
TECHNOLOGY REPORT ARTICLE
published: 21 May 2014

doi: 10.3389/fninf.2014.00054

CBRAIN: a web-based, distributed computing platform for
collaborative neuroimaging research
Tarek Sherif1†, Pierre Rioux1†, Marc-Etienne Rousseau1†, Nicolas Kassis1, Natacha Beck1,

Reza Adalat1, Samir Das1, Tristan Glatard1,2 and Alan C. Evans1*

1 ACElab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
2 CREATIS, INSERM, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France

Edited by:

Xi Cheng, Lieber Institue for Brain
Development, USA

Reviewed by:

Gully A. P. C. Burns, USC
Information Sciences Institute, USA
Padraig Gleeson, University College
London, UK

*Correspondence:

Alan C. Evans, ACElab, McConnell
Brain Imaging Centre, Montreal
Neurological Institute, McGill
University, 3801 University Street,
Webster 2B #208, Montreal, QC
H3A 2B4, Canada
e-mail: alan.evans@mcgill.ca

†These authors have contributed
equally to this work.

The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative
research platform developed in response to the challenges raised by data-heavy,
compute-intensive neuroimaging research. CBRAIN offers transparent access to remote
data sources, distributed computing sites, and an array of processing and visualization
tools within a controlled, secure environment. Its web interface is accessible through
any modern browser and uses graphical interface idioms to reduce the technical
expertise required to perform large-scale computational analyses. CBRAIN’s flexible
meta-scheduling has allowed the incorporation of a wide range of heterogeneous
computing sites, currently including nine national research High Performance Computing
(HPC) centers in Canada, one in Korea, one in Germany, and several local research servers.
CBRAIN leverages remote computing cycles and facilitates resource-interoperability in
a transparent manner for the end-user. Compared with typical grid solutions available,
our architecture was designed to be easily extendable and deployed on existing
remote computing sites with no tool modification, administrative intervention, or special
software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread
across 53 cities in 17 countries. The platform is built as a generic framework that can
accept data and analysis tools from any discipline. However, its current focus is primarily on
neuroimaging research and studies of neurological diseases such as Autism, Parkinson’s
and Alzheimer’s diseases, Multiple Sclerosis as well as on normal brain structure and
development. This technical report presents the CBRAIN Platform, its current deployment
and usage and future direction.

Keywords: eScience, distributed computing, meta-scheduler, collaborative platform, interoperability, cloud

computing, neuroimaging, visualization

INTRODUCTION
For the past decade, scientists in all fields of research have had to
cope with the effects of accelerated data acquisition and accumu-
lation, large increases in study size and required computational
power (Bell et al., 2009), and most importantly, the need to con-
nect, collaborate, and share resources with colleagues around
the world. This general intensification, often referred to as “Big
Data” science, is certainly true in biomedical research fields, such
as neuroscience (Markram, 2013; Van Horn and Toga, 2013),
and cyberinfrastructure has been proposed as a potential solu-
tion (Buetow, 2005). The efforts expended by many research
groups in deploying cyberinfrastructures have unquestionably
led to the development of successful new research methodolo-
gies. Neuroimaging platforms and applications have emerged that
address common issues using drastically different approaches;
from programmatic frameworks (Gorgolewski et al., 2011; Joshi
et al., 2011) to advanced workflow interfaces, abstracting tech-
nological decisions away from users to various degrees (Rex
et al., 2003; Olabarriaga et al., 2010). These applications excel in
addressing different aspects of the problem; workflow building,
leveraging data or compute grids, data visualization, collaborative

elements (topic reviewed in Dinov et al., 2009). However, as these
technologies are often strongly rooted in local requirements, they
tend to form application and infrastructure “silos,” not easily
adaptable to needs other than those for which they were orig-
inally conceived. Therefore, while the global nature of current
scientific collaborations requires broader integration and plat-
form interoperability, efficient integration of heterogeneous and
distributed infrastructures across multiple technological admin-
istrative domains, in a sustainable manner, remains a major
logistical challenge.

Over the past two decades, the evolution of neuroimaging
research has led to the development of a rich array of data
processing tools and complete analysis pipelines (exhaustive list-
ing on the online NITRC1 repository). However, many of these
tools remain unintuitive to the average researcher, as they require
a solid understanding of advanced computer systems and dis-
play drastically differing underlying philosophies, which limits
their potential for growth and adoption. They often require
familiarity with command line and scripting techniques, long lists

1http://www.nitrc.org

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 1

INTEGRATIVE NEUROSCIENCE

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00054/abstract
http://community.frontiersin.org/people/u/158737
http://community.frontiersin.org/people/u/103344
http://community.frontiersin.org/people/u/158553
http://community.frontiersin.org/people/u/35715
http://community.frontiersin.org/people/u/156033
mailto:alan.evans@mcgill.ca
http://www.nitrc.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

of configuration parameters and knowledge of how to properly
prepare data for use as input. Manually processing heavier loads
requires skills for data transfers and submission of analysis jobs
to remote HPC sites in addition to a solid understanding of the
scheduling software environment and policies used at each site.
Furthermore, properly scaling these operations for large multi-
site projects requires skills beyond all but the most technical
research teams. Usability issues such as these lead to poor adop-
tion of standards for tools and techniques, sub-optimal usage
of resources, and immense amounts of replication and overhead
cost. This alone represents a sufficient motivation to promote
usage of common tools deployed in shared controlled envi-
ronments where provenance details of each action are carefully
recorded to ensure the reproducibility of results (Mackenzie-
Graham et al., 2008).

The CBRAIN platform (http://www.cbrain.mcgill.ca) is a
web-based, collaborative research platform designed to address
the major issues of Big Data research in a single consistent frame-
work. CBRAIN was conceived at a time when the question was
no longer of creating resources such as HPC clusters and data
repositories, since they already existed. Rather it was of creat-
ing a platform to leverage currently existing resources in a way
that would best benefit the research community at large. Our pri-
mary objective was to build a user-friendly, extensible, integrated,
robust yet lightweight collaborative neuroimaging research plat-
form providing transparent access to the heterogeneous comput-
ing and data resources available across Canada and around the
world. These key goals carry significant challenges. To address
them, CBRAIN was designed with the following guidelines:

• Convenient and secure web access (no software installation
required)

• Distributed storage with automated, multipoint data move-
ment, and cataloging

• Transparent access to research tools and computing (HPC)
• Flexibility to adapt to extremely heterogeneous computing and

data sites
• Full audit trail (data provenance) and logs across all user

actions
• Lightweight core components, low requirements for deploy-

ment and operation
• Scalability (no architectural bottlenecks)
• Maintainability and sustainability by a research-based team
• Full ecosystem security and monitoring

The development of this type of integrated platform required
addressing the aforementioned problems as they manifest them-
selves in brain imaging research. For example, pipeline tools are
often built with hard-coded interactions to a particular cluster
scheduling system, showing little understanding of proper HPC
usage or consideration for site-to-site portability. This leads to a
massive waste of resources as the generated workloads must be
re-encapsulated for responsible use of public or shared HPCs.
In addition, procedures and policies at various HPC sites, even
within the same organization, can differ significantly, impos-
ing additional burden on users and platform builders. Although
sites may claim to use the same scheduling software, different

scheduling policies may be implemented; queue limits and pri-
orities vary, installed libraries and environment configuration
vary, location and performance of various local storage may differ
greatly.

