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Abstract: The impetus for the expanding interest in ionic liquids (ILs) is their favorable properties
and important applications. Ionic liquid-based surfactants (ILBSs) carry long-chain hydrophobic
tails. Two or more molecules of ILBSs can be joined by covalent bonds leading, e.g., to gemini
compounds (GILBSs). This review article focuses on aspects of the chemistry and applications of
ILBSs and GILBSs, especially in the last ten years. Data on their adsorption at the interface and
micelle formation are relevant for the applications of these surfactants. Therefore, we collected data
for 152 ILBSs and 11 biamphiphilic compounds. The head ions of ILBSs are usually heterocyclic
(imidazolium, pyridinium, pyrrolidinium, etc.). Most of these head-ions are also present in the
reported 53 GILBSs. Where possible, we correlate the adsorption/micellar properties of the sur-
factants with their molecular structures, in particular, the number of carbon atoms present in the
hydrocarbon “tail”. The use of ILBSs as templates for the fabrication of mesoporous nanoparticles
enables better control of particle porosity and size, hence increasing their usefulness. ILs and ILBSs
form thermodynamically stable water/oil and oil/water microemulsions. These were employed as
templates for (radical) polymerization reactions, where the monomer is the “oil” component. The
formed polymer nanoparticles can be further stabilized against aggregation by using a functionalized
ILBS that is co-polymerized with the monomers. In addition to updating the literature on the subject,
we hope that this review highlights the versatility and hence the potential applications of these
classes of surfactants in several fields, including synthesis, catalysis, polymers, decontamination, and
drug delivery.

Keywords: ionic liquids; ionic liquid-based surfactants; gemini ionic liquid-based surfactants; adsorp-
tion at water/air interface; formation of micelles and microemulsions; molecular structure/properties
relationships; mesoporous nanoparticles; catalysis; drug delivery; polymerization

Note: Abbreviations and acronyms are listed after Acknowledgments

1. Introduction

Ionic liquids (ILs) are electrolytes whose melting points are, by operational definition,
≤100 ◦C. Ionic liquid-based surfactants (ILBSs) are ILs that carry hydrophobic “tails” and
hence form colloidal aggregates in water, e.g., micelle and vesicles. Single-chain ILBSs
can be covalently linked to form dimers (so-called gemini surfactants, GILBSs), trimers
and, eventually, polymeric ILBSs. This structure versatility can be exploited to obtain
different structures as shown in Figure S1 (in Supplementary Material) [1], and to obtain
several colloidal morphologies, as can be seen in Figure 1 for a series of 1-hexadecyl-3-R-
imidazolium bromides, allowing potentially interesting applications. Thus, the increase
in the length of R from C2 to C16 leads to changes from isotropic solution to worm-like
micelles, hexagonal liquid crystals, hydrogel and, eventually, surfactant precipitation [2].
Additionally, these surfactants also form thermodynamically stable water-in-oil (W/O)
and oil-in-water (O/W) microemulsions that are used, e.g., in polymerization [3].
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Figure 1. Formation of different morphologies as a function of the surfactant molecular structure 
(1-C16-3-R-imidazolium bromides; R = C2 to C16) and their concentration in water. S, H, WM, G and 
P refer to isotropic solution, hexagonal liquid crystals, wormlike micelles, hydrogel and ionic liq-
uid-based surfactants precipitation, respectively [2]. Reprinted with permission from ref. [2]. 
Copright 2021 Elsevier. 

This review article is focused on ILBSs and GILBSs. Using literature data of (mostly) 
the last 10 years, we highlight the relationship between surfactant molecular structure 
and solution properties that are relevant to applications. Of these properties, we dwell on 
the adsorption parameters of the surfactants at the water/air interface and the character-
istics of the formed aggregates. These data are important per se, and are fundamental for 
the development of novel applications. For example, ILBSs are employed as templates to 
fabricate nanoparticles (NPs) of different sizes and morphologies. Microemulsions (μEs) 
formed by these surfactants, both W/O and O/W, were also employed as templates for 
(free radical) polymerization, where the monomer acts as the “oil” component. Addi-
tionally, electrolytes and drugs, especially those with hydrophobic ions that carry oppo-
site charge to the ILBS head-group, change the morphology of the aggregate, e.g., micelle 
→ vesicle, with potential applications in drug delivery. ILBSs with a functional group in 
the long-chain (e.g., an ester or amide group) undergo reversible transitions—micelle ⇄ 
vesicle ⇄ organogel—on changing temperature and surfactant concentration. Vesicles and 
organogels have potential applications in drug delivery and waste-water decontamina-
tion (vide infra). ILBSs that carry a polymerizable group (usually a double bond) are 
advantageously employed in polymerization in μE media because the polymer core is 
covered with a surfactant shell, leading to enhanced NP stability. The hydro-
philic/hydrophobic character of the NPs can be controlled by ion exchange of the anion of 
(co-polymerized) surfactant with other anions. 

Our original premise was to limit the data discussed to ILBSs that conform to the 
m.p. criterion, i.e., ≤100 °C. A literature survey, however, showed that m.p.s are not re-
ported for many compounds that are classified (by the authors) as ILBSs. In other words, 
our criterion for considering compounds such as ILBSs and GILBSs is either the availa-

Figure 1. Formation of different morphologies as a function of the surfactant molecular structure
(1-C16-3-R-imidazolium bromides; R = C2 to C16) and their concentration in water. S, H, WM, G
and P refer to isotropic solution, hexagonal liquid crystals, wormlike micelles, hydrogel and ionic
liquid-based surfactants precipitation, respectively [2]. Reprinted with permission from ref. [2].
Copright 2021 Elsevier.

This review article is focused on ILBSs and GILBSs. Using literature data of (mostly)
the last 10 years, we highlight the relationship between surfactant molecular structure and
solution properties that are relevant to applications. Of these properties, we dwell on the
adsorption parameters of the surfactants at the water/air interface and the characteristics
of the formed aggregates. These data are important per se, and are fundamental for the
development of novel applications. For example, ILBSs are employed as templates to
fabricate nanoparticles (NPs) of different sizes and morphologies. Microemulsions (µEs)
formed by these surfactants, both W/O and O/W, were also employed as templates for (free
radical) polymerization, where the monomer acts as the “oil” component. Additionally,
electrolytes and drugs, especially those with hydrophobic ions that carry opposite charge to
the ILBS head-group, change the morphology of the aggregate, e.g., micelle→ vesicle, with
potential applications in drug delivery. ILBSs with a functional group in the long-chain (e.g.,
an ester or amide group) undergo reversible transitions—micelle � vesicle � organogel—
on changing temperature and surfactant concentration. Vesicles and organogels have
potential applications in drug delivery and waste-water decontamination (vide infra). ILBSs
that carry a polymerizable group (usually a double bond) are advantageously employed in
polymerization in µE media because the polymer core is covered with a surfactant shell,
leading to enhanced NP stability. The hydrophilic/hydrophobic character of the NPs can be
controlled by ion exchange of the anion of (co-polymerized) surfactant with other anions.

Our original premise was to limit the data discussed to ILBSs that conform to the m.p.
criterion, i.e., ≤100 ◦C. A literature survey, however, showed that m.p.s are not reported for
many compounds that are classified (by the authors) as ILBSs. In other words, our criterion
for considering compounds such as ILBSs and GILBSs is either the availability of m.p. or
classification of the surfactant as such by the authors. We included a few applications that
use ILs because some of these are weakly surface-active [4].

The issue of surface-active purity of the surfactants employed should not be over-
looked. Demonstrating this purity is important because uncertainty in the value of the
critical micelle concentration (cmc) bears on the calculated adsorption and micellar pa-
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rameters [5,6]; removing surface-active impurities from the surfactant solution is, at best,
time-consuming and laborious [7]. Another aspect that should be considered when dis-
cussing ILBSs is their stability in aqueous media. In this regard, the purity and hence the
data of aqueous solutions of ILBSs with BF4

− and PF6
− anions should be regarded with

some reserve. The reason is that these ions are hydrolytically unstable in water, even at
room temperature; this instability was demonstrated by several techniques [8–11]. This
affects the physicochemical properties of the micellar solutions, e.g., cmc, the average ag-
gregation number (Nagg), and the degree of counter-ion dissociation (αmic). This problem
was mentioned explicitly by some authors (precaution was taken to suppress its effect) [12]
but not others [13], even when the ILBSs were heated with methanol at 85 ◦C for 8 h [14]. A
literature survey using the search terms (HF, pH and hydrolysis) for the above-mentioned
ILBSs showed that the time elapsed between preparing the ILBS solutions and the measure-
ments/applications was not mentioned [15–26]. Therefore, we stress that this instability
problem should not be overlooked; its potential effect on micellar parameters and other
applications should be assessed. Based on these considerations, we feel justified in our
decision to exclude from the parts of surfactant adsorption at the water/air interface and
micellization of ILBSs with hydrolytically unstable ions, in particular BF4

- and PF6
-.

Regarding the abbreviations/acronyms that we employed, we refer to each of the
discrete structural moieties using two letters. For example, Im, Py and Vn refer to imida-
zole, pyridine and vinyl group, respectively. The alkyl moieties attached to the surfactant
head-group are listed as C1, C2, C3, and C4 for methyl, ethyl, n-propyl, and n-butyl, respec-
tively. Unless specified otherwise, the alkyl groups are n-alkyl. Usually, one of the two
groups attached to the heteroatom is a long-chain. Therefore, C16C1ImBr, C12C1ImC8SO3
and C12C1ImDBS refer to 1-(1-hexadecyl)-3-methylimidazolium bromide, 1-(1-dodecyl)-3-
methylimidazolium 1-octanesulfonate and 1-(1-dodecyl)-3-methylimidazolium dodecyl-
benzene sulphonate, respectively.

The presence of certain functional groups (e.g., amide and ester) in the hydrophobic
tail is interesting because it may lead to reversible morphology transitions, e.g., micelle
� vesicles � ionogel as a function of concentration of the ILBS and solution temperature,
due to changes in the hydration of the functional group. Formation of ionogels can be ex-
ploited, e.g., in waste-water decontamination and drug delivery [27,28]. Equally important,
however, is that the presence of these hydrolysable functional groups contributes to their
aerobic biodegradation [29], an issue that is becoming important due to their increased ap-
plications, e.g., in high-temperature lubricants, for gas chromatography (stationary phases),
in conductive polymer supercapacitors, and as gel polymer electrolyte for sodium-ion
batteries [30–35].

The environmental impact (biodegradation and toxicity) of ILs and ILBSs should be
assessed. Thus, several studies on the relationship between their molecular structures and
toxicity showed that the most toxic (to aquatic life) are those carrying aromatic/heterocyclic
cations and long alkyl chains; most anions play a minor role in toxicity. Therefore, the
synthesis of a new generation of easily biodegradable ILs and ILBSs from renewable sources
was studied [36–38]. It was shown that ester functionality enhances biodegradation of ILs;
furthermore, adding a methyl group to the 2-position of the imidazolium cation and use of
alkyl sulfate as a counter-ion also improves the biodegradability [36].

The importance of ILs and ILBSs can be readily assessed by examining Figure 2,
which shows the number of publications on both classes of compounds from 2000 to 2020
based on a SciFinder database search. Figure 2 clearly shows an exponential growth of
these numbers, a consequence of their molecular structure versatility, and hence potential
applications in several fields.
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2. Strategies for Synthesizing Mono-Cationic and Gemini Ionic Liquid-Based Surfactants

The synthesis of ILBS is usually carried out by two consecutive steps: quaternization
of amines or phosphines, usually by the SN2 mechanism (e.g., by the Menshutkin reaction)
using alkyl halides, or alkyl sulphates, followed by anion exchange, where necessary, to
yield the desired product. These quaternization reactions are simple and relatively efficient.
The amine (or phosphine) is mixed with the desired alkyl halide, followed by stirring and
heating. The effects of reaction variables on the yield are those known for SN2 reactions.
For example, for alkyl halides, the expected order is RI > RBr > RCl (R = n-alkyl group); an
increase in the chain length of R decreases the reaction rate [39,40].

The most frequently employed procedures for the Menshutkin reaction include
reflux in an appropriate molecular solvent, e.g., acetonitrile. The reaction between 1-
methylimidazole and 1-chloroalkanes in acetonitrile under reflux generally requires 2 to
3 days [41–47]. ILBSs were alternatively synthesized in the absence of solvents, using
microwave irradiation [48] or a combination of microwave and ultrasound irradiation [49].
The obtained products are termed first-generation ILs and ILBSs.

Second-generation ILs and ILBSs are obtained from their first-generation counterparts
by a metathesis reaction, leading to ILBSs containing bulkier anions, e.g., BF4− , PF6− ,
C6H5CO2− and (CF3SO2)2N−. The synthesis steps are summarized in Scheme 1.

The most common ILBSs are synthesized from 1-methylimidazole, which is com-
mercially available at a low cost, along with a small number of other N-alkyl substituted
imidazoles [40]. ILBSs that carry ester or ether groups are of interest especially because of
their biodegradability [50]. Ester- and amide-containing ILBSs were synthesized by the
SN reaction of substituted imidazole with α-bromo ester or α-bromo amide. Examples are
shown in Scheme 2. ILBS derived from other heterocycles, e.g., pyridine, pyrrolidine, and
morpholine, were synthesized by the same general procedure [51–53].

