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Abstract

Biodiversity is in crisis due to habitat destruction and climate change. The conservation of

many noncharismatic species is hampered by the lack of data. Yet, natural history research—a

major source of information on noncharismatic species—is in decline. We here suggest a rem-

edy for many mammal species, i.e., metagenomic clean-up of fecal samples that are “crowd-

sourced” during routine field surveys. Based on literature data, we estimate that this approach

could yield natural history information for circa 1,000 species within a decade. Metagenomic

analysis would simultaneously yield natural history data on diet and gut parasites while enhanc-

ing our understanding of host genetics, gut microbiome, and the functional interactions

between traditional and new natural history data. We document the power of this approach by

carrying out a “metagenomic clean-up” on fecal samples collected during a single night of small

mammal trapping in one of Alfred Wallace’s favorite collecting sites.

Introduction

Natural history research has been in steep decline over the past few decades [1–3]. This is wor-

rying because natural history data are important for the informed management of endangered

species based on species-specific traits [3]. The crisis in natural history research and education

has been well documented [1,4,5]. It constitutes a particularly serious problem for rare or

rarely studied, noncharismatic species. It is these species that have historically been the major

beneficiary of the kind of incidental observations that are published in natural history papers.

In contrast, most of today’s studies focus on large and high-profile species [6–11], which are

given funding priority and preferred by high-impact journals [10,12].

Here, we argue that one way to boost research on neglected species is enriching incidental

natural history observations by obtaining “forensic” DNA evidence using new sequencing

technologies. For example, traditional pollinator studies can benefit from sequencing flowers

in order to detect entire pollinator communities [13], predator–prey studies focusing on spi-

ders can obtain additional data by sequencing spider webs [14], sequencing the gut content of

carcasses can reveal much biology [15], and the results of mammal-trapping studies can be

enhanced by sequencing fecal DNA. Fecal samples are routinely obtained during fieldwork,

but they are currently mostly discarded, although they can yield a rich amount of natural
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history data. We here argue that the metagenomic evaluation of such samples can enhance tra-

ditional natural history observations and make it more likely that they are published.

Natural history research aims to document the flora and fauna and their interactions in a

habitat. Such research is heavily dependent on incidental observations by field researchers and

citizen scientists [16]. For example, the 11-year expedition of Henry Walter Bates to Amazonia

not only led to the discovery of new species, descriptions of the diversity, and deepened our

understanding of mimicry, but his The Naturalist on the River Amazons is also full of observa-

tions on species’ behavior and interactions. This includes observations on the pinktoe taran-

tula (Avicularia avicularia) eating a small finch, scarlet and blue macaws feeding on a bacaba

palm, the hyacinthine macaw’s ability to feed on “excessively hard nut (of the fruit of the

Tucuma palm) which is crushed into pulp by the powerful beak of the bird,” or on a tamarin

which “generally fed on sweet fruits, such as the banana but it is also fond of insects; especially

soft-bodied spiders and grasshoppers, which it will snap up with eagerness when within reach”

[17]. Similarly, Alfred Russel Wallace’s work in Southeast Asia described in The Malay Archi-
pelago [18] includes numerous incidental observations such as the feeding behavior of colugos

in Singapore and Borneo, orangutans in Borneo, babirusa in Sulawesi, and fruit pigeons feed-

ing on nutmeg in Banda. Occasionally, the field observations were complemented by informa-

tion from captive animals (e.g., birds of paradise feeding), but many such observations would

today be considered unworthy of publication. Yet, this information continues to inspire fol-

low-up research.

Akin to a naturalist’s incidental field observations, a small number of fecal samples for non-

charismatic mammal species may initially appear to be of limited value, but they can be very

informative once they are fully evaluated. This is because fecal samples contain information on

diet, genetics of the host, gut parasites, microbiome [19–22], and even hormones (e.g., cortisol

[23]); i.e., these samples are inherently data-rich and multidimensional. There is a long tradition

of unlocking some of this information through morphological study of diet remains, but this

only yields information on one dimension and is only feasible for species with incomplete diges-

tion. These limitations can now be overcome by sequencing fecal DNA using high-throughput

sequencing technologies. Shotgun sequencing yields not only species-level information on diet

but also information relevant to health (e.g., via gut parasites, microbiome) and host genetics

[19,20,24]. Fecal metagenomics is also attractive because it requires minimal wet lab work; only

the DNA needs to be extracted and sent for sequencing. Very little experience and equipment

are needed because new specialized extraction tools are now available (e.g., Terralyzer).