In order to foster more flexible national and international col-
laborations, we seek to extend CBRAIN past these technological
borders. CBRAIN was built in several layers, with a focus on
ensuring tight coordination of the entire ecosystem: abstraction
of extremely heterogeneous computing resources scattered over
large distances; abstraction of remote data resources and a col-
laborative portal entirely accessible from a regular web browser
where users can securely control and share, as desired, data, tools,
and computing resources. In this paper, we will discuss how
the above philosophy and guidelines have been implemented in
CBRAIN and we will present the current deployment and usage
of the platform within our neuroimaging community.

MATERIALS AND METHODS
CBRAIN OVERVIEW
CBRAIN is a multi-tiered platform composed of three main layers
(see Figure 1): (i) the access layer, accessible through a standard
web-browser (for users) or a RESTful Web API (for applications
or other platforms), (ii) the service layer which provides portal
services for the access layer, the metadata database, which stores
information about all users, permissions, and resources, and
orchestration services for resource coordination (users requests,
data movement, computing loads, jobs, data models,. . .), and
finally (iii) an infrastructure layer consisting of networked data
repositories and computing resources. An arbitrary number of
concurrent data sources (data providers), computing sites (exe-
cution servers), and CBRAIN portals may co-exist, with only the
metadata database as a central element for a given deployment.
A data-grid mechanism with synchronization status tracking has
been designed to avoid transfer bottlenecks and ensure scalabil-
ity. Data transfers are coordinated directly from data providers by
execution servers, ensuring that data are not transferred through
the central service orchestration layer during operation, and that
remote data providers are not overwhelmed by direct connections
from processing nodes. Data visualization, being handled directly
by a CBRAIN portal server, is the only major service that requires
a data transfer to the central servers. This core flexibility allows a
wide array of possible site setups. The simplest being the creation
of a Virtual Site (also referred to as Virtual Organization or VO)
and associated user accounts. These users will obtain access to
CBRAIN shared storage and computing resources, but their data
will remain private unless they explicitly decide otherwise. Sites
can also integrate their own data providers and/or computing
resources (again, shared or private). In addition to hosting pri-
vate data providers and computing servers, a site may host its own
CBRAIN portal within the walls of its institution and explicitly
limit all operations to private local resources and private network.
Such a configuration ensures a completely local handling of sci-
entific data while at the same time benefiting from the advantages
of the platform.

The CBRAIN web portal allows users to authenticate and man-
age their data and analyses. It also provides several advanced
visualization tools for exploring results and performing quality

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 2

http://www.cbrain.mcgill.ca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

FIGURE 1 | CBRAIN architectural layers. The top user layer (1)
represents consumption of services through web browser clients or
RESTful API. The central services and coordination layer (2) hosts
CBRAIN portals that are responsible for providing services and business
logic for requests from the top user layer and orchestration for the lower
resource layer. The state of all model instances (users, VOs, tools,
resources, catalog, privileges, etc.) is stored in the metadata database. In

the lower remote resource layer (3) lays the data providers (scientific
data servers, databases or virtual machine images, and tools repositories)
and the execution controllers. Execution controllers have to be located at
the computing sites on a node that has access to the system scheduler
and cluster file systems. Note that data transfers between data providers
and execution controllers are triggered by the coordination layer, but do
not pass through this layer.

control. The main components of the user environment are
shown in Figures 2–4; namely the project view, file view and task
view. Data is organized in user-created personal or shared projects
(Figure 2). The file view (Figure 3) shows all data files and asso-
ciated results registered in a selected project from all physical
storage locations. Once files or collections are registered in the
platform, users can filter, manage, tag, move, and share them
across physical locations through a graphical user interface and
without having to manage authentication, hostnames, and paths.
The same principle applies to tool usage; the user simply selects
a set of files and a tool, fill a tool parameter form and launches
jobs to be executed remotely. All data transfers, environment
setup, scheduler interactions, and monitoring are handled behind

the scenes by CBRAIN. Current tasks (sets of computing jobs
from various user operations) can be monitored, managed, and
troubleshot, if desired, from the task view (Figure 4). Once com-
pleted, output files appear in the file view as children of the input
files (see Figure 3). Complete audit trails (provenance) are avail-
able for all user actions: logins, file movement and transfers, task
parameters, tool versions and logs, resources used, work directo-
ries. Links between input files (parents), compute jobs and output
files (children) are maintained to allow convenient event browsing
when doing post-analysis investigation. Resource views show the
status of all data and computing resources accessible to the user
(Figures 5, 6). The portal also provides a RESTful Web API that
exposes CBRAIN functionality to other systems (Figure 1). This

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

FIGURE 2 | CBRAIN portal: project view. Authenticated users can see a representation of the various projects they own. Projects are color coded: blue for
personal projects, green for shared projects, red are default user or site projects, and white allows access to all files owned by this user.

API allows decoupled cross-platform interoperability; any autho-
rized system may authenticate, exchange data, and launch jobs on
CBRAIN.

Access policies that regulate the use of CBRAIN-mediated
resources for any given project are beyond the scope of this report
since access restrictions do not arise from technical limitations.
CBRAIN provides flexible capabilities to enforce data access and
transfer policies on any computing resource, data source or tool,
limiting access to specific users or groups and preventing actual
scientific data or services to cross specific boundaries (such as
institutional networks) whenever required.

DISTRIBUTED COMPUTING
Computing servers or HPCs connected to CBRAIN run a
lightweight execution server. The execution server awaits requests
for job submission, performs any setup required by the HPC site
and then forwards the job submission request and parameters to
the HPC’s scheduler. The first challenge faced by CBRAIN was to
manage the heterogeneity of these compute resources. Frequently,
computing sites are built independently using different architec-
tures, cluster job scheduler software, UNIX environments, storage
setups, and overarching usage policies. Developing a centralized

point of access that would be reasonably easy to use meant
these differences in system architecture had to be overcome in
a way that is invisible to the user. CBRAIN addresses this prob-
lem in several abstraction layers. The first layer is the Simple
Cluster Interface in Ruby (SCIR), a custom library developed
in-house.

SCIR was developed as a streamlined meta-scheduler to
abstract scheduler differences away from the core platform. SCIR
is a simple Ruby library that implements basic high-level func-
tionality required to query, submit, and manage jobs to a given
cluster job scheduler. It is implemented with a plugin architec-
ture that makes it easily adaptable to new environments. New grid
environments are supported by creating simple SCIR subclasses in
Ruby implementing the base SCIR API. SCIR subclasses currently
implemented provide support for current and legacy versions
of SGE, PBS, Torque, MOAB, and several custom managers and
direct UNIX environments.