GILBSs can be synthesized by two successive SN reactions on imidazole. This requires
protecting one of the nitrogen atoms, e.g., by reaction with acrylonitrile if the two attached
alkyl groups are different. After the first alkylation, the protecting group is removed by
E1cB-type elimination, followed by the second alkylation with a dihaloalkane [43,45], as
shown in Scheme 3.
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Alternatively, GILBSs were synthesized by reacting imidazole with a dihaloalkane,
followed by alkylation of the two “outer” nitrogen atoms, see Scheme 4.
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Functionalized GILBSs were synthesized by reacting 1-methylimidazole with diesters
containing two bromo substituents and two long chains [54]. Similarly, thioether con-
taining GILBSs were prepared from alkane-1,2-dithiol, alkenes and N-bromosuccinimide,
the intermediate was then reacted with 1-methylimidazole to form the GILBS [55]. Non-
imidazolium GILBSs were prepared by a straightforward one-step reaction, e.g., of tridode-
cylamine and dibromoalkanes. The class of gemini pyrrolidine-based ILs was synthesized
by the consecutive reaction of the secondary amine with a long chain alkyl bromide,
followed by reaction of the N-alkylpyrrolidine with 1,4-dibromobutane [56].

3. Relevant Properties of Aqueous Solutions of ILBS
3.1. Compilation and Discussion of the Properties of Aqueous Solution of ILBSs

As already mentioned, one of the most relevant aspects of ILs is their molecular
structural versatility, as can be shown, e.g., by imidazolium-based surfactants. In addition
to different anions (halides, alkyl sulphate, carboxylates, etc.), different substituents can be
introduced at the two nitrogen atoms and at the three carbon atoms of the diazole ring.

Table 1 displays the adsorption parameters of ILBSs in aqueous solutions, in the
absence of electrolytes, at 25 ◦C, whereas Table S1 (in Supplementary Material) shows
the micellization parameters of these surfactants. For ease of reading, we maintained the
numbering of compounds the same in both Tables. For example, C8C1ImCl is compound
number 1 in Table 1 and Table S1 in both tables. A similar approach was also applied in
Table 2 (GILBSs) and Table S2 (in Supplementary Material).

The data reported cover the period between 2010 and 2020, unless the information is
only available before 2010. Only ILs with alkyl chain ≥C8 carbons are included, because
these surfactants present spherical aggregates at surfactant concentration ≥cmc [57]. The
ILBSs are listed by the charge of the group with the longest hydrophobic chain, namely
cationic and anionic. ILBSs are listed as biamphiphilic when the alkyl chains of the anion
and cation are longer than n-octyl. In Table 1 and Table S1, entries 1–125 refer to cationic,
entries 126–152 refer to anionic, and entries 153–163 refer to biamphiphilic ILBSs.
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Table 1. Literature data on aqueous solutions of ionic liquid-based surfactants at 25 ◦C. Adsorption and micellar parameters calculated from surface tension data.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

1 C8C1Im+ Cl−

116 [58],
101.7 [59],
190 [60],

108.9 [61],
170.2 [62]

28.3 [59],
33.5 [61],
37.3 [62]

43.3 [59],
32.2 [60],
38.5 [61]

2.682 [58],
1.6 [59],

1.52 [61],
1.24 [62]

104 [59],
84 [60],

109 [61],
133 [62]

1.8 [59],
1.67 [60],
1.92 [61]

−43.33 [58],
−47.6 [61],
−24.6 [62]

2 Br−
121 [45],

120.0 [59],
170 [63],

119.29 [64]

41 [45],
28.7 [59],
41.3 [63],
29.33 [64]

44.9 [59],
42.87 [64]

2.7 [59],
3.065 [64]

60 [59],
124 [63],
53 [64]

1.8 [59] −36.5 [64]

3 I− 94.9 [59] 28.2 [59] 44.4 [59] 1.4 [59] 117 [59] 2.0 [59]

4 C1SO3
− 220 [65] 29.0 [65] 1.0 [65]

5 C4SO3
− 140 [65] 28.5 [65] 1.6 [65]

8 C10C1Im+ Cl−

39.90 [42],
45 [60],

40.00 [66],
40.0 [67],
40 [68],
40 [69],

27.7 [70]

27.3 [66] 33.7 [60],
44.5 [66]

1.9 [66],
1.84 [67],
1.84 [68],
1.84 [69]

85 [42],
92 [60],
85 [66],
90 [67],
90 [68],
90 [69]

2.55 [60],
2.5 [66],
2.60 [68]

−30.16 [42],
−48.55 [67],
−48.00 [68],
−48.55 [69]

9 Br−

20 [45],
33 [63],

36.7 [71],
27.24 [72],
39.6 [73]

39 [45],
39.1 [63],
37.3 [71],

48.95 [72],
36.04 [73]

35.5 [71],
23.02 [72],
33.37 [73]

1.82 [71],
1.75 [72],
1.71 [73]

91 [63],
57.6 [74],
91.4 [71],
94.61 [72],
97.01 [73]

1.61 [72]

10 C1SO3
− 60 [65] 28.5 [65] 1.5 [65]
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Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

12 C12C1Im+ Cl−

13.17 [42],
14.80 [66],
13.8 [70],
16.8 [75],

13.86 [76],
13.25 [77],
11.62 [78]

38.7 [66],
38.4 [75],
30.45 [76]

33.6 [66],
41.55 [76], 28.6

[77]

2.3 [66],
2.91 [75],
2.04 [76]

72 [42],
72 [66],
57 [75],

81.39 [76], 72
[77]

2.4 [66],
2.16 [75],
2.72 [76]

−32.03 [42]

13 Br−

4.3 [45],
9.0 [63],
9.19 [72],
10.6 [75],
9.29 [77],

10.35 [79],
8.22 [80],

11.21 [81],
8.73 [82],
9.68 [83],
9.0 [84],
9 [85]

35 [45],
37.2 [63],

46.71 [72],
36.8 [75],

38.96 [80],
42.9 [81],

38.68 [82],
37.40 [83]

25.26 [72],
29.3 [77],

33.06 [80],
33.94 [82]

1.80 [72],
3.03 [75],
4.48 [79],
3.36 [80],
3.095 [82]

67 [63],
92.49 [72],

64 [74],
55 [75],
71 [77],

37.1 [79],
49.42 [80],
53.7 [82]

2.35 [72],
2.16 [75],
3.06 [79],
2.54 [80],
2.45 [82]

14 I− 4.6 [75],
4.76 [77] 31.7 [75] 37.7 [77] 4.47 [75] 37 [75],

62 [77] 2.80 [75]

15 C1SO3
− 14 [65] 28.5 [65] 2.1 [65]

17 C14C1Im+ Cl−
2.98 [42],
3.10 [70],
3.63 [86]

34.15 [86] 36.65 [86] 2.25 [86] 56 [42],
74 [86] 2.89 [86] −33.81 [42],

−55.55 [86]

18 Br−

1.9 [63],
2.69 [83],
2.76 [87],
2.6 [88],
2.8 [89]

37.2 [63],
37.70 [83],

37 [88],
39.2 [89]

41.4 [87],
33.8 [89]

1.74 [87],
1.26 [88],
1.96 [89]

67 [63],
64.8 [74],
95 [87],

132 [88],
84.7 [89]

3.6 [87],
3.03 [88],
3.33 [89]

−47.48 [87]



Polymers 2021, 13, 1100 9 of 51

Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

19 C16C1Im+ Cl−
0.87 [42],
1.14 [66],
0.89 [90],
0.87 [91]

37.0 [66],
40.9 [91]

34.8 [66],
28.8 [90]

3.4 [66],
2.06 [90],
3.4 [91]

49 [42],
49 [66],
80 [90],
49 [91]

3.2 [66],
3.4 [90],
3.39 [91]

−35.23 [42],
−35.64 [91]

20 Br−

0.8 [45],
0.610 [72],
0.78 [79],
0.51 [83],
0.55 [89],
0.71 [91],
0.566 [92]

41 [45],
44.53 [72],
37.41 [83],
39.1 [89],
38.7 [91],
38.98 [92]

27.44 [72],
33.9 [89],
33.05 [92]

2.00 [72],
4.20 [79],
2.03 [89],
3.0 [91],
2.06 [92]

83.14 [72],
39.6 [79],
81.6 [89],
54 [91],

80.7 [92]

3.42 [72],
3.85 [79],
3.78 [89],
3.55 [91]

−36.83 [91]

21 C18C1Im+ Cl− 0.40 [66] 42.0 [66] 29.8 [66] 3.7 [66] 45 [66] 3.6 [66]

22 C12C2Im+ Br− 6.40 [80] 38.09 [80] 33.93 [80] 3.09 [80] 53.74 [80] 2.70 [80]

23 C16C2Im+ Cl− 0.88 [91] 35.4 [91] 2.6 [91] 63 [91] 3.62 [91] −38.29 [91]

24 Br− 0.55 [91],
0.26 [93]

39.8 [91],
32.2 [93] 40.3 [93] 2.7 [91],

2.58 [93]
61 [91],

64.2 [93]
3.65 [91],
4.22 [93]

−38.19 [91],
−66.32 [93]

25 C10VnIm+ Br− 27.20 [93] 34.5 [93] 37.3 [93] 1.86 [93] 89.3 [93] 2.44 [93] −50.60 [93]

26 C12VnIm+ Br− 7.00 [93] 34.1 [93] 38.4 [93] 2.03 [93] 81.8 [93] 2.80 [93] −56.31 [93]

28 C14VnIm+ Br− 1.85 [93] 33.8 [93] 38.6 [93] 2.18 [93] 76.2 [93] 3.40 [93] −61.30 [93]

29 C16VnIm+ Br− 0.60 [91],
0.48 [93]

37.7 [91],
33.5 [93] 39.1 [93] 3.1 [91],

2.53 [93]
53 [91],

65.7 [93]
3.63 [91],
4.00 [93]

−37.09 [91],
−65.47 [93]

30 C12C3Im+ Br− 5.05 [80] 37.56 [80] 34.46 [80] 2.20 [80] 75.48 [80] 2.85 [80]

31 C16C3Im+ Cl− 0.71 [91] 35.2 [91] 2.2 [91] 75 [91] 3.82 [91] −40.78 [91]

32 Br− 0.44 [91] 39.7 [91] 2.3 [91] 73 [91] 3.80 [91] −40.46 [91]

33 C16AlIm+ Br− 0.51 [91] 38.7 [91] 2.6 [91] 63 [91] 3.74 [91] −38.90 [91]

34 C8C4Im+ Br− 41 [45],
75.8 [94]

40 [45],
33.2 [94] 37 [94] 1.3 [94] 126.9 [94] 2.3 [94] −51.1 [94]
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Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

35 C10C4Im+ Br− 6.3 [45] 36 [45]

36 C12C4Im+ Br−
2.4 [45],
3.68 [80],
5.3 [94]

38 [45],
34.92 [80],
33.0 [94]

37.10 [80],
37.2 [94]

2.02 [80],
2.1 [94]

82.21 [80],
76.9 [94]

3.18 [80],
2.9 [94] −53.2 [94]

37 C16C4Im+ Cl− 0.50 [91] 38.0 [91] 2.1 [91] 80 [91] 3.89 [91] −41.86 [91]

38 Br− 0. 1 [45],
0.40 [91]

45 [45],
40.3 [91] 1.9 [91] 86 [91] 3.92 [91] −42.73 [91]

39 C16C5Im+ Cl− 0.35 [91] 39.6 [91] 1.6 [91] 106 [91] 4.15 [91] −46.37 [91]

40 C8C8Im+ Br− 5.6 [45],
8.0 [95]

32 [45],
25.9 [95]

41 C12C12Im+ Br− 0.1 [45] 28 [45]

42 C10C1C1Im+ Br− 43.0 [96] 30.9 [96] 1.7 [96] 99.4 [96]

43 C12C1C1Im+ Cl− 12.27 [97] 31.21 [97] 40.79 [97] 0.95 [97] 1.75 [97] 2.75 [97] −78.78 [97]

44 C10C1C10Im+ Cl− 1.23 [98] 32.7 [98] 1.98 [98] 83.5 [98] −46.66 [98]

45 C8Py+ Cl− 181 [99] 36.84 [99] 34.6 [99] 1.70 [99] 98 [99] 1.6 [99]

46 Br− 180 [63] 41.9 [63] 66 [63]

48 C10Py+ Cl− 65.5 [100]

49 Br− 30 [63] 40.7 [63] 61 [63]

50 C11Py+ Br− 19.5 [101]

51 C12Py+ Cl− 14.0 [101]

52 Br− 9.3 [63] 39.3 [63] 71 [63]

53 C13Py+ Br− 4.57 [101]

54 C14Py+
Cl− 3.20 [102]
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Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