The simplicity of the molecular work renders shotgun metagenomics particularly attractive

for field researchers, but there are alternatives that are cheaper but require more lab work. For

example, “metabarcoding” can be used for characterizing a single dimension of the sample

(e.g., diet or microbiome [25,26]) by amplifying one or several genes that are informative with

regard to the targeted dimension. The downside is that the amplification of genes often

requires optimization, which is only worthwhile when a large number of samples for the same

or closely related species are scrutinized for the same information (e.g., diet) [26]. Targeted

approaches are thus arguably less attractive to natural history researchers, who tend to be

interested in a diversity of traits and want to discover the unexpected in a small number of

samples for the same species. For example, metagenomics would readily reveal that chimps

hunt monkeys, tortoises [27], and probably many other animals, whereas repeated diet charac-

terization with plant genes would fail to yield such novel insights. This raises the question of

why shotgun metagenomics has only recently been used for unlocking the information con-

tained in fecal DNA. Presumably, the main concerns have been high cost and the complexities

of the bioinformatic analysis. However, cost of sequencing is declining fast, and new user-

friendly bioinformatics tools are now available [28,29]. They can be used to rapidly obtain
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species-level identifications despite the need for processing millions of sequences. It thus

appears likely that metagenomics will become the method of choice for the study of those spe-

cies for which few samples are available.

Mammalian field work: Species coverage over the last few decades

But for how many species could we obtain rich natural history data if a substantial proportion

of mammalian field surveys were to collect fecal samples? We here use a literature survey to

estimate the number of mammal species that have been encountered in the field over the past

decades. Estimating this number is difficult because many routine mammalian surveys are not

published and/or omit information on off-target, noncharismatic species that were only occa-

sionally encountered. However, one can obtain lower-bound estimates using the published lit-

erature catalogued in Zoological Record (electronic version: 1978–2018). We thus queried title,

abstract, and all other associated field tags for 305,785 mammal publications (authors, publica-

tion dates, descriptors, systematics, etc.). We then used the mammal checklist of 6,399 extant

species by Burgin and colleagues (2018) [30] to identify 226,021 records that contain recog-

nized species name(s) for extant species. We found that most mammal species were mentioned

in the literature (5,860 of 6,399 extant mammals). We then identified those likely to have been

encountered in the field. For this, we carried out multiple searches with different logical con-

nectors related, for example, to diet or field work (see Table A in S1 Text). Afterwards, we used

a random subset of 100 records to confirm whether the studies indeed covered field work on

the species. Based on these methods, we estimate that approximately 2,200 species of mammals

have been encountered in the field after 1978 and circa 1,700 over the last 10 years (Table 1).

Approximately 1,400 species were included in studies revealing diet information, circa 1,200

species were mentioned in studies collecting fecal samples, and circa 1,600 species were men-

tioned in trapping studies. Although the opportunities for collection of fecal samples were

many, DNA-based evaluation of feces was only published for approximately 550 species

(<10% of mammal species). Furthermore, the existing studies examining diet or feeding ecol-

ogy were heavily skewed toward 64 species that contributed>50% of the records (e.g., wolves,

cats, great apes, foxes, and deer), whereas>90% of the species had <10 diet-related records

(Fig 1).

In order to test how much natural history information can be obtained during routine field

work, we joined a team of mammalogists for a single night of small mammal trapping in one

Table 1. Number of records and species related to keywords examined in Zoological Record.

1978–2018 2009–2018 Estimated % of

relevant records/speciesKeywords # records # species # records # species

Diet 28,106 2,029 9,533 1,451 62/53�

73/70��

Behavior (no diet) 37,133 2,193 12,602 1,592 61/68

Feces 9,995 1,643 4,712 1,228 71/77

Fecal DNA 1,852 730 1,406 666 73/79

Trapping studies 6,584 1,953 2,504 1,303 74/85

Diet + behavior 65,239 2,564 22,135 1,969 67/72

Combined 75,742 3,223 26,977 2,524 65/68

� diet is a major focus of the study.

�� study includes field work.

https://doi.org/10.1371/journal.pbio.3000517.t001
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of Alfred Wallace’s favorite collecting sites (Bukit Timah Nature Reserve in Singapore). We

sequenced 13 fecal samples from 4 understudied small mammal species collected during that

night. Analysis of shotgun sequencing data confirmed many published natural history obser-

vations on diet and gut parasites, but the data also provided many new natural history insights.

In some cases, the old and new data interacted to provide more in-depth insights. For example,

based on published natural history research, treeshrews were known to feed on arthropods

and have surprisingly short digestion times (<1 hour), but the shotgun data were needed to

reveal that these traits are likely mediated via a microbiome rich in bacteria producing chitino-

lytic enzymes (Box 1, Figs 2 and 3).

