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Abstract: Nonlinear dynamics have become a new perspective on model human movement vari-
ability; however, it is still a debate whether chaotic behavior is indeed possible to present during
a rhythmic movement. This paper reports on the nonlinear dynamical behavior of coupled and
synchronization models of a planar rhythmic arm movement. Two coupling schemes between a
planar arm and an extended Duffing-Van der Pol (DVP) oscillator are investigated. Chaos tools,
namely phase space, Poincare section, Lyapunov Exponent (LE), and heuristic approach are applied
to observe the dynamical behavior of orbit solutions. For the synchronization, an orientation angle is
modeled as a single well DVP oscillator implementing a Proportional Derivative (PD)-scheme. The
extended DVP oscillator is used as a drive system, while the orientation angle of the planar arm is a
response system. The results show that the coupled system exhibits very rich dynamical behavior
where a variety of solutions from periodic, quasi-periodic, to chaotic orbits exist. An advanced
coupling scheme is necessary to yield the route to chaos. By modeling the orientation angle as the
single well DVP oscillator, which can synchronize with other dynamical systems, the synchronization
can be achieved through the PD-scheme approach.

Keywords: nonlinear dynamics; chaotic behavior; coupled system; synchronization; biomechanics
modeling; rhythmic movement; healthy movement system

1. Introduction

Bodily rhythm is an essential part of human life [1]. In terms of physical movement,
everyday performances, such as walking, running, swimming, dancing, sports, and other
life activities, frequently employ the repetition of motion. When a person loses the ability
to conduct a rhythmic performance, it is not only a sign of an unhealthy phase of the
human body system, but it will also significantly disturb the quality of the person’s life.
For example, in the case of post-stroke injury, the person most likely will lose the ability to
perform complex body movements that involve repetitive motion.

The history of movement variability in biomechanics research can be traced to Bern-
stein’s report in 1967. When humans perform two identical movements, the trajectories
of the first movement are never repeated in the second movement [2]. This simple phe-
nomenon is evidence of the variability in human movement, which Bernstein used the
term “repetition without repetition” to express it. Since this Bernstein report, the study
of the variability in human movement, which is commonly referred to as Bernstein’s
problem [2–4], has become a principal research interest in the field of human movement
science, biomechanics, and human gait. Movement variability reflects that there are many
possible solutions to achieve an identical movement. Then, how the human brain chooses
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the solution to achieve the desired motion among those possible solutions is one of the
very challenging questions [5]. The chosen trajectories are potentially highly affected by
the health conditions of a human musculoskeletal system. Thus, understanding move-
ment variability is necessary to obtain a healthy movement system. It is also part of the
biomechanics of sports to achieve the best performance of athletes in sports activities.
Furthermore, there are many health movement issues related to repetitive movements that
remain questionable. Among them are the post-stroke injuries that create difficulties when
moving a patient, and Parkinson’s disease, which generates oscillating hand motions.

Traditionally, movement variability is modeled as system error or noise so that it is
considered an undesirable condition corresponding to health issues [6,7]. In line with
the development of the nonlinear tools of dynamical system theory, recent research has
modeled movement variability using the nonlinear dynamics approach, which considers
the variability in human movement to be the essential factor for a healthy movement
system. Using the dynamical system perspective, movement variability is unavoidable
and inherent to the system [6]. The chaos tools typically used in deterministic chaos can be
applied to investigate the chaotic behavior of human movement variability [8].

Experimental investigations have shown that humans tend to perform chaotic behavior
during hand movements [9,10]. The chaotic behavior of human variability has been
explained by the Lipsitz and Goldberger hypothesis [11], stating that a healthy system is
characterized by its adaptability and flexibility to everyday stresses on human body parts.
Aging has been seen as a factor in the loss of the complexity or capability to conduct chaotic
behavior. More recently, Stergiou et al. [8,12,13] proposed a hypothesis stating that the
healthy state of the human movement system was characterized by optimal variability in
the form of a chaotic structure.

Despite the certainty that nonlinear dynamics have become a very auspicious approach
for better understanding the nonlinear behavior of the human movement system; there
is still a debate whether movement variability presents due to the chaotic behavior of
the human movement system or the chaotic pattern is detected due to the noise of the
data measurement [6,14,15]. This is due to the fact that the ODE system of human motion
control is typically not explicitly known [15,16], and nonlinear tools are employed on
the data obtained from experimentally-based measurements. Furthermore, the results
of LE, which is the most common nonlinear tool used to measure the chaotic structure
of movement variability, are heavily influenced by the length of the data [15]. Thus, a
study of the nonlinear dynamics of human rhythmic movements using the ODE system
is necessary. The ODE system specifies the deterministic rule under which a variety of
dynamical behavior can be clearly observed.