CBRAIN execution servers simply run in a regular user
account on a cluster head node. An execution server on a given
HPC receives requests from the CBRAIN portal containing infor-
mation about the requesting user, the location of data required
for analysis, tools and parameters to use, and the data provider

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

FIGURE 3 | CBRAIN portal: file view. The file view is the main control space
where users can manage file or file collection properties (name, privileges,
project, tags, type, physical location), filter and select input files based on any
property and select a tool for a given task. Web uploads and downloads can

be performed through this page, although private data providers or SFTP
transfers are preferable for large data. Synchronization information of a file or
collection over various caches and data providers is indicated by a symbol
next to the file name.

on which to store the results. The server can then synchronize
the data to the HPC and make any preparation required by the
tool or the HPC in order to successfully run the analysis. This
can include creating work directories or setting up environment
variables. The execution server then uses SCIR to optimize, con-
vert, and submit the job requests to the local cluster scheduler.
Once analysis is done, the execution server initiates transfers of
the results to the data provider selected by the user. The execu-
tion server is configured through an administrative web interface
where parameters such as scheduling type (by core or by node),
number of cores per node, maximum queue occupancy, libraries

and environment paths, and cache and scratch directories can
be set. CBRAIN also performs meta-scheduling activities, such
as monitoring jobs, performing failure recovery, optimizing, and
re-packaging job loads to match different cluster environments
and buffering excess jobs in a meta-queue when quotas are
exceeded.

DISTRIBUTED STORAGE
The CBRAIN data provider is an abstract model representing
a data repository securely available to the platform from the
Internet. Similarly to SCIR, the data provider is a programmatic

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

FIGURE 4 | CBRAIN portal: tasks view. The tasks view allows monitoring of
task progress, if desired. In this example, the CIVET pipeline has been launched
on 1082 MINC files. This workload was split in 568 tasks on 3 different
computing sites. CBRAIN has automatically packaged the jobs in proper task
units for each execution server. Colosse provides full node scheduling with 8

cores per node (Parallel CIVET x8), Guillimin has the same type of scheduling,
but with 12 cores per node (Parallel CIVET x12), while Mammouth-S provides
per core scheduling. Although the user has full control of the tasks across the
various sites, this is completely optional and transparent. Once jobs are
completed, results are automatically transferred to the selected project.

FIGURE 5 | CBRAIN portal: execution servers view. This view allows
users to see which computing resources are available for his/her use and
their real-time status. Users can also obtain reports on tool access, cache

and data provider utilization, and archived work directories. Administrative
users can control group access and put the resource online or offline for
CBRAIN users.

API that abstracts away the details of specific types of data stores.
The data provider defines a base class of uniform program-
matic API methods for querying a file, transferring it, mirroring
it and so on, and plugin Ruby classes implement the methods
for a particular data store type, allowing CBRAIN to interact
with it transparently. CBRAIN widely uses asynchronous data
provider wrappers defined for rsync over SSH and SFTP proto-
cols for connecting to data stored remotely. The choice of these
tools and protocols does not represent file transfer methodology
preferences but rather a pragmatic adoption of the mechanisms
commonly supported by data and computing sites. Such mech-
anisms are also easily manageable by users (site administrators
can create a new data provider with the web interface by pointing
to the service and adding the CBRAIN public key in the proper
account) for greater flexibility and extensibility. These auto-
mated grid-like methods have proven robust enough to connect
CBRAIN to storage ranging from dedicated network file servers

to smartphones. Cloud storage APIs for services such as Amazon
S3 and Dropbox, are in the prototyping stage.

A distributed storage model does, however, make network
performance a potential concern. CBRAIN makes heavy use of
CANARIE’s advanced research network2 and robust synchroniza-
tion and caching mechanisms were built into the core platform
to avoid unnecessary data transfers. The portal and execution
servers maintain a local cache of the files that have been asyn-
chronously transferred to them. Synchronization status for all
data in all caches is maintained in the metadata database by
CBRAIN. Resources will use cached versions of files until the
version on the data provider changes, at which point all cached
versions will be flagged as invalid. Resources caching invalid
data will simply resynchronize with the data provider upon the
next requested data operation. Users can manually trigger cache

2http://www.canarie.ca

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 6

http://www.canarie.ca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

FIGURE 6 | CBRAIN portal: data providers view. This view, presented from
an administrative account, shows both the real-time status of official CBRAIN
data storages (top) and user created storage (bottom). Main information

shown: type of connection, project, owner, time zone, number of registered
files and/or file collections, read/write mode, and synchronization mode.
Reports for group access, transfer restrictions, and disk usage are available.

deletion of their data if desired. In addition, execution servers
use a throttled data transfer model (Park and Humphrey, 2008).
To avoid scalability issues, they initiate only a limited number of
concurrent data transfer connections.

For most tasks, data stored on a data provider need never be
transferred to the central CBRAIN server. Users can keep their
data locally, CBRAIN will transfer it directly from their local
stores to an HPC cache to run analysis, and then have the results
transferred directly back to their data provider. If a lab or an
institution has a private HPC with the proper tools connected to
CBRAIN, the data need never leave their institution for process-
ing. They can take full advantage of the abstraction provided by
CBRAIN while maintaining full control over the location of their
data. The only tools that may require that some data be sent to
the CBRAIN portal server are the visualization tools as well as
browser uploads and downloads for small datasets. To upload or
download large datasets, CBRAIN offers SFTP services for users
who do not have private data providers.

SECURITY
Users authenticate into the system by first logging into a pri-
vate account. All communication between clients and the service

middleware layer happens over a secure socket layer (SSL).
Interactions between the middleware layer and remote resources
occur through secure shell tunnels (SSH) with standard 2048
bits key encryption. As many resources used by CBRAIN are
outside of our administrative domain, controlling exposure,
and potential propagation of intrusions through intermediate
machines is a fundamental security concern. CBRAIN uses an
on-demand SSH-agent forwarding mechanism to create commu-
nication channels between portals, execution servers and data
providers, sending all key challenges back to the service layer
and closing all channels when not in use. In addition, CBRAIN
is equipped with an SSH-agent locking mechanism. Unlocking
requests are made by execution servers using a special key stored
in the CBRAIN database. Tunnels are thus opened on demand,
conditional to the establishment of the proper handshake and
closed as soon as the transfer operation is complete. This has
several advantages: it eliminates the risks associated with pass-
words or private keys located on any intermediate machines, it
minimizes the duration of open tunnels and it allows platform
administrators to carefully monitor whether the key challenges
are associated with actual platform operations or possibly suspi-
cious activities.

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

PERMISSION MODEL
Access to all resources in CBRAIN is managed by three central
concepts: users, projects, and sites. Users represent the account
of a CBRAIN user. Once authenticated users are granted access
to their environment and to any resources to which they have
access. By default, users only have access to data they have added
through their account. Ownership can be applied to any object
within CBRAIN. This can include data, HPC jobs, projects, data
providers, and HPCs. Ownership provides full read/write access:
a user can rename, move, edit, or unregister any resources they
own. On the other hand, if a user is associated to a shared resource
through a site or a project, their access to the resource will depend
on how it was configured by its owner.