55 Br− 2.2 [63], 2.65
[101] 38.0 [63] 86 [63]

56 C16Py+ Cl− 0.99 [103] 49 [103] 23.0 [103] 1.17 [103] 142.0 [103] 3.00 [103] −25.7 [103]

57 Br− 0.62 [101],
0.9 [103] 49 [103] 23.0 [103] 0.91 [103] 142 [103] 3.03 [103] −25.70 [103]

58 C8-(o-C1)Py+ Cl− 166 [99] 31.80 [99] 40.1 [99] 1.67 [99] 99 [99] 3.0 [99]

63 C8-(m-C1)Py+ Cl− 170 [99] 32.38 [99] 39.2 [99] 1.71 [99] 97 [99] 1.9 [99]

65 C10-(m-C1)Py+ Cl− 45 [85] 27.9 [85] 121 [85] 1.62 [85]

66 C12-(m-C1)Py+ Cl− 13 [85] 27.9 [85] 108 [85] 2.22 [85]

67 Br− 10 [85],
9.83 [104] 39.2 [104] 32.9 [104] 1.84 [104] 90.3 [104] 2.8 [104] −55.00 [104]

68 C14-(m-C1)Py+ Cl− 3.1 [85] 28.0 [85] 92 [85] 2.82 [85]

69 Br− 2.26 [104] 38.8 [104] 33.3 [104] 2.09 [104] 79.4 [104] 3.1 [104] −58.39 [104]

70 C16-(m-C1)Py+ Cl− 0.8 [85] 27.9 [85] 80 [85] 3.39 [85]

71 Br− 0.508 [104] 37.6 [104] 34.5 [104] 2.38 [104] 69.7 [104] 3.8 [104] −63.00 [104]

72 C18-(m-C1)Py+ Cl− 0.3 [85] 27.8 [85] 76 [85] 3.87 [85]

73 C8-(p-C1)Py+ Cl− 175 [99] 31.00 [99] 40.7 [99] 1.65 [99] 101 [99] 2.2 [99]

79 C10C1Pn+ Br− 31 [105] 28.6 [105] 3.8 [105] 44 [105]

80 C12C1Pn+ Br− 16 [105] 25.1 [105] 4.4 [105] 38 [105]

81 C14C1Pn+ Br− 7.4 [105] 28.7 [105] 4.5 [105] 37 [105]

82 C16C1Pn+ Br− 3.3 [105] 31.2 [105] 5.2 [105] 32 [105]

83 C18C1Pn+ Br− 1.5 [105] 32.7 [105] 4.4 [105] 38 [105]

86 C12C1Pyrro+ Cl− 19.60 [106] 34.4 [106] 36.6 [106] 2.4 [106] 69 [106] 2.3 [106]

87 Br− 15 [107],
13.5 [108] 42.4 [108] 30.3 [108] 3.03 [108] 54.8 [108]
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Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

88 C14C1Pyrro+ Br− 3.30 [108] 42.7 [108] 30.0 [108] 3.55 [108] 46.8 [108]

89 C16C1Pyrro+ Br− 0.860 [108],
0.72 [109]

41.2 [108],
36.7 [109] 31.5 [108] 3.67 [108] 45.2 [108],

51 [109]

90 C18C1Pyrro+ Cl− 0.42 [66] 36.5 [66] 35.3 [66] 3.5 [66] 48 [66] 3.7 [66]

92 C8C4Pyrro+ Br− 150 [107]

93 C12C4Pyrro+ Br− 6 [107]

98 C12C1Pip+ Cl− 19.79 [110] 36.5 [110] 35.3 [110] 2.4 [110] 68.5 [110] 3.35 [110]

99 Br− 11 [85],
11.83 [111] 41.43 [111] 31.57 [111] 2.31 [111] 71.82 [111] 2.33 [111]

100 C14C1Pip+ Br− 3.22 [111] 41.23 [111] 31.77 [111] 2.35 [111] 70.65 [111] 2.90 [111]

101 C16C1Pip+ Br−
0.68 [109],
0.73 [111]

37.3 [109],
41.14 [111] 31.86 [111] 2.63 [111]

61 [109],
63.22 [111] 3.51 [111]

102 C18C1Pip+ Cl− 0.45 [66] 37.7 [66] 34.1 [66] 3.3 [66] 50 [66] 3.8 [66]

103 C16C1Aze+ Br− 0.590 [109] 37.9 [109] 65 [109]

104 C16C1Azo+ Br− 0.51 [109] 38.8 [109] 75 [109]

105 C10C1Mor+ Br− 30 [112]

106 C12C1Mor+ Cl− 21.80 [106] 34.6 [106] 36.4 [106] 2.5 [106] 66 [106] 2.3 [106]

107 Br− 9.6 [112]

108 C14C1Mor+ Br−
4.0 [112],

2.93 [113],
4.10 [114]

41.2 [113] 2.79 [113] 59 [113] 3.2 [113] −15.4 [113]

109 C16C1Mor+ Br−
0.74 [109],
1.0 [112],

1.02 [113],
1.00 [114]

29.9 [109] 38.5 [113] 2.69 [113],
1.82 [114]

71 [109],
61 [113],
91 [114] 3.6 [113] −9.5 [113],

−42 [114]
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Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

110 C18C1Mor+ Br− 0.33 [112]

111 C8Gu+ Cl− 75 [53] 24.5 [53] 4.60 [53] 36.2 [53]

112 C10Gu+ Cl− 22 [53] 23.5 [53] 3.78 [53] 44.2 [53]

113 C12Gu+ Cl− 5.5 [53] 24.1 [53],
24.5 [115]

3.93 [53],
4.54 [115]

42.3 [53],
36.6 [115]

115 C8C1C1Gu+ Cl− 7.2 [53] 35.4 [53] 3.66 [53] 45.4 [53]

116 C10C1C1Gu+ Cl− 2.1 [53] 33.3 [53] 3.40 [53] 48.9 [53]

117 C12C1C1Gu+ Cl− 0.67 [53] 32.5 [53] 3.05 [53] 54.5 [53]

118 C8Ph3P+ Br− 32 [116]

120 C10Ph3P+ Br−
6.1 [116],
9.0 [117],
6.60 [118]

40.00 [118]

122 C12Ph3P+ Br−

2.0 [116],
1.51 [118],
2.35 [119],
2.00 [120],
2.00 [121]

40.80 [118],
46.0 [120]

26.5 [120],
32.4 [121]

2.24 [119],
1.36 [121]

74 [119],
122 [121] 3.01 [120] −60.2 [119],

−64.2 [121]

123 C14Ph3P+ Br−
0.33 [116],
0.61 [118],
0.61 [119],
0.60 [122]

40.60 [118],
41.3 [122] 1.88 [119] 88 [119],

82.2 [122] −56.0 [119]

124 C16Ph3P+ Br−

0.10 [116],
0.15 [118],
0.24 [119],
0.14 [121],
0.15 [123],
0.10 [124],
0.10 [125]

40.25 [118]
25.8 [121],
27.2 [123],
31.4 [124]

1.02 [119],
1.38 [121],
1.39 [123],
1.40 [124]

163 [119],
120 [121],
119 [123],

118.0 [124]

−75.3 [119],
−71.1 [121],
−51.3 [123],
−58.9 [124]



Polymers 2021, 13, 1100 14 of 51

Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

125 C18Ph3P+ Br− 0.018 [116]

Anionic ILBSs

127 (CH3)4N+ AOT− 2.90 [126],
2.48 [127] 29.4 [127] 1.60 [126] 104 [126],

96 [127]

129 (C2H5)4N+ AOT− 2.45 [126],
2.07 [127] 28.7 [127] 1.43 [126] 116 [126],

101 [127]

130 (C3H7)4N+ C12SO4
− 1.46 [127] 31.8 [127] 67 [127]

131 AOT− 0.97 [126],
1.27 [127] 26.1 [127] 1.71 [126] 97 [126],

96 [127]

132
(C4H9)4N+ C8SO4

− 24.5 [128] 32.0 [128] 3.75 [128]

133 C10SO4
− 4.17 [128] 31.6 [128] 4.03 [128]

134 C12SO4
− 0.525 [128] 31.2 [128] 4.47 [128]

135 C14SO4
− 0.26 [129] 5.43 [129] 31 [129]

136 AOT− 0.77 [126] 1.63 [126] 102 [126]

137 C4Py+ DBS− 0.92 [130] 29.69 [130] 42.31 [130] 2.31 [130] 72.08 [130] 3.92 [130]

138 C4C1Pyrro+ C12SO4
− 2.7 [131] 34.3 [131] 37.9 [131] 2.27 [131] 74 [131] 3.5 [131]

139 C4C1Im+ C8SO3
− 135 [65] 40.0 [65] 1.6 [65]

140 C12SO3
− 4.4 [132] 36.9 [132] 35.9 [132] 1.14 [132] 145 [132] 3.05 [132]

141 C8SO4
−

33.4 [61],
23.0 [62],

34.9 [133],
30.5 [134],
30 [135],

34.5 [136],
31.9 [137],
30.0 [138]

26.1 [61],
30.5 [62],

26.1 [133],
29.6 [134],
31.5 [135],
30.3 [136],
32.8 [137],
34.5 [138]

45.9 [61],
45.9 [133],
42.4 [134],
41.0 [136],
37.5 [138]

2.44 [61],
1.63 [62],
1.9 [133],
2.18 [134],
1.87 [135],
1.39 [136],
2.079 [138]

68 [61],
102 [62],

87.1 [133],
76 [134],
89 [135],
12 [136],
69 [137],
131 [138]

2.60 [61],
2.5 [133],
2.56 [135],
1.52 [138]

−49.7 [61],
−38.7 [62],
−49.5 [134]
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Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

142 C10SO4
− 8.8 [139] 34.7 [139] 37.9 [139] 2.81 [139] 59 [139] 2.7 [139]

143 C12SO4
−

1.8 [131],
2.4 [133],

2.30 [140],
1.9 [141],
1.84 [142]

31.9 [131],
34.4 [133],
32.9 [140],
31.90 [142]

40.3 [131],
37.6 [133],
39.90 [142]

2.53 [131],
2.4 [133],
2.48 [142]

66 [131],
67.8 [133],
56 [140],
67 [142]

3.4 [131],
3.3 [133],
3.82 [142]

144 C14SO4
− 0.5 [139] 30.5 [139] 42.1 [139] 1.66 [139] 10 [139] 4.2 [139]

145 DBS− 1.08 [130] 29.18 [130] 42.82 [130] 2.09 [130] 79.86 [130] 3.94 [130]

146 AOT− 1.78 [140] 25.7 [140] 86 [140]

147 TC− 0.55 [140] 24.8 [140] 111 [140]

148 C5C1Im+ C12SO4
− 1.6 [143] 57.86 [143] 13.64 [143] 0.96 [143] 173.4 [143] −59.23 [143]

149 DBS− 0.32 [144] 30.92 [144] 42.38 [144] 1.91 [144] 86.76 [144] −1.03 [144]

150 C6C1Im+ C8SO4
− 14.2 [133],

18.6 [137]
25.6 [133],
30.3 [137] 45.2 [133] 1.9 [133] 84.7 [133],

66 [137] 2.9 [133]

151 C12SO4
− 1.1 [133],

0.8 [139]
27.1 [133],
30.0 [139]

44.9 [133],
42.6 [139]

2.4 [133],
2.08 [139]

68.5 [133],
80 [139]

4.1 [133],
4.0 [139]

152 C7C1Im+ DBS− 0.12 [144] 34.21 [144] 39.09 [144] 1.35 [144] 122.64 [144] −1.15 [144]

Biamphiphilic ILBSs

153 C8C1Im+ C8SO3
− 12 [65] 43.7 [65] 2.9 [65]

154 C8SO4
− 4.1 [133] 24.4 [133] 47.6 [133] 2.5 [133] 66.0 [133] 3.3 [133]

155 C12SO4
− 0.4 [133],

0.3 [139]
26.0 [133],
26.9 [139]

46.0 [133],
45.7 [139]

2.4 [133],
2.33 [139]

68.5 [133],
71 [139]

4.3 [133],
4.5 [139]

156 C10C1Im+ C12SO4
− 0.1 [139] 25.4 [139] 47.2 [139] 2.36 [139] 70 [139] 5.0 [139]

157 C16Py+ C8SO3
− 54 [145]



Polymers 2021, 13, 1100 16 of 51

Table 1. Cont.

Entry Cation 1 Anion 2 cmc × 103

(mol L−1) 3
γcmc

(mN m−1) 4
Πcmc

(mN m−1) 5
Γmax

(mol m−2) 6 Amin (Å2) 7 pC20
8 ∆G0

ads
(kJ mol−1) 9

Cationic ILBSs

158 C8SO4
− 24 [145]

162 C16(CH3)3N+ C8SO3
− 88 [145]

163 C8SO4
− 26 [145]

1 Abbreviations: Imidazolium (Im+), pyridinium (Py+), 2-pyrrolidinonium (Pn+), pyrrolidinium (Pyrro+), piperidinium (Pip+), azepanium (Aze+), azocanium (Azo+), morpholinium (Mor+), guanidinium (Gu+),
ammonium (N+) and phosphonium (P+). 2 Acronyms: DBS, AOT, and TC refer to dodecylbenzene sulfonate, bis (2-ethylhexyl) sulfosuccinate, and aerosol-OT trichain analog, respectively. 3 Critical micelle
concentration (cmc) from surface tension measurements. 4 Surface tension at cmc. 5 Surface pressure at cmc. 6 Surface excess concentration at the interface. 7 Minimum area per molecule at the water/air
interface. 8 Surface tension reduction efficiency (by 20 mN m−1). 9 Gibbs free energy of surfactant adsorption at the water/air interface.
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Cationic ILBSs are divided according to the structure of the head group (HG), includ-
ing Imidazolium (Im+), pyridinium (Py+), 2-pyrrolidinonium (Pn+), pyrrolidinium (Pyrro+),
piperidinium (Pip+), azepanium (Aze+), azocanium (Azo+), morpholinium (Mor+), guani-
dinium (Gu+), ammonium (N+) and phosphonium (P+). Cationic ILBSs carrying the same
HG were ordered by the number of carbons of the side chain(s). When two alkyl chains are
attached to the heteroatom, e.g., the halides of 1-Cx-3-Cy-imidazolium, the classification is
based on the length of Cy. Accordingly, all ILBSs with Cy = methyl are listed before those
carrying Cy = ethyl, independent of the length of Cx. Additionally, saturated alkyl groups
take precedence over unsaturated ones, e.g., ethyl comes before the vinyl group (both with
two carbon atoms). In a few cases, the heterocyclic ring carries substituents attached to the
ring carbon atoms, Cz, e.g., when the surfactant precursor is 1,2-dimethylimidazole. In this
case, we still list the surfactant according to the length of Cx and Cy, giving priority to the
surfactant without Cz, e.g., C10C1C1Im+ comes after C10C1Im+. The molecular structures
and acronyms for the ILBSs’ cationic groups are depicted in Scheme 5.
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Knowledge of the adsorption and aggregation behavior of ILBSs is required to develop
and improve their applications. In face of some relatively large differences between the data
reported for the same ILBS, we took a conservative approach by comparing data obtained
by the same technique, e.g., surface tension for surfactant adsorption at the water/air
interface, and (mostly) conductivity measurements for micelle formation.