The aim of the present study is to investigate the modeling approach by which it is
possible that the chaotic behavior appears during repetitive planar arm movements. This
is necessary to understand the nonlinear phenomenon of human rhythmic movements to
achieve a healthy movement system. To the best of the authors’ knowledge, this is the first
time that the ODE system involving a hand posture model is used to study the rhythmic
movements of the human arm.

Nonlinear oscillators have been used to interpret biological systems, which are com-
monly related directly or indirectly to physiological rhythms, such as circadian clocks [17],
physiological stress [18], and bipolar disorder [19]. The coupled system and synchroniza-
tion are very common phenomena in biological systems, which typically exhibit rhythmic
behaviors. The coupled system reflects the connections between two or more entities that
depend on each other. Coupling strength can be represented mathematically by a coupling
constant. In the field of movement science, the coupled system has been used to model jel-
lyfish locomotion [20], human gaits [21], animal gaits [22], and interlimb coordination [23].

When compared with previous approaches, where a nonlinear oscillator is directly
used to predict the joint trajectories of rhythmic motion without considering the ODE
system of the kinematics posture, this paper employs the kinematic differential ODE
system that represents the gait and locomotion of the 3-link planar arm. Because the
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biological system can interact with the environment or other natural systems by making
a coupling, the first model is the coupled system of the human arm system with the
nonlinear dynamical system, which may represent the nonlinear phenomenon during
hand movement activities. The ODE system established from the robotic approach, i.e.,
3-DOF planar series manipulator motion, was employed to model the planar arm system.
Since the ODE system of the human arm system has been established, it can be coupled
with the dynamical system, which is likely present during the movement. The extended
DVP oscillator was applied to represent such a dynamical system in coupling with the
planar arm system. This paper selects the extended DVP oscillator because it has diverse
applications in the simulation and modeling of nonlinear phenomena [24–26]. As suggested
by Lipsitz and Goldberg [11], where the capability to handle uncertainty conditions is very
important for a healthy life, the extended DVP system employed in this paper represents
the uncertainty during repetitive movements.

Movement variability is observed based on the interval analysis of the angle domain.
In this paper, the repetitive movement under consideration is in the form of the repetitive
motion of the end-effector planar arm. It should be noted that the term repetition in
Bernstein’s problem can be in different forms. For example, Beek et al. [23] consider
rhythmic movement to be the interlimb coordination between two hands.

In the biological system of living organisms, one cell system can synchronize with
other cell systems or even with the environment and create a complex biological system.
For example, a small zone in the right atrium of the heart is composed of thousands of
pacemaker cells, which are connected to each other in order to maintain normal cardiac
rhythm [1]. The second model is the synchronization of the planar human arm system with
the extended DVP system, implementing the PD-scheme approach. Synchronization is a
fundamental phenomenon in engineering and biological systems [1]. Since the work of
Pecora and Carroll [27], the synchronization of the chaotic system has become a critical
research topic because of its many possible applications in engineering, physics, and
science [28]. They observed that between two identical chaotic systems, there was a
possibility of synchronizing with each other when they shared information in the correct
way. Recently, the control-system-based approaches have joined the research into the
synchronization of the dynamical system [25–29]. In this paper, to study synchronization
in the rhythmic arm movement, the orientation angle is modeled as the single-well DVP
oscillator, and the PD-scheme synchronization approach is employed.

The rest of the paper is organized as follows: Section 2 presents the mathematical mod-
eling of the planar arm system. The coupled system model of the rhythmic arm movement
is described in Section 3, and there are two coupling schemes developed. Section 4 presents
the synchronization of the planar arm system with the extended DVP oscillator using the
PD scheme. Section 5 presents the results and discussions. The parameter k, which exhibits
chaotic behavior, is observed using the LE, the Poincare section, the phase space, and the
heuristic approach. The response system of the synchronization model is investigated. The
conclusions are presented in Section 6.

2. System Model

Previous research has reported that the redundant planar series manipulator can be
used to model the human arm [30,31]. Lee and Bang [30] modeled the human arm as
a 3-link planar series manipulator to design the optical mouse, which can eliminate the
coordinate disturbances that occur during skilled strokes. Ghosal [31] confirmed that the
human arm can be modeled as a redundant serial manipulator and that the redundancy can
be obtained from the Jacobian matrix null-space. For the serial manipulator, the redundancy
is essentially kinematic [32]. Thus, this paper employs a 3-link planar open kinematic chain.

2.1. Mathematical Modeling to Observe Chaotic Behavior of Repetitive Arm Movement

This work is an attempt to understand the phenomenon of chaotic behaviors that are
present in human arm movements based on nonlinear dynamics and chaos theory. The ODE
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system was established from the 3-link planar series manipulator for the planar arm system,
while the uncertainty was obtained from the nonlinear chaotic system. Figure 1 illustrates
the mathematical modeling approach to achieve this goal. Firstly, the coupled system
model was developed, and the chaos tools, which are the Poincare map, the phase space,
the LE, and the heuristic approach, were employed to observe the dynamical behavior
of the coupled system. To confirm the chaotic behavior, these chaos tools should show
consistent results. After the nonlinear dynamics of the rhythmic arm motion had been
obtained, the synchronization of the rhythmic arm movement was studied by employing
the PD scheme.
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Figure 1. Computational method to observe the chaotic behavior of the rhythmic arm movement.