Projects define shared access to resources. All data providers,
data, execution servers, and tools in CBRAIN are associated with
a project. Projects can have one or more users as members, and
members of a given project will have access to the resources asso-
ciated with it. This system is similar to group permissions in
Unix-like operating systems. Users can create and manage their
own projects, and by default the resources associated with these
projects will be available only to the project’s creator. A user can,
however, invite other users to their projects, making it possible to
share their data, tools, data providers, and execution servers with
others.

A CBRAIN site represents a VO such as a laboratory, institu-
tion, or a distributed research group that wishes to have some
control over how its resources are used in CBRAIN. A site will
have users and projects associated with it, and one or more of
those users can be given the role of site manager. A site man-
ager has administration capabilities for resources associated with
a given site. They can create and manage user accounts, projects,
and other resources for their site. Essentially, a site creates an
administrative subdomain in CBRAIN over which one or more
local site managers can have control.

PLUGINS AND VISUALIZATION TOOLS
Once data has been processed, users often need to visualize their
results. This can be for the purposes of performing quality con-
trol on a job that was run, or simply to explore the data in
a meaningful way. In many processing-centric platforms, this
would require a user to transfer large data sets to their computer
and run locally installed visualization software. The CBRAIN
portal, however, integrates visualization tools that allow users
to explore their data in real-time through their web browser,
with only the data necessary for the visualization being trans-
ferred to the client. At the most basic level, if a data set contains
standard images or quality control related text, these can simply
be made available for viewing through the browser. More com-
plex visualization tools can be made available through CBRAIN’s
viewer plugin architecture, which associates file types with view-
ers. Formats viewable in CBRAIN currently include text, images,
video, audio, MINC volumes, MNI 3D objects, and file types
supported by Jmol (molecular structures). Display of most sup-
ported types involves simply using the appropriate HMTL ele-
ment. CBRAIN does, however, provide more complex visualizers
for MINC volume data and various surface file formats in the
integrated BrainBrowser suite of web-enabled visualization tools

(demonstration service available at https://brainbrowser.cbrain.

mcgill.ca).
The BrainBrowser Surface Viewer (Figure 7) is a web-based,

real-time 3D surface viewer capable of viewing MNI Object,
Wavefront Object, and Freesurfer ASC files. BrainBrowser allows
users to view and manipulate 3D surface data in real-time.
Color map data can be applied to surfaces, and color thresh-
olds and opacity can be adjusted to ensure proper viewing. The
BrainBrowser Surface Viewer is currently being used to provide
web access to the MACACC data set (Lerch et al., 2006). The
BrainBrowser Volume Viewer (Figure 7) is a web-based, slice-by-
slice viewer for 3D MINC volumes. The Viewer provides three
panels, one each for the sagittal, coronal, and transverse planes.
Each panel displays a slice on a given plane at some position in
the volume, and the user is allowed to navigate through the vol-
ume by moving the cursor within the volume. Four-dimensional
fMRI data can be viewed by manipulating time sliders to view the
data across time steps. Subjects can be viewed side-by-side and
overlaid. Color maps and thresholds can be adjusted to optimize
viewing.

TECHNOLOGY USED
CBRAIN components are implemented using Ruby on Rails3

(Bachle and Kirchberg, 2007), a widely used RESTful, Ruby-
based framework, used by such sites as Github, Twitter, Shopify,
Groupon, NASA, Hulu. Our core objective was to follow
cutting-edge architecture and development strategies. The key
to using Ruby on Rails in a distributed multi-component
ecosystem like CBRAIN was streamlining the activities of
the various layers and offloading any longer term process-
ing to subsystems. This approach allowed us to take advan-
tage of the built-in object-relational mapping (ActiveRecord)
and RESTful nature of Ruby on Rails, while at the same
time ensuring that the platform performs and scales elegantly.
It also requires less development, hardware, multi-site setups,
and operations personnel than common enterprise technolo-
gies such as frameworks based on Java. The portal uses Ruby
Thin servers behind an Nginx load balancer and a MySQL
database to track metadata pertaining to all resources. Using
Ruby on Rails also allowed us to develop an agile methodol-
ogy based on rapid iterations made with constant feedback from
users.

CBRAIN development aims to use openly available tools
and standards-compliant web technologies whenever possible.
This ensures that development and distribution of the sys-
tem can remain free and unrestricted. All browser interactions
with CBRAIN occur over HTTPS and the web client uses
standard HTML and CSS for the interface and jQuery4 and
jQuery UI for behavior and theming. The BrainBrowser Volume
Viewer uses the HTML canvas element for rendering, and the
BrainBrowser Surface Viewer uses three.js5 for WebGL-based 3D
rendering.

3http://rubyonrails.org
4http://jquery.com
5http://threejs.org

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 8

https://brainbrowser.cbrain.mcgill.ca
https://brainbrowser.cbrain.mcgill.ca
http://rubyonrails.org
http://jquery.com
http://threejs.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

FIGURE 7 | BrainBrowser Surface and Volume Viewers. BrainBrowser
allows CBRAIN users to examine any MINC file volume or 3D object (such as
surfaces from CIVET, Freesurfer, or Wavefront objects) directly within their

web browser. This step enables to conveniently perform quality control,
which is often critical before proceeding to further analysis or large data
transfers, especially if format conversion steps have been applied.

INTEROPERABILITY
CBRAIN exposes a RESTful Web API to allow interoperability
with other platforms and database systems that want to take
advantage of its capabilities. Requests are made to the same
URLs used for the CBRAIN portal interface using standard HTTP
methods (through SSL). The body of an API request can con-
tain XML or JSON and the response will be an XML document
representing the data requested. Wrappers for the CBRAIN Web
API have been written in Java, Perl, and Ruby. Our usage of
Ruby on Rails framework coding conventions ensures that all user
interactions with the portal naturally map to RESTful API calls
that return XML rather than HTML upon request. This greatly
reduces the necessary work required to convert and support the
API for cross-platform interoperability.

RESULTS
CURRENT DEPLOYMENT AND USE
CBRAIN has been in active production since 2009 and currently
has over 200 users and 80 virtual sites, from 53 cities in 17 coun-
tries around the world. Operations are scaled on a yearly basis
according to both the yearly computing allocation we obtain and
the amount of user support our team can provide. The current
production deployment of CBRAIN consists of 12 computing
sites, totaling more than 100,000 CPU cores. The infrastructure
model is hybrid, while many large clusters are shared national aca-
demic research resources (Table 1), others sites are institutional

or completely private and available solely to CBRAIN. Of these
sites, 7 are from the Compute Canada6 HPC network, 2 are
international collaborator sites (Germany and South Korea), and
5 are small local research servers. This integration of heteroge-
neous resources was done without any new hardware purchases,
and does not require administrative access or major changes
to local system configuration on the part of the participating
sites. Between 2010 and 2013 CBRAIN has launched in excess
of 198,000 jobs and obtained an allocation of 13.7 million CPU
core hours from Compute Canada alone. CBRAIN provides users
with three central data providers, for a total of 80 TB of stor-
age. Furthermore, several user-registered data providers exist as
storage for specific projects or institutions. Although it fluctuates
significantly, active data currently hosted on the central storage
system provided to all CBRAIN users amounts to approximately
13.1 TB in over 100,000 datasets representing 8.4 million files (this
does not include computing site caches or user-registered data
providers).