Regarding the adsorption parameters, we note that these have greater variation in
relation to those obtained by conductivity. This is due to the fact that surface tension
measurements are more sensitive to some experimental factors, such as time to reach
the surfactant equilibrium at the water/air interface, and the presence of surface-active
impurities. This problem can be minimized by analyzing data from articles separately. The
data show that as the surfactant hydrophobic chain-length increases, the effectiveness of
surface adsorption, given by surface tension at the cmc (γcmc), varies slightly, whereas the
efficiency of surface adsorption (pC20) increases significantly. As expected, Amin decreases
as the size of the hydrophobic chain increases, due to the concomitant closer packing of
monomers at the interface. The transfer of the surfactant monomer from bulk aqueous
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solution to the interface is favored by the increase of the hydrophobic chain length, which
explains the increase in the values of the corresponding |∆G0

ads|.
Regarding micelle formation, we comment on the values of cmc of Table 1 and Table S1

because this is the main parameter employed to calculate several adsorption and micelliza-
tion properties. Figure 3 shows the dependence of log cmc on the number of carbon atoms
(Cx) of the hydrophobic chain (HC). The observed linear relationship is expected because
the value of the free energy of transfer of a CH2 group from bulk aqueous pseudo-phase
to the interior of the micellar aggregate (∆G0

CH2) should be independent of the nature of
HG. Consequently, the slope is expected to be independent of the charge and nature of the
surfactant head-ions.
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Figure 3 is an example of the Stauff–Klevens rule,

log cmc = A − B x, (1)

where A is a constant that depends on the experimental conditions, the structure of the
surfactant monomer and counterion, and B refers to the effect of each additional CH2 (in
x) on cmc. Application of Equation (1) to the results of Figure 3 yields Equation (2) for
cationic ILBSs:

log cmc = 1.46 ± 0.04 − 0.282 ± 0.003 × R2 = 0.975 (2)

Application of Equation (1) to the data of Table S1, for anionic and biamphiphilic
ILBSs, yield Equations (3) and (4), respectively:

log cmc = 1.12 ± 0.17 − 0.327 ± 0.017 × R2 = 0.954 (3)

log cmc = −0.4 ± 0.3 − 0.30 ± 0.03 × R2 = 0.966 (4)

The most relevant point is that the values of the slopes are of the same order, in agreement
with the above-mentioned independence of ∆G0

CH2 of the nature of the head-ions.
Other aggregation parameters, such as Gibbs free energy of micellization (∆G0

mic),
enthalpy of micellization (∆H0

mic), degree of counterion dissociation of the micellar aggre-
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gate (αmic) and average micellar aggregation number (Nagg), are also important. Unlike
the values of cmc, which are calculated directly and precisely from solution conductivity,
the above-mentioned parameters are published less frequently, and their calculation is
subject to uncertainties. We dwell on this point because of its relevance to the calculated
aggregation parameters that are employed in the correlation between surfactant molecular
structure and solution properties. The usual procedure is to calculate the value of ∆G0

mic
is Equation (5), where cmc is given on the mole fraction scale, χcmc [146]:

∆G0
mic = (2 − αmic) RT ln χcmc (5)

The value of ∆H0
mic is then calculated from the dependence of cmc on the temperature;

the value of ∆S0
mic is calculated from Gibbs free energy relationship:

∆G0
mic = ∆H0

mic − T∆S0
mic (6)

As argued elsewhere, this sequence of calculations can be problematic because the
value of αmic is calculated using Frahm’s (simple) equation. The latter disregards the
contribution of the micelle (a macroion) to solution conductivity. Evans’ equation takes
into consideration the micelle contribution to solution conductivity above the cmc [147].
The result is that αmic (Frahm) > αmic (Evans); error in αmic is reflected in the calculated
values of ∆G0

mic, and ∆S0
mic; see Equations (5) and (6). Note that Evans’ equation requires

knowledge of Nagg, whose value can be calculated, e.g., from static light scattering data,
or from the volume of the surfactant monomer. As has been shown, a relatively large
uncertainty in Nagg leads to a negligible effect on the value of αmic [148]; i.e., the use of
Evans’ equation is recommended.

On the other hand, the values of ∆H0
mic that are calculated indirectly by the van Hoff

treatment and directly by ITC usually do not agree. The reason is that there is no provision
in the former treatment for the effects of increasing temperature on micellar parameters,
e.g., αmic, Nagg and monomer dehydration [149]. Effects of these variations are “embedded”
in the value of ∆H0

mic calculated by ITC. As shown by Equation (6), the above-mentioned
uncertainties in ∆H0

mic are carried over to ∆S0
mic.

Analysis of the available data from ILBS shows that ∆G0
mic decreases as a function

of increasing the number of CH2 groups in the HC; i.e., the micellization becomes more
favorable. Regarding αmic and Nagg, it is seen that the former decreases and the latter
increases as a function of increasing the length of the hydrophobic chain; these effects are
consequences of the smaller surface area of surfactants with longer HC.

Besides the length of the hydrophobic chain, the effects of some other structural
variables in the HG were also probed. Schnee and Palmer [150] studied the effect of the
size of heterocyclic ring structures (5- to 8-membered rings: C16C1PyrroBr, C16C1PipBr,
C16C1AzeBr and C16C1AzoBr, respectively) on their aggregation properties. Increasing the
size of HG led to a decrease in the value of cmc, from 0.83 to 0.67 mmol L−1; see Figure 4.
The reason is that increasing the size and hydrophobicity of the HG results in energetically
unfavorable surfactant–solvent interactions in the bulk aqueous pseudo-phase, as well as
stronger interactions at the micelle surface, resulting in lower cmc values.

Keppeler et al. [91] studied the effect of the length of alkyl side chain (Cy) of imidazolium-
based surfactants (C16CyImBr and C16CyImCl) on their adsorption and aggregation properties.
It was found that increasing the length of Cy from methyl to n-pentyl led to a linear decrease
in the values of log cmc; see Figure 5. The slope of log cmc versus Cy (change in the HG) is
about 3 times smaller than the corresponding slope for introducing methylene groups in the
HC (hydrophobic chain). This behavior is expected, because on micellization, there is more
dehydration of most of the CH2 groups in HC (whose micelle interior is oil-like) than any
CH2 in the head group. Increasing the length of the alkyl side chain results in an increase
in Amin, probably due to steric repulsion between the increasingly voluminous Cy chains.
A corollary to this statement is that the increase in the length of Cy leads to less surfactant
molecules at the water/air interface, in agreement with the decrease in Γmax and increase in
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γ cmc. The adsorption of a more hydrophobic HG is favored, as shown by the increase in
|∆G0ads| and pC20.
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Another structural variable that can be analyzed is the effect of the position of methyl
groups in heterocyclic ring on the value of cmc. Sastry et al. [99] studied the aggregation
behavior of 1-octylpyridinium and 1-octyl-2-, -3- or -4-methylpyridinium chlorides. The
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data show that the ILs with methyl-substituted pyridinium cations have lower cmc values
than the parent pyridinium cation, indicating that the presence of methyl group in pyridine
ring increases its hydrophobicity, in agreement with published values of log P (the partition
coefficient of a substrate between mutually saturate water and n-octanol), 0.73 and 1.2 for
pyridine and 4-methylpyridine. The position of the methyl group in the 1-ocylypyridinium
ring has a small effect (6%) on the value of cmc.

The effect of the counterion was also analyzed. Since this topic was not investigated
in detail, we limit our analysis to ILBSs with halide anions. Kim and Ao [75] studied
the properties of aqueous solutions of ILBSs with different halide anions (C12C1ImCl,
C12C1ImBr and C12C1ImCl). The order of cmc and αmic at 25 ◦C was (cmc in mmol
kg−1; αmic calculated by Frahm’s equation): C12C1ImCl(15.1; 0.44) > C12C1ImBr(10.6;
0.25) > C12C1ImCl (5.2, 0.15). Counterions are adsorbed at the micellar interface primarily
by strong electrostatic interactions. For halide anions, this adsorption depends on the
balance between anion polarizability [153] and radius of the hydrated anions [154]. As a
consequence of the increase in the size of the hydrated anions, the chloride counterions are
located further away from the micellar interface than the hydrated iodide counter ion [155].
That is, the micellar surface potential decreases in the order ILBS-Cl > ILBS-Br > ILBS-I, in
agreement with the above-mentioned values of cmc and αmic.

Table 2. Literature data on aqueous solutions of gemini ionic liquid-based surfactants at 25 ◦C. Adsorption and micellar
parameters calculated from surface tension data. All surfactants have two bromides as counterions, except for entries 54
and 55, which have three bromides as counterions.

Entry Cation 1 cmc × 103

(mol L−1)
γcmc

(mN m−1)
Πcmc

(mN m−1)
Γmax

(mol m−2) Amin (Å2) pC20
∆G0

ads
(kJ mol−1)

1 (C12Im)2C2)2+ 0.55 [156] 33.6 [156] 1.26 [156] 135 [156] 4.54 [156]

2 (C16Im)2C2)2+ 0.0341 [157]

3 (C16Im)2C3)2+ 0.0048 [157]

4 (C10Im)2C4)2+ 4.50 [43],
2 [45]

35.2 [43],
35 [45] 1.25 [43] 133 [43] 3.14 [43]

5 (C12Im)2C4)2+ 0.72 [43],
0.76 [158]

35.7 [43],
35.0 [158] 37.8 [43] 1.19 [43],

16.30 [158]
140 [43],

101.43 [158] 3.94 [43] −50.93 [158]

6 (C14Im)2C4)2+ 0.10 [43] 37.2 [43] 0.88 [43] 188 [43] 5.04 [43]

7 (C16Im)2C4)2+ 0.0222 [157]

8 (C16Im)2C5)2+ 0.0269 [157]

9 (C12Im)2C6)2+ 0.78 [156] 39.5 [156] 1.16 [156] 143 [156] 3.73 [156]

10 (C16Im)2C6)2+ 0.0501 [157]

11 (C4Im)2C8)2+ 32.3 [45] 47 [45]

12 (C16Im)2C8)2+ 0.0512 [157]

13 (C1Im)2C10)2+ 14.9 [45] 38 [45]

14 (C4Im)2C10)2+ 11.7 [45] 38 [45]

15 (C16Im)2C10)2+ 0.0607 [157]

16 (C4Im)2C12)2+ 7.2 [45] 46 [45]

17 (C10Im)2C12)2+ 0.6 [45] 48 [45]

18 (C16Im)2C12)2+ 0.0619 [157]

19 ((C12SMeIm)2C2)2+ 0.32 [55] 39.7 [55] 2.60 [55] 63 [55] 3.93 [55] −45.57 [55]

20 ((C14SMeIm)2C2)2+ 0.072 [55] 42.9 [55] 2.12 [55] 78 [55] 4.53 [55] −47.80 [55]

22 ((C12SMeIm)2C3)2+ 0.26 [55] 40.7 [55] 2.13 [55] 77 [55] 4.06 [55] −48.21 [55]

23 ((C14SMeIm)2C3)2+ 0.063 [55] 45.8 [55] 3.09 [55] 53 [55] 4.42 [55] −42.31 [55]

25 ((C12SMeIm)2C4)2+ 0.22 [55] 40.8 [55] 2.06 [55] 80 [55] 4.12 [55] −47.51 [55]

26 ((C14SMeIm)2C4)2+ 0.058 [55] 46.6 [55] 3.10 [55] 53 [55] 4.39 [55] −42.82 [55]
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Table 2. Cont.