Nowadays, the study of variability in human movement is well-known as Bernstein’s
problem [2–4]. This paper expresses the repetition term in Bernstein’s problem as the
repetition of the end-effector path of the planar arm system. The rhythmic movement of
the end-effector path in the Cartesian coordinate can be expressed as follows:

xe(t) = f (ϕ) · ϕ(t); ye(t) = g(ϕ) · ϕ(t) (1)

where xe(t), ye(t), ϕ, t, f (ϕ), and g(ϕ) are the desired end-effector positions on the x-axis,
the desired end-effector position on the y-axis, angle of curve, time, parametric function
f (ϕ), and parametric function g(ϕ), respectively.

The motion was performed at a constant angular frequency Ω, as in the following:

ϕ = Ωt (2)

2.2. 2nd ODE of Kinematics Planar Arm Model

The second ODE of this planar arm system can be expressed as follows:

..
θ = J−1

( ..
χ−

.
J

.
θ
)

(3)



Bioengineering 2022, 9, 385 5 of 24

θ = [θ1 θ2 θ3 ]T ; θg = θ1 + θ2 + θ3; χ =
[
x y θg

]T (4)

J =

−l1sinθ1 − l2sin(θ1 + θ2)− l3sinθg −l2sin(θ1 + θ2)− l3sinθg −l3sinθg
l1cosθ1 + l2cos(θ1 + θ2) + l3cosθg l2cos(θ1 + θ2) + l3cosθg l3cosθg

1 1 1

 (5)

j =


−l1

.
θ1cosθ1 − l2cos

( .
θ1 +

.
θ2

)
(θ1 + θ2)− l3

.
θgcosθg −l2

( .
θ1 +

.
θ2

)
cos(θ1 + θ2)− l3

.
θgcosθg −l3

.
θgcosθg

−l1sinθ1 − l2sin
( .

θ1 +
.
θ2

)
(θ1 + θ2)− l3

.
θgsinθg −l2sin

( .
θ1 +

.
θ2

)
(θ1 + θ2)− l3

.
θgsinθg −l3

.
θgsinθg

0 0 0

 (6)

where θi, θg, x, y, t, li , J,
.
θi,

..
θi

.
J, J−1, χ, and

..
χ are the joint angle of the ith link, the orientation

angle, time, ith link length, the Jacobian of forward kinematics, the first derivative of θi, the
second derivative of θi, the first derivative of J, the matrix inverse of J, the state variables of
inverse kinematics, and the second derivative of χ, respectively.

Constraints for end-effector repetitive motion:

(x, y) = (xe, ye)

x = l1cos(θ1) + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 + θ3)

y = l1sin(θ1) + l2sin(θ1 + θ2) + l3sin(θ1 + θ2 + θ3)

xe = f (t); ye = g(t)

(7)

Constraints of joint angle limits:

θimin < θi < θimax (8)

where x, y, θimin and θimax are the actual end-effector position on the x-axis, actual end-
effector position on the y-axis, and the minimum and maximum joint angles of the ith
link, respectively.

The end-effector path was fixed during the repetitive movement, i.e., (x, y) = (xe, ye),
while the orientation angle of the ODE system,

..
θg, needs to be defined.

2.3. Inverse Kinematics (IK) Solution

Using a geometrical approach, the IK solution of the 3-link planar open kinematic
chain can be obtained in the following [33]:

c2 = Apcos
(
θg − φp

)
+ kp (9)

Ax =
−l3x
l1l2

; Ay =
−l3y
l1l2

; Ap =
√

Ax2 + Ay2; (10)

φp = a tan 2
(

Ay, Ax
)
; kp =

r2 + l32 − l22 − l12

2l1l2
; r =

√
x2 + y2

s2 = ±
√

1− c22 (11)

θ2 = a tan 2 (s2, c2) (12)

θ1 = a tan 2 (s1, c1) (13)

where c2, s2, c1, s1, φp, kp, Ap, and r are the sinus of θ2, cosine of θ1, sinus of θ1, cosine of θ2,
phase shift, vertical shift, amplitude, and radius from the fix base, respectively.

Figure 2a illustrates the planar arm system. There are three joint angles of the planar
arm system: θ =

[
θ1 θ2 θ3

]
. Figure 2b shows two possible postures related to elbow up

and elbow down positions obtained from the inverse kinematics geometrical solution.
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The details of the IK equations are provided in Appendix A. It should be noted that
there are many possible postures for the end-effector position P(xp, yp) in the workspace area
of the 3-link planar arm system. Using a geometrical approach, the chosen trajectories were
represented by the orientation angle, θg. The corresponding joint angles of the first, second,
and third links could be obtained using the IK solutions. For each chosen orientation
angle, it corresponded to two possible postures, which were the elbow-up and elbow-down
positions, as obtained from the IK solution.