CBRAIN provides a wide variety of tools, from pre-processing
and analysis pipelines to various file format converters for
file types commonly used in neuroimaging research, including
MINC, DICOM, NIfTI, and Analyze. Tool integration is priori-
tized according to the needs of our user community. CBRAIN’s
philosophy has been to focus on integrating, testing and properly

6https://computecanada.ca

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 9

https://computecanada.ca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

Table 1 | CBRAIN high performance clusters and servers.

Machine

name

Administrative

domain

Location (city,

country)

Number of CPU

cores

BrainStorm McGill university Montreal, Canada 24

Colosse Compute Canada Quebec City, Canada 7680

GPC Compute Canada Toronto, Canada 30,000

Guillimin Compute Canada Montreal, Canada 14,000

Judge Jülich supercomputing
center

Jülich, Germany 2472 + 412 GPU

Juropa Jülich supercomputing
center

Jülich, Germany 17,664

CBRAIN-CNA KISTI Seoul, Korea 80

Mammouth-S Compute Canada Sherbrooke, Canada 2112

Mammouth-P Compute Canada Sherbrooke, Canada 39,648

MindStorm McGill university Montreal, Canada 24

Orcinus Compute Canada Vancouver, Canada 9600

Zealous McGill university Montreal, Canada 24

List of servers and HPCs currently integrated in CBRAIN. All CPUs use standard

x86-64 processor architecture and all operating systems are Linux based.

maintaining and supporting tools and features directly requested
by our researchers. The platform supports multiple tool versions
and the version used in a specific analysis is maintained in the
task and provenance logs. Among the most intensively used tools
in CBRAIN is CIVET-CLASP (Kim et al., 2005), a processing
pipeline for measuring cortical thickness, as well as performing
other corticometric and volumetric functions. Components of
the popular FSL7 (Jenkinson et al., 2012), MINC8, SPM9, and
Freesurfer10(Reuter et al., 2012) tools have also been integrated.
These types of tools are ideal candidates for CBRAIN integration
as they are computationally expensive and generally complex to
use for the novice user. Most neuroimaging tools have a relatively
straightforward workflow, with job inputs and options following
a linear sequence of events. However, some pipelines dynami-
cally allocate jobs and dependencies in real-time depending on
the inputs they receive. Such job loads have to be carefully ana-
lyzed and packaged to ensure optimal use of HPC resources. For
example, CBRAIN uses a graph theoretic approach to serialize
and parallelize the dynamic job loads of tens of thousands of
jobs from NIAK, an fMRI pre-processing pipeline based on the
Neuroimaging Analysis Kit for Matlab and Octave, described in
Lavoie-Courchesne et al. (2012).

Cross-platform interoperability features have been imple-
mented both in the context of our group’s multi-center manage-
ment system, LORIS (Das et al., 2011) and external collaborative
efforts. As part of the “neuGRID 4 you” project (Frisoni et al.,
2011), the CBRAIN Web API was consumed by the neuGRID and
Virtual Imaging Platform (Glatard et al., 2013) services in Europe
using the LONI Pipeline software (Rex et al., 2003). A CBRAIN
module for the LONI Distributed Pipeline Server (DPS) was cre-
ated to interact directly with the CBRAIN Web API. This type

7http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
8https://www.nitrc.org/projects/minc
9http://www.fil.ion.ucl.ac.uk/spm
10http://freesurfer.net

of collaboration positions CBRAIN as part of a global network
of research platforms, enabling collaborations between users and
allowing them to take advantage of the broadest set of services
possible.

Although CBRAIN is a generic platform that can accept data
and analysis tools from any discipline, its current focus is primar-
ily on structural neuroimaging projects. For example, CBRAIN
has been used in a study linking childhood cognitive ability and
cortical thickness in old age where DICOM sets from 672 sub-
jects of the Lothian Cohort 1936 were uploaded and registered in
CBRAIN from a research group in Scotland, and shared with a
group of Canadian researchers for pre-processing and analysis of
cortical thickness (Karama et al., 2013). Other examples of initia-
tives actively using CBRAIN for typical MRI data pre-processing
of large cohorts are PreventAD11, NIHPD12, NeuroDevNet13,
ABIDE14, and 1000Brains15.

DISCUSSION
RELATED WORK
The CBRAIN platform incorporates the key aspects of a grid
middleware, namely security (Authentication, Authorization,
Accounting—AAA), distributed file management, and job execu-
tion on multiple distributed sites. Grid middleware has received a
lot of attention in the last 15 years (Foster and Kesselman, 2003),
and resulting technologies and concepts are now used in large
computing infrastructures such as the Open-Science Grid (Pordes
et al., 2007), Teragrid (Catlett, 2002), and the European Grid
Infrastructure (Kranzlmüller et al., 2010). CBRAIN is unique
in the sense that it integrates all these functions in a single,
consistent, lightweight, self-contained, independent framework
that is therefore easily administrated and extended. For example,
grid security usually relies on X509 certificates signed by trusted
authorities, from which time-limited proxy certificates are gen-
erated, delegated to the services involved in the platform, and
used to authenticate all user operations, for instance job execution
and data transfers (Foster et al., 1998). In practice, this mecha-
nism burdens users with the handling of certificates, restricts the
range of usable technologies, generates user-specific errors, and
complicates debugging. To avoid these issues, CBRAIN decou-
ples user AAA from system AAA: users authenticate to the portal
with straightforward login and password, while the portal handles
data and computing authorizations, and then authenticates to the
services using a single or a few group credentials. Such decou-
pled approach is being adopted more broadly by portals using
so-called robot X509 authentication to infrastructure services
(Barbera et al., 2009).

Distributed file management commonly consists of a logical
layer providing a uniform view of physical storage distributed
over the infrastructure. CBRAIN’s file metadata contain simi-
lar information to that stored in grid file catalogs, for instance

11http://www.preventad.com
12http://pediatricmri.nih.gov
13http://www.neurodevnet.ca
14http://fcon_1000.projects.nitrc.org/indi/abide
15http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/
1000_Gehirne_Studie_node.html

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 10

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.nitrc.org/projects/minc
http://www.fil.ion.ucl.ac.uk/spm
http://freesurfer.net
http://www.preventad.com
http://pediatricmri.nih.gov
http://www.neurodevnet.ca
http://fcon_1000.projects.nitrc.org/indi/abide
http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/1000_Gehirne_Studie_node.html
http://www.fz-juelich.de/inm/inm-1/EN/Forschung/1000_Gehirne_Studie/1000_Gehirne_Studie_node.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

the LCG File Catalog (Baud et al., 2005) or the Globus RLS
(Chervenak et al., 2009). However, CBRAIN’s file transfer archi-
tecture notably differs from the main grid solutions: (i) its throt-
tled data transfer model avoids overloading storage providers,
a problem commonly observed in grid infrastructures and
addressed in a similar way by the Advanced Resource Connector
(Ellert et al., 2007) (ii) it caches files on the computing sites,
a feature only provided in a few grid middleware and often
implemented at the application level.