Fig 1. (A) Number of records related to diet/feeding behavior for mammalian species. (B) Species with>100 records. The data underlying this figure are in S1 Data.

https://doi.org/10.1371/journal.pbio.3000517.g001
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It is time for a metagenomic initiative supporting natural history

research in the 21st century

Greene (2005) [2] sums up the frustrations of a naturalist by stating “I sat through a sympo-

sium on predator–prey interactions, becoming increasingly frustrated as speaker after speaker

appealed for ‘more empirical data’ to test the theories on which their talks were focused. In the

open discussion that followed, I asked, ‘But who will do that work, and who will pay for it?’”

Box 1. An exploration of fecal samples from a night of trapping

We joined a survey of small mammals in Singapore’s Bukit Timah Nature Reserve. Small

mammals were trapped using banana or papaya as bait, and fecal samples were collected

during the 1-night survey. We obtained 23–87 million DNA sequences for 9 samples of

the common treeshrew (Tupaia glis), 2 samples of the Asian house rat (Rattus tanezumi),
one sample each of the Annandale’s rat (Sundamys annandalei) [31], and a plantain

squirrel (Callosciurus notatus) (Fig 2). We then used the metagenomic data to recon-

struct the mitochondrial genomes for all 4 species. The data revealed that 1 specimen

had been incorrectly identified as S. annandalei although its COI sequence was identical

to several R. tanezumi “R3” records in GenBank (e.g., KC010287, JX533909, HM217503)

[32]; i.e., metagenomic data help with validating species identifications and generate a

genetic signature for each sample that can be reassigned in case species boundaries

change over time.

When we screened the metagenomic data for parasites, numerous nematodes and pro-

tists were found to inhabit the guts of treeshrews and rodents; many of these records

were new (Table C in S1 Text). This included a potentially new species of Strongyloides
in treeshrews, which also harbored the protist Hypotrichomonas, which was originally

described from reptiles and birds but has more recently been found in some mammals

[33,34]. Remarkably, the genetic signature (18S rDNA, including hypervariable regions)

was identical to a record from an African primate (Otolemur garnettii: HQ149966).

We also characterized the diet of the 4 small mammal species. This provided a mixture

of novel insights and confirmation of old records (Tables D and E in S1 Text). The

treeshrews had fed on many arthropods [35], some of which could be identified to spe-

cies based on the metagenomic data. A screen of the gut microbes revealed a microbial

community that was rich in Proteobacteria such as Enterobacter, Klebsiella, Serratia, and

Pseudomonas (Table F in S1 Text). Functional profiling revealed high abundance of

genes coding for chitinolytic enzymes (Fig 3C); i.e., this gut microbiome may be respon-

sible for the fast digestion of the arthropod-rich diet of treeshrews. Note that they have a

remarkably narrow and simple digestive tract with very short food transit times (20–57

minutes) [36–39]. Additional help with digesting arthropods may also come from the

treeshrew’s genome given that a close relative (T. belangeri chinensis) has a larger num-

ber of chitinase gene copies as compared with herbivorous and carnivorous mammals

(5: [40]). Although the treeshrew microbiomes had a high abundance of chitinolytic bac-

teria, the overall microbial diversity was low. In contrast, the microbiomes of Rattus and

Sundamys were diverse (1.5–15-fold higher, Fig 3A and 3B) but largely lacking with

regard to microbial species producing chitinolytic enzymes.
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We here argue that existing field work is full of missed opportunities and much natural history

data could be obtained through the multidimensional characterization of fecal samples. We

also believe that such characterization has the potential to help with raising funds for field

work because it can significantly increase the amount of data that can be collected during field

work. Fortunately, the cost of “metagenomic clean-ups” is no longer exorbitant. Each sample

can now be sequenced for US$200–US$250 (DNA extraction, library preparation, 10 Gbp of

sequencing, US$10 for bulk shipping: S1 Text).

But who will do the work, and who will pay for it? Based on our literature search, one could

obtain fecal samples for 1,000 mammal species within 10 years. If one were to carry out a meta-

genomic analysis for 5 samples per species, the sequencing cost for a global initiative would be

US$1 million in total, or US$100,000 per year. We estimate that a team of<5 researchers

would be able to organize, develop the standard operating procedures (SOPs), and conduct

and/or assist with the bioinformatics. The in-depth analysis of the data should be a collabora-

tive effort between field researchers and molecular ecologists with both parties benefiting and

contributing complementary expertise. Overall, the cost of such an initiative would thus be sig-

nificant, but modest when compared with the amount of funding that is currently raised for

large-scale barcoding (BIOSCAN: US$180 million). Yet, the benefits would be manifold: it

would help with gaining a functional understanding of biodiversity for taxa, such as mammals,

in which species diversity and ranges are already comparatively well understood. It would also

help with justifying field work and encouraging data collection for noncharismatic species.