Entry Cation 1 cmc × 103

(mol L−1)
γcmc

(mN m−1)
Πcmc

(mN m−1)
Γmax

(mol m−2) Amin (Å2) pC20
∆G0

ads
(kJ mol−1)

28 ((C12OHIm)2C3)2+ 0.72 [159] 30.0 [159] 2.53 [159] 65 [159] 3.91 [159] −49.67 [159]

29 ((C12OHIm)2C4)2+ 0.76 [159] 28.1 [159] 2.33 [159] 71 [159] 4.11 [159] −50.63 [159]

30 ((C12OHIm)2C5)2+ 1.02 [159] 32.9 [159] 2.29 [159] 72 [159] 3.72 [159] −52.46 [159]

31 ((C12OHIm)2C6)2+ 1.07 [159] 35.2 [159] 2.98 [159] 55 [159] 3.44 [159] −44.78 [159]

32 ((C12OHIm)2C8)2+ 1.14 [159] 37.6 [159] 1.90 [159] 87 [159] 3.58 [159] −49.45 [159]

33 ((C12)3N)2C2)2+ 1.995 [160] 2 39 [160] 0.769 [160] 251.7 [160] 5.1 [160] −20.19 [160]

34 ((C12)3N)2C3)2+ 1.412 [160] 2 40 [160] 1.012 [160] 147.3 [160] 5.1 [160] −19.30 [160]

35 ((C12)3N)2C6)2+ 1.445 [160] 2 42 [160] 1.131 [160] 146.8 [160] 6.9 [160] −19.63 [160]

36 ((C8C1C1N)2(OE)3Gly)2+ 1.02 [161] 2 55.2 [161] 0.802 [161] −47.5 [161]

37 ((C10C1C1N)2(OE)3Gly)2+ 0.859 [161] 32.55 [161] 1.466 [161] 3.863 [161] −53.9 [161]

38 ((C12C1C1N)2(OE)3Gly)2+ 0.711 [161] 30.57 [161] 3 [161] 3.64 [161] −37.1 [161]

39 ((C14C1C1N)2(OE)3Gly)2+ 0.243 [161] 34.5 [161] 0.947 [161] 4.727 [161] −69.6 [161]

40 ((C16C1C1N)2(OE)3Gly)2+ 0.631 [161] 37 [161] 1.314 [161] 4.14 [161] −55 [161]

41 ((C8C1C1N)2(OE)4Gly)2+ 1.822 [161] 49.08 [161] 0.519 [161] 3.417 [161] −80.7 [161]

42 ((C10C1C1N)2(OE)4Gly)2+ 1.7 [161] 46.96 [161] 0.417 [161] 3.222 [161] −85.3 [161]

43 ((C12C1C1N)2(OE)4Gly)2+ 1.239 [161] 28.54 [161] 1.06 [161] 4.124 [161] −67.1 [161]

44 ((C14C1C1N)2(OE)4Gly)2+ 0.333 [161] 34.81 [161] 0.813 [161] 4.63 [161] −75 [161]

45 ((C16C1C1N)2(OE)4Gly)2+ 0.389 [161] 36.51 [161] 0.785 [161] 4.71 [161] −75.1 [161]

46 ((C8C1C1N)2(OE)5Gly)2+ 0.701 [161] 52.22 [161] 0.519 [161] −83 [161]

47 ((C10C1C1N)2(OE)5Gly)2+ 0.649 [161] 48.28 [161] 0.827 [161] 3.539 [161] −62.5 [161]

48 ((C12C1C1N)2(OE)5Gly)2+ 0.607 [161] 33.78 [161] 1.4 [161] 4 [161] −55.1 [161]

49 ((C14C1C1N)2(OE)5Gly)2+ 0.502 [161] 33.61 [161] 1.04 [161] 4.389 [161] −65.2 [161]

50 ((C16C1C1N)2(OE)5Gly)2+ 0.398 [161] 43.92 [161] 0.925 [161] 5.91 [161] −60.0 [161]

51 (C10Pyrro)2C4)2+ 3.3 [56] 43.2 [56] 1.37 [56] 121.2 [56] 2.96 [56]

52 (C12Pyrro)2C4)2+ 0.5 [162],
0.53 [56] 41.7 [56] 1.46 [56] 113.3 [56] 3.80 [56]

53 (C14Pyrro)2C4)2+ 0.1 [162],
0.108 [56] 40.4 [56] 1.59 [56] 104.4 [56] 4.41 [56]

54 ((C8Im)3Am)3+ 4.3 [163] 33 [163] 1.11 [163] 1.50 [163] 3.13 [163]

55 ((C8Im)3Bn)3+ 2.2 [163] 40 [163] 1.37 [163] 1.21 [163] 2.81 [163]

1 Abbreviations: Imidazolium (Im), thioether-functionalized methylimidazolium (SMeIm), hydroxyl-functionalized imidazolium (OHIm),
quaternary ammonium (CxCyCzN), ethylene oxide units (OE), glycol (Gly), pyrrolidinium (Pyrro), triethylamine (Am) and 1,3,5-
trimethylbenzene (Bn). 2 Measurements done at 20 ◦C.

3.2. Compilation and Brief Discussion of the Properties of Aqueous Solution of GILBSs

The GILBSs in Table 2 and Table S2 are listed in a similar way to the ILBSs. They
are first divided according to the structure of cationic headgroup: imidazolium (Im),
thioether-functionalized methylimidazolium (SMeIm), hydroxyl-functionalized imida-
zolium (OHIm), quaternary ammonium (CxCyCzN) and pyrrolidinium (Pyrro). Within
each category, they are ordered by the number of carbon atoms of the “spacer” and then by
the number of carbon atoms of the hydrophobic chain(s). Accordingly, imidazolium-based
GILBSs with a spacer containing two carbon atoms are presented before those with a spacer
containing three carbon atoms. At the bottom of Table 2, we present two examples of ILBSs
containing three long chains. To the best of our knowledge, there are no reports on GILBSs
containing unsaturated alkyl groups. The molecular structures for the GILBSs cationic
groups are depicted in Scheme 6.
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The first members reported in the literature that conform to the m.p. criterion
(≤100 ◦C) are quaternary ammonium surfactants that carry the hydroxyl group; the latter
was considered important to promote intermolecular hydrogen bonding that lowers the
melting point [161]. As compared to their single-chain counterparts, the GILBSs have an
increased propensity to form aggregates and efficiently reduce surface tension. The same
trend is observed for conventional single chain and gemini surfactants [1,164].

As can be seen from Table 2, the general trends for ILBSs are also observed for GILBSs.
For example, for the same spacer, the cmc values are expected to be lower with increas-
ing the length of the hydrophobic chain(s). One example is the quaternary ammonium
surfactants with HC from 8 to 16 carbon atoms and 1–3 ethylene oxide units (EOs) as
spacers [161]. Figure 6 shows the dependence of cmc on the number of carbon atoms in HC
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for one series. They are not in the expected order (e.g., cmc for C16 > cmc for C14), probably
due to the possibility of self-coiling or formation of pre-micellar aggregates [161].
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As can be seen from Table 2, the general trends for ILBSs are also observed for 
GILBSs. For example, for the same spacer, the cmc values are expected to be lower with 
increasing the length of the hydrophobic chain(s). One example is the quaternary am-
monium surfactants with HC from 8 to 16 carbon atoms and 1–3 ethylene oxide units 
(EOs) as spacers [161]. Figure 6 shows the dependence of cmc on the number of carbon 
atoms in HC for one series. They are not in the expected order (e.g., cmc for C16 > cmc for 
C14), probably due to the possibility of self-coiling or formation of pre-micellar aggregates 
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The effect of the spacer length on cmc is complex because it is a sum of several factors,
including rigidity of the molecule, hydrogen bonding (where applicable), hydration of HG,
Coulombic repulsion between HGs. This complex behavior was shown by Pal et al. [157]
for a series of GILBSs containing two imidazolium rings in the HG and spacer from 2 to
12 methylene groups. They observed a lower cmc value for the (CH2)3 spacer, after which
the cmc values increased and then reached a plateau (Figure 7). This was explained in
terms of rigidity and planar nature of the imidazolium HG, which interfere with the spacer
packing, leading to independent behavior of each single chain beyond a spacer of (CH2)3.

The possibility of “tuning” the morphology of the colloidal aggregate by adjusting
the length of the two component ions of biamphiphilic compounds is nicely shown in
Figure 8 for dimeric and trimeric surfactants with ring-containing cation and anion. The
multitude of possibilities is relevant to applications of these surfactants that may require,
e.g., a vesicle, a bilayer, or a wormlike aggregate. These aggregates can be obtained by a
judicious choice of (in Figure 8) the length of the spacer in the cation and the HC of the
anion [1].
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4. Applications of IL-based Surfactants
4.1. Nanotechnology

ILBSs have been explored in various fields, including chemical synthesis and catal-
ysis [165–170], drug delivery [171–177], biomass conversion [178–183], liquid crystal de-
velopment [184–186], decontamination [187–193] and formation and stabilization of metal
NPs [61,194,194–216]. We dwell here on the synthesis and stabilization of mesoporous
nanoparticles (MNPs), including mesoporous silica (MSNPs).

MNPs have small sizes and large surface areas that make them important materials
in various fields, e.g., medicine, electronics, electrical and magnetic materials, catalysis
and fabrication of novel chemical and biological sensors. Apart from synthesis, controlling
the average size, surface area, porosity and stability of MNPs is a challenging task and, if
achieved, contributes to their wider applications. The synthesis of uniform-sized MNPs
with controlled morphology is feasible, thanks to the relative ease of tailoring the properties
of ILBSs to play a required role. Consequently, various morphological architectures, e.g.,
micelles and vesicles, were employed as soft templates for the formation and stabilization of
these MNPs. The latter particles are, however, only kinetically stable and will aggregate to
thermodynamically more stable larger particles due to Ostwald ripening. This spontaneous
process occurs because larger particles are energetically favored, due to their lower surface-
to-volume ratio. Therefore, stabilization of the formed NPs is essential for any application.
The effect of the colloidal template depends, inter alia, on the length of its HC, the nature
of the HG and the counter ion. The reason is that these structural factors determine the
value of cmc and the morphology of the colloidal species (spherical micelle, vesicle, etc.).

This dependence was nicely shown by studying the effect of the length of the hy-
drophobic group on the average particle size and stability of Ag NPs, by a series of
1-R-3-MeImX (R = C8, C10, C12; X = Cl−, Br−), C12Me3NBr and sodium dodecyl sulfate
(SDS). It was found that the length of the surfactant HC is determinant to the stability of
the NPs. For example, (cationic) micelles of the surfactant with R = C8 did not provide
enough stabilization, so the synthesized Ag NPs coalesced immediately. Increasing the
length of R from C8 to C12 led to an increase in stability and concentration of the formed
Ag NPs due essentially to hydrophobic interactions between surfactants and surface of the
Ag NPs [217].

As shown by Figure 9, stabilization of the NPs by ILBS is achieved mainly through
(i) electrostatic interactions of their ions with the NP and (ii) steric repulsion between the
sheaths covering the generated NPs. Both mechanisms create a protective coating around
the NPs, thereby hindering their aggregation and control the distribution of their sizes.
Judicious selection of the molecular structures of ILBSs is required for fabricating NPs with
controlled sizes, shapes and porosity that can be useful in various biological applications
and catalysis [218–220].

Aqueous micellar solutions of dodecyltrimethylammonium bromide were found to
stabilize α-FeO2H NPs and decrease their average size, when compared with those pre-
pared in absence of the surfactant. An electrochemical method was used to synthesize
nano-sized α-FeO2H particles (average diameter = 5–10 nm) in the presence of the surfac-
tant. The proposed reaction pathway for the electrosynthesis of ILBS-FeO2H NPs is shown
in Figure 10, where FeO2H NPs were formed inside inverse micelles [194].

Because of their surface and optoelectronic properties, nano-sized α-FeO2H particles
with an average diameter of 1–100 nm are used as a semiconductor catalyst in the degrada-
tion of chlorinated compounds [99,100], e.g., 2-chlorophenol (2-CP). Note that α-FeO2H is
practically inactive in the absence of oxidizing agents (e.g., H2O2) that provide the hydroxyl
radicals (·OH) necessary for 2-CP oxidative-degradation. IL-FeO2H degraded 56% and 85%
of 2-CP when the catalyst was irradiated with visible light (350–600 nm), in the absence
and presence of H2O2, respectively. It is presumed that the surfactant head-groups in the
IL-FeO2H reverse micelle trapped the photogenerated electrons at the conduction band
and simultaneously decreased the recombination rate of photo-induced electron-hole pairs
at the valence band; resulting in the enhancement of the 2-CP degradation.
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Figure 9. Schematic representation of the electrostatic (a) and steric (b) stabilization mechanisms of nanoparticles. In the
former mechanism, the nanoparticles (NPs) are stabilized due to electrostatic repulsion of the positively charged outer layer.
Steric repulsion between the surfactant hydrophobic chains contributes to NP stabilization [219]. Reprinted with permission
from ref. [219]. Copright 2021 Springer Nature.
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Figure 10. Schematic representation for the production of FeO2H particles coated with an ionic liquid-based surfactant
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A similar magnetite (Fe3O4) NP stabilization mechanism by the reverse micelles of the
GILBS (16-2-16), α,ω-bis(3-decylimidazolium-1-yl) ethane dibromide, and other gemini
cationic surfactants were suggested. The Fe3O4 NPs were synthesized by a hydrothermal
treatment of an equimolar mixture of FeCl3 plus FeSO3 in the presence of GILBS (150 ◦C,
24 h), followed by removal of the excess surfactant by extraction with hexane. The positively
charged surface-active Fe3O4 NPs thus obtained were used to extract Au and Ag NPs from
their aqueous solutions. The Au and Ag NPs were solubilized in water by single-chain
surfactants (cetyltrimethylammonium bromide, CTABr or SDS); hence, they have positive
and negative charges, respectively. Consequently, the extraction was favored by NP–NP
interactions, including electrostatic, in the case of SDS-stabilized Au- and Ag NPs, and
hydrophobic, for CTABr and SDS stabilized metal NPs [221].