Job execution on multiple distributed computing sites is per-
formed either by a meta-scheduler which dispatches jobs to the
different sites (Huedo et al., 2001; Andreetto et al., 2008) or
by pilot-job approaches provisioning computing resources with
generic agents that pull tasks from a central queue when they
reach a computing node (Frey et al., 2002; Brook et al., 2003).
In neuroimaging, however, due to variations of software and/or
libraries, the execution site often has to be controlled by the users
to guarantee the correctness and reproducibility of computations
(Gronenschild et al., 2012). This is why CBRAIN usually delegates
site selection to the users, providing them historical informa-
tion about queuing times. The matchmaking between tasks and
resources, which involves elaborate resource descriptions when
performed by a generic grid middleware (Andreetto et al., 2010),
is done statically by CBRAIN administrators who map application
versions to sites based on their knowledge of the infrastructure.

The decision to develop SCIR as a streamlined meta-scheduler
to abstract scheduler differences away from the core platform was
based on pragmatic cross-site deployment experience. Libraries
with similar goals do exist, but they did not demonstrate enough
agility and flexibility for the HPC landscape we faced. The
DRMAA (Tröger et al., 2007) and SAGA (Jha et al., 2007) projects,
from the Open Grid Forum Working Group, were just emerg-
ing standards at the time of the initial CBRAIN deployment.
DRMAA is a universal scheduler API library that was used in
earlier versions of CBRAIN. Unfortunately, from our experience,
although the library defines a fairly complete low-level API, the
modules that actually interact with the cluster job schedulers were
found to leave certain scheduler versions unsupported and were
not designed to be easily extended for interaction with in-house
schedulers. Our objectives for low-footprint and flexibility run
contrary to dictating scheduler requirements to a diverse array
of computing sites, so we created a library suited to our specific
needs.

A few other science-gateway frameworks exist to facilitate the
building of web portals accessing distributed infrastructures for
scientific computing (Marru et al., 2011; Kacsuk et al., 2012).
These frameworks provide toolboxes of components meant to
be reused in customized assemblies to build domain-specific
platforms. To ensure performance and flexibility, CBRAIN devel-
oped its own custom portal, which allows fine-grained, optimized
interactions with infrastructure services. Other similar leading
platforms providing access to neuroimaging applications exe-
cuted on distributed infrastructures are LONI (Dinov et al.,
2010), neuGRID (Redolfi et al., 2009), and A-Brain (Antoniu
et al., 2012). While sharing similar overall goals, each platform
uses often radically different approaches and philosophy, allow-
ing them to excel in specific niches. For example, LONI offers an

advanced and flexible graphical workflow builder that has, to our
knowledge, no equivalent in the field. Within CBRAIN, our team
took the design decision of supporting only mature, validated
workflows as needs arise from our community. CBRAIN users are
free to launch any tools or pipelines they have access to, but can-
not create and share an automated workflow using multiple tools,
the way it would be done in LONI, without contacting the core
team. This has the advantage of preventing failures and waste of
resources and of enforcing staged validation and quality control,
however it does limit the rate of automated workflow integration
and flexibility for the users. NeuGRID has a strong remote desk-
top component capable of providing remote users with native
data visualization applications (centralized approach), CBRAIN
handles all visualization applications through web-based appli-
cations (decentralized approach). These two approaches to the
same problem have different characteristics, while the central-
ized approach procures users with familiar applications in their
native mode, supporting usage growth can require large infras-
tructure investments. The decentralized approach uses very light
infrastructure to push modern HTML5 applications to large
amounts remote clients, respecting the CBRAIN scalability phi-
losophy, however these applications have to be web compatible or
developed anew. The A-Brain platform has done extensive work
on low-latency data-intensive processing by building an opti-
mized prototype MapReduce framework for Microsoft’s Azure
cloud platform on the basis of TomusBlobs (Costan et al., 2013).
In comparison, CBRAIN focused on a lightweight, flexible and
low-footprint catalog and data grid mechanism that acts as a
transparent interface for regular multi-site batch-type projects.
While it is clear that the CBRAIN grid cannot move and pro-
cess multi-terabyte studies with the same ease as A-BRAIN, our
goal was to ensure that all user sites can integrate securely in our
grid their own data repositories with a minimum of requirements.
This leads to a mix of faster and slower storage segments, which
CBRAIN manages asynchronously with its caching mechanism.
Most of our large imaging projects, with thousands of subjects
representing hundreds of gigabytes of data can be processed as-
is with the CBRAIN grid. Some multi-terabyte, data-intensive
projects, such as our 3D histological reconstruction (Amunts
et al., 2013), required special infrastructure for processing and
visualization.

The modular plugin approach used to develop many of
CBRAIN’s components makes the platform easily extensible. New
data providers, execution servers, visualization tools and other
components can be added to the platform with a minimal invest-
ment of time and effort. On a deeper level, a small investment in
development time can extend the base data provider and SCIR
APIs to allow compatibility with new types of storage and cluster
management. As an example, our team has begun experiment-
ing with the integration of Amazon’s S3 cloud as a data provider.
CBRAIN as a meta-scheduler does more than provide a uniform
API to the heterogeneous scheduling of various sites; it handles
maximum queue allocations, node vs. core scheduling, max load
per node, specific environment variables, caches locations, and
data transfer tools/protocols on a per site basis. The platform
excels at bridging the gap in common standards between exist-
ing cyber-infrastructures, providing transparent access to grids,

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

public HPC sites, and private infrastructure through a single
common framework.

FUTURE WORK
We are prototyping methods to extend the job model to accom-
modate the provisioning of Virtual Machines (VMs) on HPC and
Cloud infrastructure. Thanks to the flexible and integrated devel-
opment of CBRAIN components, these extensions can reuse sev-
eral of CBRAIN’s core services. For instance, the meta-scheduler
is used to launch VMs from disk images equipped with applica-
tion tools which are simply stored on data providers and handled
by the CBRAIN data management system. Executing tasks in
VMs facilitates the deployment of tools on classic HPC clus-
ters, enables the exploitation of clouds, and ensures a uniform
computing environment across heterogeneous infrastructures.
Deployed VMs are seen by the platform as computing sites, open-
ing possibilities for finer cross-site load balancing. This increased
mobility across traditional batch HPC sites and actual clouds will
allow us to further leverage resources from these two types of
services.