Lastly, preliminary data obtained through such a project would help with raising funds for

more focused projects on species with intriguing preliminary data. For example, the Tupaia

Fig 2. Species trapped in the single night of trapping in Bukit Timah Nature Reserve. Top row: T. glis (common

treeshrew), C. notatus (plantain squirrel). Bottom row: R. tanezumi (Asian house rat), S. annandalei (Annandale’s rat).

Photo credits: Nick Baker (mammals) and Andie Ang (fecal sample).

https://doi.org/10.1371/journal.pbio.3000517.g002
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data presented here may inspire additional work on how microbiomes facilitate the rapid

digestion of arthropods.

One concern may be the biased/random nature of the samples that are obtained serendipi-

tously. However, similar to what is the case for traditional natural history data, data for the

same species would accumulate over time and be useful for addressing a large number of

research questions that are of both academic and applied interest. Here are some examples:

Which species share gut parasites? How do parasite loads change across range, population size,

and genetic variability? How much variability is there in the microbiomes, and how is it influ-

enced by evolutionary relationships, diet, sex, and age? How many supposedly “phytophagous”

species also feed on animals? To what extent is the diet of species determined by evolutionary

history? How does the diet change over a species’ range, and how is it related to environmental

variables? How do animals in urban areas differ from wild populations?

Of course, metagenomic data are not devoid of problems. This includes false positive “diet”

items (flies, dung beetles, and millipedes), which can come from animals that visited the feces

(for example, those found in our case study, Table D in S1 Text). An additional issue is that

DNA signals from the bait has to be subtracted. Overall, it is thus important to slightly modify

existing field protocols by, for example, only using freshly cleaned traps and recovering the

samples quickly (Box 2). With regard to benefit sharing and regulatory concerns, we suggest

that the extracted DNA should remain with the researchers residing in the country of origin.

They would then initiate data acquisition following approved protocols for the country in

Fig 3. Microbiomes of the small mammals. (A) Microbial OTU richness. (B) Shannon and Simpson diversity indices. (C) Relative abundance of chitinases in gut

microbiomes. The data underlying this figure are in S1 Data. OTU, operational taxonomic unit.

https://doi.org/10.1371/journal.pbio.3000517.g003
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question (e.g., sequencing within the country or outsourcing). The data—but not the DNA—

could then be shared with team members living elsewhere. The cost for sequencing would ide-

ally be borne by a global initiative, but it can also be covered by regional research projects. If

organized along these lines, such an initiative would provide benefits for all parties involved.

In order to start such an initiative, researchers at the National University of Singapore and the

Genome Institute of Singapore will sequence and analyze the first 250 samples (circa 50

species).

Ethics statement

Small mammal trapping was conducted as part of the Bukit Timah Survey initiated by the

National Parks Board [42]. Fecal samples were collected after the animals were released from

the traps.

Supporting information

S1 Text. Methods and additional detailed results for metagenomic analyses.

(DOCX)

Box 2. Standard operating procedures for collecting fecal DNA

1. Equipment for field work: Sterilized vials, gloves, and spatula. Ethanol can be

added to the vials if field work is extensive and freezer access is limited. For field

work involving several days, silica beads can be used for dehydration (see point 4).

2. Equipment for molecular work: Centrifuges and pipettes for multidimensional

characterization. When microbiome is the focus, a vortex (Vortex-Genie 2) for

bead-beating.

3. Collection of sample: Sample should be collected when defecation is observed or

shortly thereafter. If this is not possible, PCR-based screening can be used for spe-

cies identification. Traps should be cleaned/sterilized between uses.

4. Preservation of sample: Frozen within a few hours or preserved using transport/

storage media such as DNA shields (Zymo Research). When such preservation is

not possible, a 2-step preservation method can be used: first, storage in ethanol

and then desiccation in silica after 1 day [41].

5. Metadata collection: Record location/GPS coordinates, date and time of collection,

whether defecation was observed, the exact location of sample (on ground/leaves/

inside trap, etc.), type of traps and baits used, and observation of other animals on

the feces or bait.

6. Lab work: DNA extraction (QIAGEN DNeasy Blood & Tissue kit) for multidi-

mensional work of this nature, preferably sampling the interior of the sample. The

same kit can be used to extract the outer layer if the aim is to maximize host DNA.

Kits such as the QIAGEN DNeasy PowerSoil kit if microbiome characterization is

the focus.
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S1 Data. Data for Figs 1 and 3.

(XLSX)
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