Han et al. [195] used a novel sol-gel method to synthesize hollow silica spheres
and tubes with disordered and ordered mesopores by using C10C1ImCl and the non-
ionic surfactant P123 (a copolymer between PEG and PPG, of the average composition
PEG20PPG70PEG20) as the template and co-template, respectively. The micelle/P123 co-
assembly is supposed to be responsible for the formation of the silica morphology and
mesostructure. Two strategies were explored for the fabrication of SiO2 hollow spheres,
namely using the ILBS alone, and using the ILBS plus P123 as co-template. It was observed
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that the shape and size of the SiO2 nanospheres depend on the IL concentration; i.e., at
low dosage (0.0025 mol), flake-like silica was observed which was converted into bulk-like
silica when the IL concentration was increased to 0.005 mol. Increasing the IL concentration
to 0.015 mol resulted in uniformly sized (average radius = 3.8 nm) hollow SiO2 spheres. In
the second strategy, it was observed that increasing the molar ratio of P123/C10C1ImCl
from 0.03 to 0.04 resulted in the SiO2 morphology changing from spheres with an average
diameter of 5 µm to a long curved tube. Upon a further increase of the above-mentioned
ratio to 0.07, the silica tubes become longer and prism morphology began to appear. Ad-
dition of P123 strengthened the binding between adjacent spheres and allowed them to
adhere to each other more tightly. It is interesting to note that using P123 alone resulted
in the formation of bulk silica without any tubes, demonstrating the significant impact of
both P123 and C10C1ImCl on the morphology of silica tubes; see Figure 11.
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Based on Figure 11, these authors explained the role of the template (C10C1ImCl) and
the co-template (P123) on the morphology of the fabricated SiO2 NPs. When only ILBS
was present at a concentration less than its cmc (0.062 mol L−1), the tetraethyl orthosilicate
silane (TEOS) hydrolyzed quickly, while the hydrolysate condensed slowly. As a result,
stable small oligomers Si(OC2H5)4−x(OH)x were formed. At [C10C1ImCl] less than its cmc,
the Si(OC2H5)4−x(OH)x dissolved into the spherical micelles present; these coalesced into
larger spheres that, upon washing and calcination, produced hollow SiO2 nanospheres.
In the second case, i.e., in the presence of the co-template, the tail of the C10C1ImCl
interacted hydrophobically with the PPO block of the P123. This led to the formation of
P123/C10C1ImCl mixed micelles. At higher concentrations of P123, the PEO blocks of
the P123 interacted with the oligomers through hydrogen bonding to form the cylinder-
like micelles. Through aging, the small oligomers crystallized on the surface of the long
cylindrical micelles that, on washing and calcination, formed the hollow prism-like tubes.

Therefore, the formation of ILBS-additive mixed micelles offers a versatile approach
for the fabrication of MNPs of controlled geometry suitable for many applications. In
addition to co-polymers (e.g., P123), the additive can be a relatively hydrophobic ion with
an opposite charge (to that of the micellar surface), leading to the growth of the spherical
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micelles and the incorporation of TEOS hydrolysis oligomers therein. This approach was
used to prepare MSNPs containing the drug ibuprofen (2-(4-(isobutylphenyl)propanoic
acid; pKa = 4.54) by hydrolysis of TEOS in the presence of the ILBS C8C1ImCl. At the
working pH (=7.5) the (relatively hydrophobic), ibuprofen anions were incorporated into
the micelles (by ion exchange with Cl−), leading to the formation of MSNPs with large
surface area (as high as 812 m2 g−1) and pore volumes (1.25 cm3 g−1) with ibuprofen
loading of 46 wt.%. The residual ILBS in the ibuprofen-MSNPs was relatively high (13%);
its release under drug delivery conditions should be assessed [196].

MSNPs were successfully synthesized by acid hydrolysis of TEOS in the presence
of two ILBSs, C16C1ImBr and C18C1ImBr. The average particle sizes (nm), surface area
(BET; m2 g−1) and pore volume (cm3 g−1) of the formed MSNPs were affected by the
alkyl chain length of the ILBS template. Namely, smaller, more porous NPs were ob-
tained using the C18C1ImBr template. Thus, the ratios of the above-mentioned properties
(C18C1ImBr/C16C1ImBr) were found to be 0.68, 1.05 and 1.70, respectively [197]. Therefore,
changing the length of the hydrophobic tail of the ILBS is another variable that can be
exploited for controlling the properties of MNPs.

Similar results were observed when pyridine-based ILBSs (C12PyBr, C14PyBr, C16PyBr
and C18PyBr) were employed as templates for fabricating MSNPs, using triethanolamine
(TEA) to get well-dispersed MSNPs. The authors employed two strategies: (i) The template
was fed with the premixed and preheated TEA and TEOS. (ii) TEA, template and water
were preheated and stirred before the addition of the TEOS. With both strategies, the
authors assessed the role of alkyl chain length of pyridinium ILBSs in the formation of
MSNPs. It was observed that with both strategies, except for a minor change in the results,
the size of the MSNPs decreased with increasing the length of HC, whereas the porosity
and surface area of MSNPs increased in the same direction. This is shown by the reported
results of C18PyBr/C12PyBr, for the mean particle size (nm), BET surface area (m2 g−1) and
pore volume (cm3 g−1), respectively: 0.31, 5.63 and 3.57 [198]. The same authors employed
experimental design to optimize the average surface area and particle size of the fabricated
MSNPs and studied the loading and release of the drug quercetin (a flavonoid employed to
prevent/treat some cancer types). The loaded drug was then checked for its release profile
using a dialysis bag technique. It was observed that, due to the drug–MSNP interaction,
the crystallinity of quercetin changed to amorphous, which increased its bioavailability.
The 32% cumulative release of the drug was obtained in the MSNP-loaded drug against
the unloaded drug. These results suggest that with MSNPs, it is possible to have a slower
release of drugs [199]. Drug release profile is illustrated in Figure 12 [198].

C16PyBr was used as the soft template for the production of uniformly shaped spheri-
cal MSNPs with a particle diameter of 35 to 40 nm. These MSNPs were then functional-
ized to obtain MSNP-NH2, MSNP-SH and MSNP-COOH surface-functionalized particles
through a post-grafting technique, during which the functional groups were covalently
bonded to the silanol group (Si–OH) on the external or internal pore surface, see Figure 13.
The functionalized MSNPs thus obtained were used as carriers to load drugs employed for
cancer treatment, including hydrophilic gemcitabine, and hydrophobic quercetin [200].

In their efforts to enhance the desulfurization of diesel oil and gasoline, Zhang et al. [201]
explored the oxidative desulfurization of fuels using an ILBS with polyoxometalate as anion. The
ILBS (1-hexadecyl-3-methylimidazolium phosphomolybdic compound ([C16C1Im]3PMo12O40))
was used to fabricate the functional molybdenum-containing ordered mesoporous silica, as
shown in Figure 14. Herein, the C16 chain acted as the template of ordered mesoporous, whereas
the polyoxometalate anion acted as the source of active metal sites. Under optimal conditions,
dibenzothiophene was completely removed in 50 min, and the catalyst efficiency was found to
be 91% after recycling nine times [201].
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Figure 12. (a) MACn = mesoporous silica nanoparticles prepared by strategy (i) and (b) MBCn = mesoporous silica
nanoparticles prepared by strategy (ii) [198]. Reprinted with permission from ref. [198]. Copright 2021 Elsevier.

C12C1ImCl based template was used to fabricate zeolite nanocrystals by using a hy-
drothermal technique. In the absence of the ILBS, unstable nanocrystals in the micrometer
range were obtained. In the presence of the ILBS, however, much smaller particles were
obtained, with average size and surface area of <30 nm and 443.6 m2 g−1, respectively.
The post treatment to remove the ILBS template included direct calcination at 550 ◦C and
extraction with refluxing ethanol for 12 h; the latter treatment resulted in smaller particles
with a larger average surface area. For example, the following ratios (ethanol extracted
sample/directly calcinated sample) were observed for the micropore volume: 0.90 and 0.94
for hydrothermal heating times of 54 and 102 h, respectively. The ratios for the surface area
were 2.19 and 6.82 for hydrothermal heating times of 54 and 102 h, respectively [202].

Nano-particle aggregation/growth during the reaction that causes their catalytic de-
activation was hindered through stabilizing the MNPs using ILBSs. In their work on the
catalytic hydrochlorination of acetylene, Hu et al. [203] used tetra(n-butyl)phosphonium
carboxylates (octanoate, dodecanoate, tetradecanoate, hexadecanoate and octadecanoate).
The self-assembling of the ILBSs along with the high reactivity of NPs was used to reduce
the deactivation of the metal catalysts through establishing the effective redox cycle be-
tween Pd0 and PdII. The ILBSs form a protective layer around the NPs, hindering their
aggregation. Herein, the authors observed no obvious disparity in dispersion degree or
particle size of Pd NPs (narrow size distribution in the range of 2.4–4.4 nm and the mean
size ~3.2 nm) when the alkyl chain of the anions of ILBSs was changed from C7 to C17.

Pt and Au catalysts were fabricated using the respective NPs/ILBSs with the stearate
anion simply by blending the surfactant with the precursor PtCl2 and HAuCl4·4H2O at
120 ◦C, respectively. The authors observed highly ordered lattice fringes in a Pt NP with
particle sizes in the range of 1.5 nm, whereas in the case of Au, the particle size was
>20 nm. When tested for their catalytic performances, Pd NPs/ILBSs systems with the
longer carboxylate showed maximum acetylene conversion into vinyl chloride of 93.04%,
whereas the corresponding ILBS with octanoate anion showed 76.23%, suggesting the
impact of alkyl chain length of the anion on the catalytic performance. For the Pt and
Au NP/ILBSs systems, the catalytic performance of the stearate ILBS was 74.25% and
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64.56% respectively. Furthermore, the basicity of the carboxylate anion was effective in
absorbing and activating acetylene and HCl. It was observed that 1 mol of ILBS with the
stearate anion absorbed approximately 2 mol of HCl and 0.6 moles of C2H2 at the reaction
temperature. This study shows that metal NPs/ILBS systems are promising as substitutes
for toxic mercury catalysts in the hydrochlorination of acetylene [203].
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Figure 13. Schematic representation for the fabrication of functionalized mesoporous silica nanopar-
ticles [200]. Reprinted with permission from ref. [200]. Copright 2021 Elsevier.

To explore the application potential of a rare earth oxide in its various morpholo-
gies, Huang et al. [204] synthesized monodisperse Nd2O3 nanoparticles using ILBS as a
template. The surfactants employed included (cationic) C14C1ImCl, C8C1ImCl and (zwit-
terionic) N-(3-cocoamidopropyl)-betaine (CAPB). Nd2O3 nanoparticles were prepared
from its precursor NdCl3 in the absence and presence of ILBS at concentrations greater
than cmc. Nd2O3 forms multifarious shaped nanocrystals (short nanorods, nanospheres,
irregular flakes, highly regular leaf-shaped to torispherical) when CAPB concentrations
were changed from 1 to 20 times its cmc (=0.01 M). The short nanorods prepared in the
absence of surfactant have good homogeneity with diameters of about 100 nm, (Figure
15e), changing to nanospheres with better homogeneity and an average diameter of 50 nm
when the CAPB was added at its cmc (Figure 15a). Increasing the concentration of CAPB to
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5 times its cmc led to a mixture of nanospheres and irregular flakes with diameters about
50 nm (Figure 15b). At [CAPB] = 10 × cmc, regular leaf-shaped Nd2O3 nanoparticles with
lengths of 12 mm, widths of 6 mm and thicknesses of 50 nm were obtained. These NPs are
composed of aggregated nanorods with lengths of about 200 nm and some nanospheres
(Figure 15c). At [CAPB] = 20× cmc, the shape of the Nd2O3 particles changed to torispherical
with diameters about 50–100 nm with a certain extent agglomeration; see Figure 15d [204].
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When CAPB was replaced by C14C1ImCl, Nd2O3, NPs with different morphologies
were obtained, namely leaf-shaped nanosheets and nano-blocks. Thus, different surfactants
form different micellar templates, leading to different morphologies of the fabricated NPs;
the surfactant with a lower cmc value (C14C1ImCl; 0.003 mol L−1) [222] forms a more stable
micelles template. The authors explained the mechanism of the formation of variously
shaped nanoparticles through the schematic representation shown in Figure 16 [204].

Chitosan forms complexes with ILBSs (C4C1ImC8OSO3 and C8C1ImCl) above their
respective cmc values, at pH = 3, i.e., where the biopolymer is protonated. The difference
between these surfactants is that the hydrophobic part of the former is the anion (C8OSO3

−),
whereas it is the cation in the latter (C8C1Im). Electrostatic and hydrophobic interactions
between chitosan and these ILBSs lead to the formation of positively charged spherical chi-
tosan NPs, with sizes ranging from 300 to 600 nm from the aqueous biopolymer (0.2 wt.%)
solutions. Chitosan NPs prepared using C4C1ImC8OSO3 have better sphericity and show
less agglomeration than those prepared using C8C1ImCl. For the latter ILBS, the chloride
counter-ions at the surface of micelles induce interactions between chitosan and C8C1ImCl
complexes, leading to the agglomeration of biopolymer–micelle complexes. The relatively
hydrophobic octyl sulfate anion at the micellar interface prevents the agglomeration of the
chitosan-ILBS aggregate complexes; see Figure 17 [61].

To limit the use of organic solvents, and to reduce the number of preparation steps, Ko-
mal et al. [205] used ILBSs with tetrachloroferrate anion, namely, 1-R-3-methylimidazolium
FeCl4, R = n-butyl, n-octyl and n-hexadecyl as the templates for the preparation of α-Fe2O3
NPs, via a grinding followed by calcination. It was observed that upon going from n-butyl
to n-hexadecyl, the size of the NPs decreases. These NPs are interconnected in the form of
nano-sheets, where the void spaces in the interconnected network and solution viscosity
increase upon going from n-butyl to n-hexadecyl, preventing agglomeration of the NPs.
At the same time, the concomitant decrease in the surface tension reduces the energy
barrier to nucleation that causes an increase in the rate of nucleation as compared to the
growth rate of NPs. This also decreases the size of the NPs upon going from n-butyl to
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n-hexadecyl. Pictorial presentation of the nano-segregated polar and non-polar domains of
the ILBSs employed in this study is depicted in Figure 18. The synthesized NPs showed
ILBS dependent structural, photo-physical and magnetic properties.

The fabricated α-Fe2O3 NPs were further explored as catalysts for the photo-degradation
of the organic dye Rhodamine B by sunlight. The availability of the larger voids between the
interconnected network influences the catalytic activity of the synthesized NPs with those
fabricated using n-hexadecyl ILBSs showing the highest and n-butyl the lowest. Furthermore,
ILBSs with n-hexadecyl chain length show excellent recyclability and can be used without
losing their catalytic character even after four dye-degradation cycles [205].