2.4. Second Joint Angle Velocity

The analytic velocity of θ2 or the first derivative of θ2 can be expressed as follows:

.
θ2 =

∂θ2

∂x
dx
dt

+
∂θ2

∂y
dy
dt

+
∂θ2

∂θg

dθg

dt
(14)

From Equation (12), the derivative of θ2 can also be expressed as:

.
θ2 =

∂θ2

∂c2

dc2

dt
(15)

where:
∂θ2

∂c2
= − 1√

1− c2
2

(16)

Partial derivatives for the second joint angle θ2, which were derived using an algebraic
method, are as follows:

∂θ2

∂χ
= − 1√

1− c2
2

∂c2

∂χ
(17)

The details of components ∂c2
∂χ are in the following:

∂θ2
∂x = ∂θ2

∂c2

∂c2
∂x = −1√

1−c2
2

∂c2
∂x

∂θ2
∂y = ∂θ2

∂c2

∂c2
∂y = −1√

1−c2
2

∂c2
∂y

∂θ2
∂θg

= ∂θ2
∂c2

∂c2
∂θg

= −1√
1−c2

2

∂c2
∂θg

(18)
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where:
∂c2
∂x =

(
l3

l1l2
x cos(θg−φ√

x2+y2
− l3

l1l2
y sin(θg−φ√

x2+y2
+ x

2l1l2
√

x2+y2

)
∂c2
∂y =

(
l3

l1l2
y cos(θg−φ√

x2+y2
− l3

l1l2
x sin(θg−φ√

x2+y2
+ y

2l1l2
√

x2+y2

)
∂c2
∂θg

= A sin(θg − φ)

(19)

The details of the derivations of
.
θ2 are in Appendix B.

2.5. Domain of the Orientation Angle

Without considering the joint limit, the domain of θg could be determined by solving
the equation in Equations (11) and (17) as follows:∣∣c2

(
θg
)
= Apcos

(
θg − ϕp

)
+ kp

∣∣ < 1 (20)

The above equation shows that the solutions of the second ODE of this planar arm
system exist in the boundary of the orientation angle, θg.

Since the joint angle of the planar arm has the joint limit, Equation (8), the θg bound-
ary covers the solutions of Equation (20), which intersect the domain of the joint angles
as follows:

θi ∩ Dθi (21)

where Dθi is the domain or the operational area of the ith joint angle.

2.6. General Solutions of ODE

Since (xe, ye) is a fixed path, c2 is a bounded function. There is the θg boundary, and any
arbitrary function, θg(t) : R→ R , generated inside the boundary of θg are possible solutions:

θg(t) ∂θg (22)

where θg(t) is an arbitrary function of time and ∂θg is the boundary of θg.
The θg boundary considering the joint limits should be computed during the rhythmic

motion. The computation can be performed iteratively for all of the end-effector trajectories
in such a way so that Equation (21) is achieved.

3. Coupled Systems

Two coupling schemes are presented in this section to observe the dynamical behavior
of the rhythmic movement of the planar human arm system. The conceptual model of
the developed coupled system is adopted from the Coupled Human-Environment System
(CHES). The CHES models the inseparable interaction between human systems and envi-
ronment systems. This concept is also well-known as the Coupled Human and Natural
System (CHANS) [34]. Both human systems and environment/natural systems are con-
nected through certain schemes. How the processes of human systems and natural systems
create an interaction, i.e., how they are coupled, is the research interest to understand such
complex real phenomena.

Figure 3a illustrates the CHES amid the COVID-19 crisis, as proposed by Sarkar et al. [35].
Figure 3b shows illustrations of the coupled system between the human arm planar system
and the dynamical system of the nonlinear phenomenon in the environment using a
bidirectional coupling scheme. As illustrated in Figure 1, the chaos tools were used to
observe how chaotic behavior makes it possible to present a solution to human locomotion
during repetitive hand movements. This paper focuses on the research questions of the
possibility that chaotic behavior appears in repetitive hand movements. The end-effector
of the planar arm is moved following the periodic path. The coupled system model that
can yield the chaotic solutions of joint angle trajectories is investigated.
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To represent the nonlinear phenomenon in the environment, the extended DVP oscil-
lator with two periodic forces [24] was employed:

..
xD = µ

(
1− x2

D

) .
xD −ω2

0xD − αx3
D − γx5

D + F1 cos ω1t + F2 cos ω2t (23)

where µ, ω0, α, γ, Fi, ωi are real parameters.
From the IK solution, it has been clearly shown that movement variability appears

in the form of the orientation angle, θg, so this variable should be further explored in the
modeling approach. Thus, for the planar arm system, the coupling scheme was investigated
via the orientation angle components, which can be in the form

.
θg and/or

..
θg.



