from their efficiency, either from available studies or
by appropriate assumptions. Note that maximum values and steady state values of the
variables are taken from [48].

δ5 f uIγ
·

Imax
γ

I∞
γ

=δC5 f u ·
3
2

δ5 f uM ·
Mmax

M∞ =δ5 f uD ·
Dmax

D∞ =
1
2
· δC〈

A5 f u
inj

〉
daily min

δC5 f u ·
〈

A5 f u
inj

〉
daily min

=102 · δC

λThD5 f u ·
〈

A5 f u
inj

〉
daily min

=
1
2
· λThD

λTC D5 f u ·
〈

A5 f u
inj

〉
daily min

=
1
2
· λTC D

α5 f u =derived from efficiency

It is assumed that about 20% of 5-FU is effectively used to kill cancer cells (as reported
above [28,107,108]).

δC5 f uLV =0.1 ·
δC5 f u〈

ALV
inj

〉
daily min

αLV =derived from efficiency

assuming 5% efficiency of killing cancer cells for Leucovorin.

δCIr =0.5 · δC5 f u ·

〈
A5 f u

inj

〉
daily min〈

AIr
inj

〉
daily min

δIrTr =δCIr

αIrTr =αIrC

αIrC = derived from efficiency

assuming 40% efficiency of killing cancer cells for Irinotecan, since at least 60% of the drug
is known to be eliminated from the body without being used [103].
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In non-dimensional form, the parameter assumptions are as follows:

λTh D5 f u =
λTh D

〈
A5 f u

inj

〉
daily median

2 · δ5 f u

〈
A5 f u

inj

〉
daily min

λTC D5 f u =
λTC D

〈
A5 f u

inj

〉
daily median

2 · δ5 f u

〈
A5 f u

inj

〉
daily min

δC5 f uIγ =
3 · δC5 f u · I∞

γ

2 · Imax
γ

δ5 f uM =
δC ·M∞ ·

〈
A5 f u

inj

〉
daily median

2 · δ5 f u ·Mmax ·
〈

A5 f u
inj

〉
daily min

δ5 f uD =
δC · D∞ ·

〈
A5 f u

inj

〉
daily median

2 · δ5 f u · Dmax ·
〈

A5 f u
inj

〉
daily min

δC5 f u =102 ·

〈
A5 f u

inj

〉
daily median〈

A5 f u
inj

〉
daily min

· δC

δ5 f u

δCIr =
1
2
·

〈
AIR

inj

〉
daily median〈

AIR
inj

〉
daily min

δ5 f uδC5 f u

δIR

〈
AIR

inj

〉
daily min〈

AIR
inj

〉
daily median

δTr Ir =δCIr

δC5 f uLV =0.1 ·

〈
A5 f u

inj

〉
daily median〈

ALV
inj

〉
daily min

·
δC5 f u

δLV
αLV =

LVe f f

1− LVe f f
· δLV

δC5 f uLV(1− 5 f ue f f )

αIrC =
IRe f f

1− IRe f f

δIr

δCIr
αIrTr =

IRe f f

1− IRe f f

δIr

δTr Ir

α5 f u =

( 5FUe f f
1−5FUe f f

)
δ5 f u − δ5 f uD

δC5 f u + δC5 f uIγ − δ5 f uM + δC5 f uLV · (1− LVe f f )
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