Li et al. [206] used 1-(10-bromodecyl)-3-methylimidazolium bromide as the morphology-
controlling agent to synthesize icosahedral gold NPs. These were then electrochemically
deposited onto a glassy carbon electrode surface. A highly ordered and dense monolayer of
the Au NPs was formed at the interface through self-assembling the 1,3-di-(3-mercaptopropyl)-
imidazolium bromide IL. The prepared modified glassy carbon electrode was used as the
electrochemical immunosensor for selective and sensitive determination of Squamous cell
carcinoma antigen [206].
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Nd2O3 nanoparticles [204]. Reprinted with permission from ref. [204]. Copright 2021 Elsevier.

Polymers 2021, 13, x FOR PEER REVIEW 33 of 52 
 

 

 
Figure 17. Schematic representation of the effect of surfactant anion on the formation of chitosan 
nanoparticles. Interactions of the chloride ion with the 1-octyl-3-methylimidazolium cations at the 
aggregate interface lead to the formation of larger aggregates. This is hindered in the case of the 
voluminous octyl sulfate anion [61]. Reprinted with permission from ref. [61]. Copright 2021 Else-
vier.  

To limit the use of organic solvents, and to reduce the number of preparation steps, 
Komal et al. [205] used ILBSs with tetrachloroferrate anion, namely, 
1-R-3-methylimidazolium FeCl₄, R = n-butyl, n-octyl and n-hexadecyl as the templates for 
the preparation of α-Fe2O3 NPs, via a grinding followed by calcination. It was observed 
that upon going from n-butyl to n-hexadecyl, the size of the NPs decreases. These NPs 
are interconnected in the form of nano-sheets, where the void spaces in the intercon-
nected network and solution viscosity increase upon going from n-butyl to n-hexadecyl, 
preventing agglomeration of the NPs. At the same time, the concomitant decrease in the 
surface tension reduces the energy barrier to nucleation that causes an increase in the rate 
of nucleation as compared to the growth rate of NPs. This also decreases the size of the 
NPs upon going from n-butyl to n-hexadecyl. Pictorial presentation of the 
nano-segregated polar and non-polar domains of the ILBSs employed in this study is 
depicted in Figure 18. The synthesized NPs showed ILBS dependent structural, pho-
to-physical and magnetic properties. 

 
Figure 18. Schematic representation of the role of the nano-segregated polar and non-polar do-
mains of the ionic liquid-based surfactant in the formation of interconnected network of α-Fe2O3 

nanoparticles [205]. Reprinted with permission from ref. [205].  
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aggregates. This is hindered in the case of the voluminous octyl sulfate anion [61]. Reprinted with permission from ref. [61].
Copright 2021 Elsevier.

Xu et al. [207] used vesicles of the PEGylated ILBSs (surfactants with polyethylene
glycol (PEG) side chain) to stabilize the Pd nanoparticles. The polyethylene glycol ether
moiety was CH3O-(CH2CH2O)11-CH2CH2- and the other group was methyl, benzyl, n-
octyl and n-hexadecyl, the counter ion was iodide (first ILBS) or bromide. The prepared Pd
NPs in the presence of hydrazine hydrate were used as an efficient catalytic system for the
chemoselective reduction of nitroarenes. ILBSs with C16 chain gave the best result with a
99% yield, as compared to no reduction in the case of the ILBSs with R = methyl. It was
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observed that in absence of aqueous ILBS solution, the reduction was inhibited, because
of poorly stabilized Pd NPs. As observed above, the NP sizes decreased with increasing
the alkyl chain length and concentration of the ILBS. The increased reaction yield is due to
the smaller-sized NPs that increase the surface area, leading to their better stabilization.
The authors suggested three stabilizing effects (i) electrostatic, through the cations and
anions of the ILBS; (ii) steric, via protection of the NPs through the PEG chain; and (iii)
chemical, due to the formation of N-heterocyclic carbene palladium complex between the
C-2 hydrogen of the surfactant imidazolium ring [207].
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A similar approach of using PEGylated GILBS was employed for the fabrication of
catalytically active Pd suspension that was employed in hydrogenation. The PEGylated
GILBS was synthesized by reacting 1-(n-dodecyl)imidazole with Cl(CH2)2O-(CH2CH2O)43-
Cl to get the poly(ethylene glycol) functionalized gemini surfactant. The Pd NPs were
fabricated by a treatment of palladium acetate with the surfactant solution (12 h, room
temperature), followed by treatment with hydrogen (0.1 MPa) at 60 ◦C for 20 min. The
catalyst obtained was successfully employed for the hydrogenation of several classes
of organic compounds at room temperature and a pressure of 1 MPa. The following
are examples of compounds that were hydrogenated with 100% product yield: styrene,
cyclooctene, ethyl acrylate, allyl alcohol, nitrobenzene and 4-nitrotoluene [223].

C10C1ImBr was used as a template for fabricating hollow spherical PtCu alloy NPs
(with the size of 124± 16 nm) supported on reduced graphene oxide (PtCu/rGO). The rGO
was used as the supporting material because of its unique structure, large specific surface
area and excellent electrical conductivity. The synthesized PtCu/rGO exhibited a high
electrocatalytic activity and good poisoning-resistant ability during methanol oxidation in
acidic medium. In order to investigate the influence of the ILBS anion on the formation of
PtCu/rGO nanoparticles, three C10C1ImCH3CO2 and C10C1ImBF4 were tested. Among
these, C10C1ImBr resulted in less NP agglomeration. Further, the impact of the alkyl chain
length of the ILBSs was studied. Unlike other studies, irregularly shaped hybrid PtCu/rGO
NPs were obtained when C6C1ImBr and C14C1ImBr were employed, and hollow spherical
PtCu/rGO was observed when C10C1ImBr was used. This dependence was attributed
to the difference in the amphiphilicity of these cations, which can produce ordered self-
organized structures. The electrochemical active surface area of the fabricated supported
PtCu/rGO (in m2 g−1) was 1.64, i.e., larger than that of commercial Pt/rGO. The material
obtained was employed for the catalytic oxidation of a solution of methanol in 0.5 mol L−1

H2SO4. The high electrocatalytic activity and a good tolerance for methanol oxidation of
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PtCu/rGO were attributed to the unique hollow spherical nanostructures that enlarge the
specific surface area and provide more active sites for the electrooxidation of methanol,
and the two dimensional and nanostructures of rGO promote electron transfers during the
reaction [208].

Abbaszadegan et al. [209] prepared C12C1ImCl-protected positively charged Ag NPs
that were further studied as a promising disinfectant in root-canal dental treatment. Ag NPs
with different surface charges (negative, neutral and positive) were synthesized, and their
antibacterial activity and cytotoxicity were evaluated and compared with two widely used
endodontic irrigates, namely NaOCl and chlorhexidine gluconate. Among the synthesized
NPs, positively charged Ag NPs completely prevented the growth of Enterococcus faecalis,
even after 5 min of contact time, whereas negatively charged Ag NPs started to inhibit
their growth only after 1 h of contact time; neutral Ag NPs had a moderate inhibitory effect.
The greater affinity of the positively charged Ag NPs to sulfur- and phosphorus-containing
proteins of bacteria leads to the higher antibacterial activity of it amongst the three Ag
NPs. Results of the antibacterial activity suggest that a 70-fold concentration of NaOCl was
required to achieve an antibacterial activity equal to the positively charged Ag NPs. When
tested for their cytotoxicity against L929 fibroblast cell lines in vitro, positively charged
Ag NPs showed significantly lower cytotoxicity than the negatively charged and neutral
charged Ag NPs. The positively charged Ag NPs exhibited even less cytotoxicity than the
NaOCl and CHX [209].

4.2. Polymerization

As expected, weakly surface-active ILs and ILBSs form emulsions and microemulsions
(µEs), both W/O and O/W. Microemulsions are isotropic, transparent or translucent solutions,
usually formed by water, oil and an amphiphile. Interest inµEs stems from the small diameters
of the (W or O) nanodroplets formed (3–30 nm) and, most importantly, their thermodynamic
stability, essentially because of the very low O/W interfacial tension [224,225]. Windsor [226]
classified µEs into the four types, as shown in Figure 19. In Windsor type I µEs, oil
nanodroplets are stabilized in an aqueous continuous phase by the surfactant, in addition
to excess oil phase. The inverse situation exists in type II µEs, i.e., water nanodroplets
stabilized in oil, in addition to the excess aqueous phase. In type III, the µE is composed of
a bicontinuous (BC) O/W µE in equilibrium with W and O, whereas type IV is composed
solely of BC phase, i.e., W and O mix in all proportions. Depending on the type of
continuous pseudo-phase, µEs are classified into aqueous and nonaqueous systems. µEs
have important applications because the diameter of the formed NPs, including metals,
oxides, and polymers can be controlled by adjusting, e.g., the molar ratio of W and O. This,
in turn, controls the diameter of the formed nanodroplets and hence that of the NPs therein.
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Regarding polymerization, ILs and ILBSs were employed to form µEs that contain
monomers as the “oil” component; this is usually followed by a controlled polymerization.
Additionally, “polymerizable” ILBSs can be employed in latex production instead of nonpoly-
merizable surfactants, leading to latex with enhanced stability. Thus, µEs were prepared from
oil (methyl methacrylate, MMA), water and either the IL C4C1ImBr, or the ILBS C12C1ImBr.
The free-radical polymerization of MMA (by atom transfer radical polymerization; ATRP)
produced polymethylmethacrylate (PMMA) NPs with diameters between 40 and 60 nm.
The IL and ILBs were recycled and reused, producing PMMA NPs with reproducible size
distribution, average molar mass (MM) and low polydispersity [227,228].

The polymerization of MMA was carried out at 25 ◦C by AGET (activators regen-
erated by electron transfer)-ATRP in C4C1ImBF4-based µE with polyoxyethylene sor-
bitan monooleate as surfactant; CCl4 as initiator; the complex FeCl3·6H2O/N,N,N′,N′-
tetramethyl-1,2-ethanediamine as catalyst, and ascorbic acid as reducing agent. The poly-
merization kinetics showed the feature of controlled ”living” process as evidenced by linear
first-order plots. The produced PMMA had narrow polydispersity indices (1.22 to 1.35)
and an average particle size <30 nm. The IL-based µEs were transparent throughout the
polymerization process, whose rate increased with increasing the [MMA]/[CCl4] molar
ratio and the concentration of the surfactant [229].

The use of C12C1ImBr/C4C1ImBF4-based µEs for AGET-ATRP polymerization of
MMA was investigated. The produced PMMA NPs had a small average diameter (∼5 nm)
and narrow MM distribution (Mw/Mn = 1.24), probably due to the low initiation efficiency
in IL/ILBS-µE polymerization. After isolation of the formed PMMA, the mixture containing
the catalyst and the IL/ILBS was recycled four times with convenient results in terms of
the average MM (5748 ± 398) and Mw/Mn, 1.24 to 1.37. Figure 20 shows the complete
cycle of AGET-ATRP of MMA, polymer precipitation and microemulsion regeneration in
the system C12C1ImBr/C4C1ImBF4/MMA [230].
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The effect of ILBS (C12C1ImBr) and GILBS (C14Im)2C4Br2 on the polymerization at
60 ◦C of MMA in O/W µEs was investigated to delineate the effects of the molecular struc-
ture of the surfactant. The latex PMMA NPs obtained with the ILBS had a smaller diameter
(30–40 nm) and higher Mn (=442,600) than that synthesized in the presence of GILBS,
(50–90 nm and 262,400, respectively). This was attributed to the difference between the
cmc values of the two surfactants, which were larger for C14C1ImBr. Therefore, at the same
surfactant molar concentration, there is a smaller number of micelles in the C14C1ImBr
µE, leading to the formation of more MMA oligomeric radicals in the bulk aqueous phase,
before they adsorb the surfactant molecules [231]. A PMMA/TiO2/IL photocatalyst was
fabricated by polymerization of MMA in µE of C4C1ImBF4/1-butanol/Triton X-100 non-
ionic surfactant (2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol), with TiO2 loading from
0.006 to 0.14 wt.%. For all samples, no visible phase separation was observed during and
after the polymerization reaction. The recyclability of the polymerization catalyst was
demonstrated through a series of subsequent polymerization reactions. The efficiency
is significantly reduced, however, after the 5th polymerization cycle due to progressive
surface poisoning and particle aggregation. Films were fabricated from the NPs and em-
ployed for the photodegradation of methylene blue as a model pollutant. The results
indicated that the PMMA/TiO2 NPs are more efficient in dye elimination than pure TiO2.
The efficiency of photooxidation first increased, then decreased as a function of increasing
the TiO2 content of the NPs. The effect of pH on the photodegradation of MB dye was
investigated; the NP efficiency was maximum at pH = 8. The reason is that at this pH, a
positive charge develops on the surface of the catalyst, leading to increased NP-cationic
dye electrostatic attraction that increases the photocatalytic activity [232].