Bioengineering 2022, 9, 385 9 of 24

3.1. Scheme 1

The first coupling scheme was studied when the planar arm system shared the infor-
mation of the velocity to the nonlinear oscillator as follows:

.
xD =

Σθi
d

=
X(4) + X(5) + X(6)

d
(24)

..
θg = d

(
µ
(

1− x2
D

) .
xD −ω2

0xD − αx3
D − γx5

D + F1 cos ω1t + F2 cos ω2

)
(25)

where d is the coupling parameter.
The state variable was defined as follows:

X =
[
θ1 θ2 θ3

.
θ1

.
θ2

.
θ3 u v

]T
(26)

With the above state, the first ODE form of the coupled system is in the following:

.
X =


[
X(4) X(5) X(6)

]T

J−1
( ..

χ−
.
J

.
θ
)

v
µ
(
1− u2)v−ω2

0u− αu3 − γu5 + F1 cos ω1t + F2 cos ω2

 (27)

where:
χ =

[
x y θg

]T ; u = xD; v =
.
xD

..
θg = d

(
µ
(

1− u2
)

v−ω2
0u− αu3 − γu5 + F1 cos ω1t + F2 cos ω2

)
3.2. Scheme 2

A further modification of scheme-1 was applied in scheme-2 by adding the nonlinear
term to the DVP system and the coupling parameter to the orientation angle acceleration.

Adding the nonlinear term in the DVP system was obtained as follows:

..
xD = µ

(
1− u2

)
v−ω2

0u− αu3 − γu5 + F1 cos ω1t + F2 cos ω2 + 0.1
( .

θg sin θg

)
(28)

Orientation angle acceleration is augmented by the nonlinear coupling scheme with
coupling constant k as follows:

..
θg = k

{
2
(

µ
(

1− u2
)

v−ω2
0u− αu3 − γu5 + F1 cos ω1t + F2 cos ω2

)
+ 0.1

( .
θg sin θg

)}
(29)

where k is the coupling constant.
Equation (24) is still applied so that there are two parameters, which are d and k.
Using scheme-2, the first ODE form can be expressed as follows:

.
X =


[

X(4) X(5) X(6)
]T

J−1
( ..

χ−
.
J

.
θ
)

v
µ
(
1− u2)v−ω2

0u− αu3 − γu5 + F1 cos ω1t + F2 cos ω2 + 0.1((X(4) + X(5) + X(6)) sin (X(1) + X(2) + X(3)))

 (30)

where:

χ =
[
x y θg

]T ; u = xD; v =
.
xD =

(X(1) + X(2) + X(3))
d

..
θg = k

[
2
(

µ
(

1− u2
)

v−ω2
0u− αu3 − γu5 + F1 cos ω1t + F2 cos ω2

)
+ 0.1

( .
θg sin θg

)]
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4. Synchronization of Planar Human Arm System with PD-Scheme

The second model, which was studied to investigate the chaotic behavior of the planar
human arm motion, is the synchronization-based approach. Recently, the control system
method was added to the research on the synchronization of the dynamical system [26–28].
In this paper, the PD-force control scheme adapted from the control system theory was
applied. The synchronization phenomenon in planar repetitive arm motion was obtained by
modeling the orientation angle as a biological oscillator using the DVP system employing
the PD scheme. The planar human arm system is driven by the chaotic extended DVP
system, representing the uncertainty condition during the repetitive movement.

Modeling the θg Trajectories as the DVP Oscillator

Modeling the orientation angle as the single-well DVP oscillator can be obtained
as follows: ..

θg = µs

(
1− θg

2
) .

θg −ω2
0sθg − αsθg

3 + U(t) (31)

where U(t) is an external force and µs, ω0s, αs are constant parameters.
Equation (31) has been used in physics, engineering, biology, and many other subjects

and is one of the most studied systems in nonlinear dynamics and chaos [25]. Using the PD
scheme, the external force was used as the control input.

Since the human arm has joint limitations, to keep the trajectories inside the θg bound-
ary, the drive system was obtained through the following scheme:

xm = κ + hxD;
.
xm = h

.
xD;

..
xm = h

..
xD (32)

..
xD = µ

(
1− x2

D

) .
xD −ω2

0xD − α1x3
D − γx5

D + F1 cos ω1t + F2 cos ω2t (33)

where κ, h, xm, and xD are a constant, a scale factor, the drive trajectories, and the extended
DVP displacement trajectories, respectively.

By this scheme, the drive system is determined from the chaotic system after mapping
through Equation (32). This step was necessary to maintain the drive system, which was
obtained from the extended DVP system, lying within the orientation angle boundary.