Moving forward, priorities for the platform include further
development and refinement of the Web API to allow other sys-
tems to take advantage of the services offered by CBRAIN. There
are plans to extend CBRAIN into fields other than neuroimag-
ing, such as epigenomics and the humanities. The platform itself
is generic, meaning that in principle it should be usable in any
domain that requires computationally expensive processing of
large data sets.

OBTAINING AND ACCESSING CBRAIN
The core CBRAIN codebase will be made available as an
open source project in mid-2014. Please refer to the NITRC
site for instructions (https://www.nitrc.org/projects/cbrain). Trial
CBRAIN accounts can also be obtained upon registration
(https://portal.cbrain.mcgill.ca). For any registration or source
code access questions, our group can be contacted at cbrain-sup-
port.mni@mcgill.ca.

ACKNOWLEDGMENTS
This work has been funded by CANARIE, Canada’s Advanced
Research and Innovation Network (http://www.canarie.ca) and
McGill University. We are grateful for the computing cycles,
storage, and support obtained from Compute Canada (https://
computecanada.ca) and our collaborators at KISTI (Korea) and at
the Jülich Supercomputing Centre (Germany). In addition to the
authors, we would like to thank Mathieu Desrosiers for contribut-
ing sustained development efforts and site project coordination.

REFERENCES
Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M. E.,

et al. (2013). BigBrain: an ultrahigh-resolution 3D human brain model. Science
340, 1472–1475. doi: 10.1126/science.1235381

Andreetto, P., Andreozzi, S., Avellino, G., Beco, S., Cavallini, A., Cecchi, M., et al.
(2008). The gLite workload management system. J. Phys. Conf. Ser. 119, 062007.
doi: 10.1088/1742-6596/119/6/062007

Andreetto, P., Andreozzi, S., Ghiselli, A., Marzolla, M., Venturi, V., and Zangrando,
L. (2010). Standards-based job management in grid systems. J. Grid Comput. 8,
19–45. doi: 10.1007/S10723-010-9146-Z

Antoniu, G., Costan, A., Mota, B. D., Thirion, B., and Tudoran, R. (2012). A-brain:
using the cloud to understand the impact of genetic variability on the brain.
ERCIM News 89, 21–22. Available online at: http://ercim-news.ercim.eu/en89/

Bachle, M., and Kirchberg, P. (2007). Ruby on rails. IEEE Softw. 24, 105–108. doi:
10.1109/Ms.2007.176

Barbera, R., Donvito, G., Falzone, A., La Rocca, G., Milanesi, L., Maggi, G. P., et al.
(2009). The GENIUS Grid Portal and robot certificates: a new tool for e-Science.
BMC Bioinformatics 10(Suppl. 6):S21. doi: 10.1186/1471-2105-10-S6-S21

Baud, J.-P., Casey, J., Lemaitre, S., and Nicholson, C. (2005). “Performance analysis
of a file catalog for the LHC computing grid,” IEEE International Symposium on
High Performance Distributed Computing, 2005 (Research Triangle Park, NC),
91–99. doi: 10.1109/HPDC.2005.1520941

Bell, G., Hey, T., and Szalay, A. (2009). Computer science. Beyond the data deluge.
Science 323, 1297–1298. doi: 10.1126/science.1170411

Brook, N., Bogdanchikov, A., Buckley, A., Closier, J., Egede, U., Frank, M., et al.
(2003). “DIRAC - distributed infrastructure with remote agent control,” in
Proceedings of the Computing in High Energy and Nuclear Physics (La Jolla, CA),
1–8.

Buetow, K. H. (2005). Cyberinfrastructure: empowering a “third way” in biomedi-
cal research. Science 308, 821–824. doi: 10.1126/science.1112120

Catlett, C. (2002). “The philosophy of TeraGrid: building an open, exten-
sible, distributed terascale facility,” in Proceeding of the 2nd IEEE
International Symposium on Cluster Computing and the Grid (Berlin), 8.
doi: 10.1109/CCGRID.2002.1017101

Chervenak, A. L., Schuler, R., Ripeanu, M., Ali Amer, M., Bharathi, S., Foster, I.,
et al. (2009). The globus replica location service: design and experience. IEEE
Trans. Paral. Distrib. Syst. 20, 1260–1272. doi: 10.1109/TPDS.2008.151

Costan, A., Tudoran, R., Antoniu, G., and Goetz, B. (2013). TomusBlobs: scalable
data-intensive processing on Azure clouds. Concur. Comput. Pract. Exp. doi:
10.1002/cpe.3034. [Epub ahead of print].

Das, S., Zijdenbos, A. P., Harlap, J., Vins, D., and Evans, A. C. (2011). LORIS: a web-
based data management system for multi-center studies. Front. Neuroinform.
5:37. doi: 10.3389/fninf.2011.00037

Dinov, I., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., et al.
(2010). Neuroimaging study designs, computational analyses and data prove-
nance using the LONI pipeline. PLoS ONE 5:e13070. doi: 10.1371/jour-
nal.pone.0013070

Dinov, I. D., Van Horn, J. D., Lozev, K. M., Magsipoc, R., Petrosyan, P.,
Liu, Z., et al. (2009). Efficient, distributed and interactive neuroimag-
ing data analysis using the LONI pipeline. Front. Neuroinform. 3:22. doi:
10.3389/neuro.11.022.2009

Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J.,
Livenson, I., et al. (2007). Advanced resource connector middleware for
lightweight computational grids. Future Gen. Comput. Syst. 23, 219–240. doi:
10.1016/j.future.2006.05.008

Foster, I., and Kesselman, C. (2003). The Grid 2: Blueprint for a New Computing
Infrastructure. San Francisco, CA: Morgan Kaufmann Publishers Inc.

Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. (1998). “A security architec-
ture for computational grids,” in CCS ‘98 Proceedings of the 5th ACM Conference
on Computer and Communications Security (San Francisco, CA), 83–92. doi:
10.1145/288090.288111

Frey, J., Tannenbaum, T., Livny, M., Foster, I., and Tuecke, S. (2002). Condor-G: a
computation management agent for multi-institutional grids. Clust. Comput. 5,
237–246. doi: 10.1023/A:1015617019423

Frisoni, G. B., Redolfi, A., Manset, D., Rousseau, M. E., Toga, A., and Evans, A. C.
(2011). Virtual imaging laboratories for marker discovery in neurodegenerative
diseases. Nat. Rev. Neurol. 7, 429–438. doi: 10.1038/nrneurol.2011.99

Glatard, T., Lartizien, C., Gibaud, B., da Silva, R., Forestier, G., Cervenansky, F.,
et al. (2013). A virtual imaging platform for multi-modality medical image
simulation. IEEE Trans. Med. Imaging 32, 110–118. doi: 10.1109/TMI.2012.22
20154

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom,
M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimag-
ing data processing framework in python. Front. Neuroinform. 5:13. doi:
10.3389/fninf.2011.00013