The separation of aromatic/aliphatic hydrocarbons is industrially important; it is
carried out by extractive distillation, azeotropic distillation and liquid–liquid extraction.
The efficiency of membrane separation of these hydrocarbons is increased by using silver
salt complexes adsorbed onto the membrane. On use, however, the adsorbed silver ions
“leach” into the liquid medium, leading to a decreased membrane separation efficiency
and selectivity. This problem can be avoided by incorporating Ag+ into a polymeric ma-
trix. Thus, AgCl NPs were incorporated into MMA–acrylamide (AM) co-polymer. The
latter was fabricated by co-polymerization of MMA/AM (molar ratio 3:1) in µE using
C12C1ImCl. The AgCl/poly(MMA-co-AM) hybrid membranes were 20 ± 2 µm thick,
composed of a core (AgCl; average diameter = 20 nm)-shell (MMA-co-AM) structure.
Figure S2 shows a schematic representation of the formation of AgCl that results from
the addition of an aqueous solution of AgNO3 to the ILBS-µE, via an anion-exchange
reaction (AgNO3 + C12C1ImCl→ AgCl + C12C1ImNO3); see Figure S2. AgCl was fixed
into the MMA-AM co-polymer matrix via a –(H2N)C==O· · · · · ·Ag+ coordination. The
swelling/sorption behavior of the hybrid membranes in benzene and cyclohexane and the
separation ability of these hydrocarbons were investigated. The membranes showed pref-
erential sorption of/swelling by benzene and demonstrated better pervaporation perfor-
mance than that of the membrane without Ag+ NPs in separating the benzene/cyclohexane
mixtures [233].

Styrene was polymerized (free radical, RAFT) in 1-R-3-methlyimidazolium bromide-
based mini-emulsions (R = C12 and C16). Polystyrene (PS) nanoparticles were obtained
(average diameter 80–125 nm, depending on the experimental conditions), demonstrating
the efficiency of the ILBSs. The surfactant stabilized mini-emulsions were employed to
fabricate PS-based magnetic NPs, as shown in Figure 21. The enrichment of styrene phase
with oleic acid (OA)-coated magnetic NPs is due to phase separation between magnetic
NPs and developing PS phase during mini-emulsion polymerization of PS [234].

OA-coated magnetic NPs were fabricated by stirring an aqueous mixture of FeCl2 + FeCl3
with OA, followed by neutralization of OA with NH4OH aqueous solution, washing and
drying of the magnetic OA-coated NPs. The magnetic PS NPs were then fabricated by styrene
polymerization in the presence of OA-coated NPs. The authors assumed a preferential mi-
gration of the magnetic NPs to the PS particle surface, due to their immiscibility with the
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final PS phase, as shown in Figure 21. Finally, the magnetic properties of the materials were
determined by vibrating sample magnetometer analysis [234].

Polymers 2021, 13, x FOR PEER REVIEW 38 of 52 
 

 

styrene phase with oleic acid (OA)-coated magnetic NPs is due to phase separation be-
tween magnetic NPs and developing PS phase during mini-emulsion polymerization of 
PS [234]. 

 
Figure 21. Schematic representation of ionic liquid-based surfactant-mediated fabrication of na-
noparticles of polystyrene (PS) without and with magnetic properties (MNP) [234]. Reprinted with 
permission from ref. [234]. Copright 2021 ACS Publications.  

OA-coated magnetic NPs were fabricated by stirring an aqueous mixture of FeCl2 + 
FeCl3 with OA, followed by neutralization of OA with NH4OH aqueous solution, wash-
ing and drying of the magnetic OA-coated NPs. The magnetic PS NPs were then fabri-
cated by styrene polymerization in the presence of OA-coated NPs. The authors assumed 
a preferential migration of the magnetic NPs to the PS particle surface, due to their im-
miscibility with the final PS phase, as shown in Figure 21. Finally, the magnetic proper-
ties of the materials were determined by vibrating sample magnetometer analysis [234]. 

An interesting extension of the use of ILBSs in polymerization is where the surfac-
tant itself carries a polymerizable group (usually a double-bond), leading to its inclusion 
in the formed polymer. Thus O/W μE-mediated polymerization of MMA was carried out 
using (non-polymerizable) C12C1ImBr (ILBS-a) and polymerizable 
1-(2-acryloyloxyundecyl)-3-methylimidazolium bromide (ILBS-b, for structure see Figure 
S3). Unlike the PMMA particles produced using ILBS-a, those obtained using ILBS-b did 
not show aggregation, probably due to the formation of polymerized surfactant shell 
around the PMMA core NPs, thus rendering them more stable. The anion (Br⁻) of the 
polymerized surfactant can be exchanged with other, less hydrophilic and stimu-
li-responsive anions, e.g., BF4⁻, PF6⁻ and N(CN)2⁻. Figure 22 shows SEM images of the 
fabricated PMMA, before and after the above-mentioned anion exchange [227]. 

Figure 21. Schematic representation of ionic liquid-based surfactant-mediated fabrication of nanopar-
ticles of polystyrene (PS) without and with magnetic properties (MNP) [234]. Reprinted with
permission from ref. [234]. Copright 2021 ACS Publications.

An interesting extension of the use of ILBSs in polymerization is where the surfactant
itself carries a polymerizable group (usually a double-bond), leading to its inclusion in the
formed polymer. Thus O/W µE-mediated polymerization of MMA was carried out using
(non-polymerizable) C12C1ImBr (ILBS-a) and polymerizable 1-(2-acryloyloxyundecyl)-3-
methylimidazolium bromide (ILBS-b, for structure see Figure S3). Unlike the PMMA
particles produced using ILBS-a, those obtained using ILBS-b did not show aggregation,
probably due to the formation of polymerized surfactant shell around the PMMA core NPs,
thus rendering them more stable. The anion (Br−) of the polymerized surfactant can be
exchanged with other, less hydrophilic and stimuli-responsive anions, e.g., BF4

−, PF6
−

and N(CN)2
−. Figure 22 shows SEM images of the fabricated PMMA, before and after the

above-mentioned anion exchange [227].
The same polymerizable surfactant-based µE was employed to fabricate PMMA NPs

that were employed to obtain polymeric films. These can be used as starting material for the
production of coatings whose porosity and transparency can be “fine-tuned” according to
the duration of their treatment in an aqueous KPF6 solution; see Figure S4 in Supplementary
Material. Ion-exchange with the surfactant anion (Br−) with BF4

−, PF6
−, and N(CN)2

−

leads to stimuli-responsive films, due to the pairing of the anion to the imidazolium
ion [235].

Anion exchange of the ILBS can be also employed to confer magnetic properties to
the fabricated polymers. For example, C12VnImBr was homopolymerized and the anion
(Br−) of the produced polymer was transformed into FeBrCl3−, CoBrCl2− and MnBrCl2−

by reaction with FeCl3, CoCl2 and MnCl2, respectively. As expected, these polymerized
ILBSs showed magnetic properties. Additionally, C12VnImX (X = FeBrCl3−, CoBrCl2−

and MnBrCl2) were copolymerized with mixtures of MMA and n-butyl acrylate to give
stable latexes that showed paramagnetic behavior with weak antiferromagnetic interactions
between the adjacent metal ions; i.e., they are candidates as optically transparent microwave
absorbing materials [236].
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Figure 22. SEM images of polymers fabricated by microemulsion polymerization of MMA in the presence of the polymeriz-
able ionic liquid-based surfactant-b. Parts (A–C) refer to polymer gel as produced, the gel after treatment with aqueous
solutions of 0.1 mol L−1 of KPF6 and NaBr, respectively [227].

The same strategy, i.e., polymerization in the presence of a colloidal stabilizer, followed
by ion-exchange was employed to fabricate so-called “liquid marbles”. This term refers to
liquid droplets (generally water) coated with an exterior layer of a hydrophobic material.
They display non-adhesive and nonwetting behavior toward many surfaces, so that these
droplets “float” on the surface of water. When liquid marbles exist in macroscale, they
appear as free-flowing powders, referred to as “dry liquids” (e.g., “dry water”) because they
appear as dry, solid materials rather than continuous fluids. Thus, styrene, and mixtures of
MMA and benzyl methylacrylate were polymerized (free radical emulsion polymerization)
in the presence of cationic surfactants, e.g., CTACl, and poly(1-vinyl)-3-methylimidazolium
bromide as particle stabilizers. The fabricated liquid marbles (diameter up to 500 nm) can
have magnetic properties by polymerization in the presence of magnetite (Fe3O4). The
same strategy was employed to fabricate fluorescent liquid marbles, namely, emulsion
polymerization in the presence of fluorescein O-methacrylate or acrylate functionalized
Rhodamine B1. The fabricated liquid marbles can be flocculated by ion exchange of
the stabilizer anions (Br− or Cl>−) with (hydrophobic) bis(trifluoromethanesulfonyl)-
imide. The properties (magnetic and fluorescent) of the above-mentions materials can be
exploited in different applications, e.g., gas and pH sensing, microreactors, microfluidics,
biotechnology, drug delivery and also cosmetics and personal care products [237,238].

5. Conclusions and Perspectives

We identify molecular structure versatility as the main reason for the sustained interest
in single- and multiple-chain ILBSs. This offers a window of opportunities for diverse
applications, including the fabrication of NPs thfighuat are employed, inter alia, in catalysis,
decontamination and drug delivery. Dimeric and polymeric ILBSs have an additional
structural dimension, the spacer, whose length can be varied as required, and may contain a
heteroatom. Another interesting class is biamphiphilic surfactants, because the electrostatic
and hydrophobic interactions that lead to aggregate formation can be “fine-tuned” by
controlling the length and hydrophobicity of both surfactant ions; see Figure 8. Table 1,
Table S1, Table 2, Table S2 show the recent data available (last 10 years) on the adsorption
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at the water/air interface and micelle formation by single- and multiple-chain ILBSs. This
should help in choosing not only the molecular structure of the ILBS, but also the optimum
surfactant concentration for the intended application. The values of αmic are related to
the surface potential of the micelle and hence help in applications where electrostatic
interactions substrate-micelle are important. Among many applications, we chose those
relying on the use of ILBSs as soft templates for the fabrication of NPs and polymers. We
hope that our effort highlights these points and serves to increase the awareness of the
enormous potential of ILBSs in science and technology.

Figure 2 shows the sustained and expanded interest in ILs and ILBSs. In this review,
we focused on their use in the fabrication of NPs, both metallic and polymeric. Although it
is outside the scope of the present review to cover all important applications of ILBSs, it is
worthwhile to mention other applications, including their use in enhanced oil recovery,
e.g., by flooding with µEs [239,240], and in analytical chemistry, including liquid–liquid
extraction [241], voltammetry and amperometry as organic electrolytes for carrying out
electrochemical processes [242], solid-phase microextraction [243] and in chromatogra-
phy [244]. The ease with which the properties of weakly surface-active ILs and ILBSs can
be fine-tuned to the researcher’s need means that the ascending curves shown in Figure 2
is likely to continue in the future. The somewhat “exotic” uses of ILs by NASA are just an
example (www.nasa.gov/oem/ionicliquids (accessed on 29 March 2021)).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13071100/s1, Figure S1: Scheme of (A) micellar two-dimensional shape, (B) hemimicelle
and (C) admicelle of monocationic and gemini ILBSs; Figure S2: Schematic representation of the
formation of NP core (AgCl) in the poly(MMA-co-AM) shell; Figure S3:The molecular structure
of 1-(2-acryloyloxyundecyl)-3-methylimidazolium bromide (ILBS-b); Figure S4: SEM of 4% ILBr
undialyzed nanolatex coating on a glass slide before (a) and after (b) treatment with 0.1 mol L−1

KPF6; (c) SEM image of film shaving fracture surface. Table S1: Literature data of ionic liquid-based
surfactants aqueous solutions at 25 ◦C. Parameters calculated using techniques other than surface
tension; Table S2: Literature data of gemini ionic liquid-based surfactants aqueous solutions at 25 ◦C.
Parameters calculated using techniques other than surface tension.
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Amin Minimum area per molecule at the water/air interface
AGET Activators generated by electron transfer
AIBN Azobisisobutyronitrile
AM Acrylamide
ATRP Atom transfer radical polymerizations
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Aze+ Azepanium
Azo+ Azocanium
C1, C2, etc Methyl, ethyl, etc, these alkyl groups have n-chain, unless indicated otherwise.
pC20 Surface tension reduction efficiency (by 20 mN m−1).
Cmc Critical micelle concentration
CTAB Cetyltrimethylammonium bromide
CTACl Cetyltrimethylammonium chloride
DBS Dodecylbenzene sulphonate
EO Ethylene oxide unit
GILBS Gemini ionic liquid-based surfactant, where two ILBSs are joined with a tether or

a spacer.
Gu+ Guanidinium
HC Surfactant hydrophobic group (or tail)
HG Surfactant head-group
ILBS Ionic liquid-based surfactant
Im+ Imidazolium ring
Mn Number average molar mass
Mw Weight average molar mass
MM Molar mass
MMA Methyl methacrylate monomer
MNP Mesoporous nanoparticles
MSNP Mesoporous silica nanoparticle
Mor+ Morpholinium
N+ Ammonium
Nagg Average aggregation number of the micellar aggregate
NP Nanoparticle
OA Oleic acid
OHIm Hydroxyl-functionalized imidazolium ring
O/W Oil-in-water emulsion or microemulsion
P+ Phosphonium
Pip+ Piperidinium
PMMA Polymethylmethacrylate (PMMA)
Pn+ 2-Pyrrolidinonium
PS Polystyrene
Py+ Pyridinium ring
Pyrro+ Pyrrolidinium
SDS Sodium dodecyl sulphate, SDS
SMeIm Thioether-functionalized methylimidazolium ring
TC An AOT analogue, based on trans-aconitic acid
Triton X-100 Nonionic surfactant 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol
Vn Vinyl group, respectively
W/O Water-in -oil emulsion or microemulsion
αmic Degree of the surfactant counter-ion dissociation
∆G0

ads Gibbs free energy of surfactant adsorption at the water/air interface
∆G0

mic Gibbs free energy of micelle formation
∆H0

mic Enthalpy of micelle formation
∆S0

mic Entropy of micelle formation
γcmc Surface tension at cmc
Γcmc Surface pressure at cmc
Πcmc Surface excess concentration at the interface
µE Microemulsion
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