Model-based control law of the PD controller can be expressed as follows:

M = −Kpe1 − Kve2

e1 = xm − θg e2 =
.
xm −

.
θg

U(t) = Ure f =
( ..

xm −M
)
− µs

(
1− θ2

g

) .
θg + ω2

0sθg + αsθ3
g

=
..
xm + Kpe1 + Kve2 − µs

(
1− θ2

g

) .
θg + ω2

0sθg + αsθ3
g

(34)

where M, Kv, Kp, e1, and e2 are the controller output, the derivative gain, the proportional
gain, the position error, and the velocity error, respectively.

Using the PD scheme, the orientation angle of the open kinematic chain of the human
arm was modeled as the DVP oscillator, which could synchronize with other chaotic systems.

5. Results and Discussions

For the numerical experiments, a Lissajous curve was employed as follows:

xe(ϕ) = xc + A sin(aϕ + δ); ye(ϕ) = yc + B sin(bϕ) (35)

where A and B are constant numbers, a and b are integer values, δ is a positive real number,
integer value, and (xc, yc) is the curve center position in the Cartesian coordinate.

The end-effector motion of Equation (35) is repeated every ϕ = 2π rad so that it has
a curve frequency of Ω = 2π/T~ (see Equation (2)), with T~ as the period of end-effector
motion. Table 1 tabulates the joint limits of the planar human arm model [36]. Using the
curve parameter values: A = 7, B = 7, a = 1, b = 1, δ = 0, and (xc, yc) = (32, 32), the geometry
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of the end-effector path is a linear curve. Solving Equations (20) and (21) iteratively for
(xe, ye) trajectories, Figure 4a shows the θg boundary for one cycle of motion for this end-
effector path. For the n-cycle of motion, the θg boundary repeats n-time. During the motion
to perform the repetitive linear curve, the orientation angle trajectories should lie on its
boundary. The area of the θg boundary with joint limits reduces as compared to the θg
boundary without considering the joint limit, as shown in Figure 4b.

Table 1. Parameter of the planar arm system [36].

l1 (Upper Arm) l2 (Forearm) l3 (Hand) θi Limits

31.5 cm 28.7 cm 10.5 cm θ1 = [ −140◦, 90◦]; θ2 = [0◦, 145◦]; θ3 = [ −70◦, 90◦]
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This paper investigates the dynamical behavior of the coupled system when the
angular frequency of the end-effector path is the same as the first angular frequency of the
extended DVP system: Ω = ω1. During the repetitive movement, the end-effector path
is constrained or fixed so that the initial conditions of θi and

.
θi are also constrained. The

value of the θi and
.
θi initials should be computed from the IK solution. Thus, for all of the

discussions in this paper, the initial conditions of the planar arm system are in the form
of the initial orientation angle, θgi and the initial orientation angle velocity

.
θgi. The initial

velocities
.
θi are then computed from the first order kinematic differential:

.
θi = J−1 .

χi. For
scheme-1, this paper uses the initial conditions (θgi,

.
θgi) = (1.75, 0) and (xD0,

.
xD0) = (0.6, 0.6)

for the planar arm system and the DVP system, respectively. The Poincare sections are
computed at period points t = 2π

Ω + T∼. The Poincare section is computed using 1000 cycles
of the repetitive movements, with the first 30% of motions being ignored since they are
considered to be a transient response. The heuristic approach proposed by Wiebe and
Virgin [37], which works by counting the number of peaks in the Discrete Fourier Transform
(DFT), is applied to strengthen the observation. For this heuristic approach,

.
θ3 is used as

the investigated state using 300 cyclic motions and computed for the last 40% of motions.

5.1. Scheme-1 of Coupled System Model

Without coupling with the planar arm system, the extended DVP system with param-
eters: µ = 0.1, ω0 = 0.2, α = −3, F1 = 2, F2 = 3, γ = 2, ω1 = 1, ω2 = 2, with coupling parameter
d = 0.25, exhibits the period-2 solution. Using these parameter values, the Poincare section
of the coupled system is period-2, as shown in Figure 5a. Figure 5b shows the Poincare
section of the coupled system using the parameter values: µ = 0.1, ω0 = 1, α = −3, F1 = 2,
F2 = 0.1, γ = 2, ω1 = 0.5, ω2 =

√
5, using d = 0.25. It indicates the quasi-periodic solution, the

same as the orbit solution without coupling with the planar arm system. Using the parame-
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ters: µ = 1, ω0 = 0.2, α =−3, F1 = 2, F2 = 0.1, γ = 2, ω1 = 1, ω2 =
√

5, and d = 0.25, the Poincare
section of the coupled system indicates the chaotic orbit, as shown in Figure 5c. The chaotic
behavior can be further observed using the heuristic approach proposed by Wiebe and
Virgin [37], where there are many number peaks in the DFT, as shown in Figure 5d.
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5.2. Scheme-2 of Coupled System Model

Scheme-1 has shown that by sharing the velocity value of the planar arm system with
the extended DVP oscillator, chaotic behavior is observed when the planar arm system
is coupled with the chaotic extended DVP oscillator. However, only the effect of scaling
is detected while the dynamical behavior of the coupled system remains the same as the
original, extended DVP oscillator. The route to chaos cannot be observed in scheme-1.