Gronenschild, E. H. B. M., Habets, P., Jacobs, H. I. L., Mengelers, R., Rozendaal, N.,
van Os, J., et al. (2012). The effects of FreeSurfer version, workstation type, and
Macintosh operating system version on anatomical volume and cortical thick-
ness measurements. PLoS ONE 7:e38234. doi: 10.1371/journal.pone.0038234

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 12

https://www.nitrc.org/projects/cbrain
https://portal.cbrain.mcgill.ca
mailto:cbrain-support.mni@mcgill.ca
http://www.canarie.ca
https://computecanada.ca
https://computecanada.ca
http://ercim-news.ercim.eu/en89/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sherif et al. The CBRAIN platform

Huedo, E., Montero, R. S., and Llorente, I. M. (2001). The GridWay framework for
adaptive scheduling and execution on grids. Scal. Comp. Pract. Exp. 6, 1–8. doi:
10.12694/scpe.v6i3.332

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith,
S. M. (2012). Fsl. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.
09.015

Jha, S., Kaiser, H., Merzky, A., and Weidner, O. (2007). “Grid interoperability at the
application level using SAGA,” in IEEE International Conference on e-Science and
Grid Computing (Bangalore), 584–591. doi: 10.1109/E-SCIENCE.2007.39

Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L. H., et al.
(2011). Unified framework for development, deployment and robust testing of
neuroimaging algorithms. Neuroinformatics 9, 69–84. doi: 10.1007/s12021-010-
9092-8

Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K.,
et al. (2012). WS-PGRADE/gUSE generic DCI gateway framework for a large
variety of user communities. J. Grid Comput. 10, 601–630. doi: 10.1007/s10723-
012-9240-5

Karama, S., Bastin, M. E., Murray, C., Royle, N. A., Penke, L., Munoz Maniega, S.,
et al. (2013). Childhood cognitive ability accounts for associations between cog-
nitive ability and brain cortical thickness in old age. Mol. Psychiatry 19, 555–559.
doi: 10.1038/mp.2013.64

Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald,
D., et al. (2005). Automated 3-D extraction and evaluation of the inner
and outer cortical surfaces using a Laplacian map and partial volume
effect classification. Neuroimage 27, 210–221. doi: 10.1016/j.neuroimage.2005.
03.036

Kranzlmüller, D., Lucas, J. M., and Öster, P. (2010). “The european grid initiative
(EGI),” in Remote Instrumentation and Virtual Laboratories, eds F. Davoli, N.
Meyer, R. Pugliese, and S. Zappatore (Springer US), 61–66. doi: 10.1007/978-1-
4419-5597-5_6

Lavoie-Courchesne, S., Rioux, P., Chouinard-Decorte, F., Sherif, T., Rousseau, M.
E., Das, S., et al. (2012). Integration of a neuroimaging processing pipeline into
a pan-canadian computing grid. J. Phys. Conf. Ser. 341, 1–18. doi: 10.1088/1742-
6596/341/1/012032

Lerch, J. P., Worsley, K., Shaw, W. P., Greenstein, D. K., Lenroot, R. K., Giedd,
J., et al. (2006). Mapping anatomical correlations across cerebral cortex
(MACACC) using cortical thickness from MRI. Neuroimage 31, 993–1003. doi:
10.1016/j.neuroimage.2006.01.042

Mackenzie-Graham, A. J., Van Horn, J. D., Woods, R. P., Crawford, K. L., and
Toga, A. W. (2008). Provenance in neuroimaging. Neuroimage 42, 178–195. doi:
10.1016/j.neuroimage.2008.04.186

Markram, H. (2013). Seven challenges for neuroscience. Funct. Neurol. 28, 145–151.
doi: 10.11138/FNeur/2013.28.3.144

Marru, S., Gardler, R., Slominski, A., Douma, A., Perera, S., Weerawarana, S., et al.
(2011). Apache airavata. Proc. ACM 21, 21–28. doi: 10.1145/2110486.2110490

Olabarriaga, S. D., Glatard, T., and de Boer, P. T. (2010). A virtual laboratory for
medical image analysis. IEEE Trans. Inf. Technol. Biomed. 14, 979–985. doi:
10.1109/TITB.2010.2046742

Park, S. M., and Humphrey, M. (2008). “Data throttling for data-intensive work-
flows,” in IEEE International Symposium on Parallel and Distributed Processing,
2008. IPDPS 2008 (Miami, FL), 1796–1806. doi: 10.1109/IPDPS.2008.4536306

Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., et al. (2007).
The open science grid. J. Phys. Conf. Ser. 78, 012057. doi: 10.1088/1742-
6596/78/1/012057

Redolfi, A., McClatchey, R., Anjum, A., Zijdenbos, A., Manset, D., Barkhof, F.,
et al. (2009). Grid infrastructures for computational neuroscience: the neuGRID
example. Future Neurol. 4, 703–722. doi: 10.2217/fnl.09.53

Reuter, M., Schmansky, N. J., Rosas, H. D., and Fischl, B. (2012). Within-subject
template estimation for unbiased longitudinal image analysis. Neuroimage 61,
1402–1418. doi: 10.1016/j.neuroimage.2012.02.084

Rex, D. E., Ma, J. Q., and Toga, A. W. (2003). The LONI pipeline processing envi-
ronment. Neuroimage 19, 1033–1048. doi: 10.1016/S1053-8119(03)00185-X

Tröger, P., Rajic, H., Haas, A., and Domagalski, P. (2007). “Standardization
of an API for distributed resource management systems,” in Seventh IEEE
International Symposium on Cluster Computing and the Grid, 2007. CCGRID
2007 (Rio de Janeiro), 619–626. doi: 10.1109/CCGRID.2007.109

Van Horn, J. D., and Toga, A. W. (2013). Human neuroimaging as a “Big Data”
science. Brain Imaging Behav. 8, 323–331. doi: 10.1007/s11682-013-9255-y

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 06 December 2013; accepted: 29 April 2014; published online: 21 May 2014.
Citation: Sherif T, Rioux P, Rousseau M-E, Kassis N, Beck N, Adalat R, Das S, Glatard
T and Evans AC (2014) CBRAIN: a web-based, distributed computing platform for
collaborative neuroimaging research. Front. Neuroinform. 8:54. doi: 10.3389/fninf.
2014.00054
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Sherif, Rioux, Rousseau, Kassis, Beck, Adalat, Das, Glatard and
Evans. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroinformatics www.frontiersin.org May 2014 | Volume 8 | Article 54 | 13

http://dx.doi.org/10.3389/fninf.2014.00054
http://dx.doi.org/10.3389/fninf.2014.00054
http://dx.doi.org/10.3389/fninf.2014.00054
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research
	Introduction
	Materials and Methods
	CBRAIN Overview
	Distributed Computing
	Distributed Storage
	Security
	Permission Model
	Plugins and Visualization Tools
	Technology Used
	Interoperability

	Results
	Current Deployment and Use

	Discussion
	Related Work
	Future Work
	Obtaining and Accessing CBRAIN

	Acknowledgments
	References