k Range Which Exhibits the Chaotic Behavior

For scheme-2, the chaotic extended DVP system with parameters [24]: µ = 1, ω0 = 0.2,
α = −3, F1 = 2, F2 = 0.1, γ = 2, ω1 = 1, ω2 =

√
5, is employed in the numerical experiment to

be coupled with the planar arm system. Without coupling with the planar arm, these param-
eter values exhibit chaotic behavior in the extended DVP system [24]. Consider fixing the
value of d = 0.25 and the initial conditions to (θgi,

.
θgi)=(1.75, 0) and (xD0,

.
xD0)= (0.6,0.6), the

k range, which yields the chaotic solution, is searched with the searching area 0 ≤ k ≤ 2.5.
Figure 6 shows the maximum LE of the coupled system with variation in the coupling
constant k. The LE is computed using Wolf’s algorithm [38] using 20,000 iteration numbers.
The variation in coupling constant k is observed because it represents the coupling strength



Bioengineering 2022, 9, 385 13 of 24

between the planar arm system with the environment uncertainty. The effect of coupling
strength to the route to chaos is investigated.
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Figure 6. LLE versus coupling constant k to track rhythmic linear curve. Fixed parameter: d = 0.25,
µ = 1, ω0 = 0.2, α = −3, F1 = 2, F2 = 0.1, ω1 =1, ω2 =

√
5, l = [31.5 28.7 10.5] cm. Initial conditions:

(θgi,
.
θgi) = (1.75, 0), (xD0,

.
xD0) = (0.6,0.6).

The computation of Jacobian in Wolf’s algorithm is computed using the MATLAB
symbolic computation. The maximum positive LE is observed at the weak coupling
constant k, k < 0.5. The orbit of solutions can be further confirmed using the Poincare map
and heuristic approach proposed by Wiebe and Virgin [37]. This heuristic approach works
by counting the number of peaks in the Discrete Fourier Transform (DFT). The Poincare
sections are computed at period point: t = 2π

Ω + T∼.
From Figure 6, parameter values: k = 0.009, k = 0.1, and k = 0.35, have a positive Largest

LE (LLE), which should exhibit the chaotic behavior. The chaotic attractor of these coupling
constants can be observed on the left side of Figure 7. The chaotic behavior can be further
confirmed using the heuristic approach [37], where there are many numbers of peaks in the
DFT result, as shown in the right panel of Figure 7.

The transformation of the attractor pattern can be observed. For example, using the
coupling constant k = 0.007 and k = 0.358, the orbits are quasi-periodic, as shown in Figure 8.
Using the value of k = 0.35 and d = 0.3, the coupled system exhibits the quasi-periodic
solution, as shown in Figure 9. Compared with Figure 7c, changing the value of d can yield
significantly different orbit solutions.

5.3. Sensitivity to Initial Conditions

The chaotic system always exhibits sensitivity to the initial condition. Figure 10
illustrates the trajectory results using scheme-2 with the parameters d = 0.25 and k = 0.35 for
the initial conditions, which have a difference value of 0.01 only. It shows that the trajectories
can be significantly different despite the very small difference in the initial conditions.

5.4. Phase Space

Figure 11 shows the phase space of the planar rhythmic arm movement for the periodic,
quasi-periodic, and chaotic solutions to track the linear curve. The motion flow differences
among these types of solutions can be clearly observed. The period-n has only an n-flow of
motion. Quasi-periodic solutions have a regular flow pattern as compared to chaotic flow,
which has a messier geometry.
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5.5. System Response of Synchronization Model

The system response of the synchronization model is observed when Equation (32)
has the parameter values: d = 0.25 and κ = 1.6, as follows:

xm = 1.6 + 0.25xD;
.
xm = 0.25

.
xD;

..
xm = 0.25

..
xD

The parameter values of the extended DVP that was used as the drive system are:
µ = 1, ω0 = 0.2, α = -3, F1 = 2, F2 = 0.1, γ = 2, ω1 = 1, ω2 =

√
5, the same as scheme-2 of

the coupled system model. For numerical experiments, the parameters of the response
systems are µs = 0.2, ω0s = 0, and αs = 1. As in the coupled system model, principally, the
trajectories are feasible if the θg trajectories are inside the θg boundary because of the joint
limits. The initial conditions and gain parameters should be chosen in such a way that the
trajectories lie within the θg boundary. The trajectory response depends on the values of
the initial conditions and gain parameters Kp and Kv. Figure 12 shows the effect of the Kp
and Kv values on the system response for different initial conditions of θgi. The value of the
gains, which have the θg trajectories outside of the boundary, is unfeasible since it contains
the joint angles that are beyond the operational area. For example, Kp = 1 and Kv = 0.5 yield
unfeasible θg trajectories.

Figure 13 illustrates the system response of the synchronization model for (Kp, Kv) = (1, 20).
A comparison of the reference of the θg trajectories with the actual θg trajectories, the refer-

ence of the θg velocity with the actual θg velocity, and θg −
.
θg between the reference and

actual trajectories are shown sequentially in Figure 13a from the first panel to the third
panel. The trajectories of the position error, the velocity error, and the external force are
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shown sequentially in Figure 13b from the first panel to the third panel. A comparison of
the joint angle trajectories of the first, second, and third links is shown in the first panel of
Figure 13c. A comparison of the velocity trajectories of the first, second, and third links is
shown in the second panel of Figure 13c. A comparison of θi −

.
θi of the first link, second

link, and the third link is shown in the third panel of Figure 13c.
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It shows that it needs a longer time of transient response before the synchronization
is achieved. By reducing the value of Kv to Kv = 10, the transient time becomes faster
than that of the previous value, as shown in Figure 14. A comparison of the reference of
the θg trajectories with the actual θg trajectories, the reference of the θg velocity with the

actual θg velocity, and θg −
.
θg between the reference and the actual trajectories are shown

sequentially in Figure 14a from the first panel to the third panel. The trajectories of the
position error, the velocity error, and the external force are shown sequentially in Figure 14b
from the first panel to the third panel. A comparison of the joint angle trajectories of the
first, second, and third links is shown in the first panel of Figure 13c. A comparison of
the velocity trajectories of the first, second, and third links is shown in the second panel
of Figure 13c. A comparison of θi −

.
θi of the first link, second link, and the third link

is shown in the third panel of Figure 14c. However, further reducing the value of Kv to
0.5, the transient responses are outside the boundary, as has been observed in Figure 12.
Increasing the value of Kp to 20, e.g., (Kp, Kv) = (20, 0.5), the transient response shows more
oscillation than the previous value, as shown in Figure 15. A comparison of the reference
of the θg trajectories with the actual θg trajectories, the reference of the θg velocity with the

actual θg velocity, and θg −
.
θg between the reference and the actual trajectories are shown

sequentially in Figure 15a from the first panel to the third panel. The trajectories of the
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position error, the velocity error, and the external force are shown sequentially in Figure 15b
from the first panel to the third panel. A comparison of the joint angle trajectories of the
first, second, and third links is shown in the first panel of Figure 15c. A comparison of the
velocity trajectories of the first, second, and third links is shown in the second panel of
Figure 15c. A comparison of θi −

.
θi of the first link, second link, and the third link is shown

in the third panel of Figure 15c.
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.
xD0 ) = (0.6,0.6), Kp = 1, Kv = 10 (a) left: θg, middle:

.
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θi trajectories.

In addition to the gain parameters, the initial conditions of the orientation angle θg,

and velocities
.
θgi, should be chosen in such away so that the generated θg trajectories

lie within the θg boundary. It has been shown that by using Kp = 1 and Kv = 0.5, with

(θgi,
.
θgi) = (2.2, −2), the θg trajectories are outside the boundary. Changing the initial

conditions of velocities
.
θgi to 0, e.g., (θg,

.
θgi) = (2.2, 0), the transient responses are inside

the θg boundary, as shown in Figure 16. Other initial conditions that can be chosen for

(Kp, Kv) = (1, 0.5), are (θg,
.
θgi) = (1.2, 0) and (θg,

.
θgi) = (1.2, 1).

The results in this section have shown that synchronization with the chaotic systems
is possible through the PD scheme when the orientation angle is driven by the chaotic,
extended DVP system; however, as in the coupled system model, it should be noted that the
system response should lie inside the θg boundary since the human arm has joint limitations.
This goal can be achieved by adjusting the gain parameters and the initial conditions so
that the system response has orientation angle trajectories inside the θg boundary.
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5.6. Discussions

Movement variability can be further observed using the link configurations. The
posture can be computed from the joint angle trajectories obtained from the system response.
Figure 17 illustrates the posture of the rhythmic planar arm movement to track the linear
curve for periodic, quasi-periodic, and chaotic behaviors. The postures are computed at
300 cyclic motions and plotted for the last 10% of motions. Period-n reveals the n-possible
posture at one instantaneous end-effector point. The quasi-periodic has a little more posture
variability as compared with the periodic solution, but it is still less posture variability as
compared with the chaotic solutions. Keeping the same angle cycle to cycle during the
rhythmic motion is potentially an uncomfortable action for the muscles of the arm.
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The research question was whether chaotic behavior is indeed possible to present in
repetitive human arm motions. The present study has shown that the coupling scheme and
synchronization can be used to model the mechanism by which chaotic trajectories appear
in the repetitive motions of the human arm in the planar plane. The chaotic nonlinear
oscillator has been used to represent the uncertainty conditions that interact with the planar
arm system during rhythmic arm movements. Depending on the value of the coupling
parameter and the parameter of the nonlinear oscillator, the system response of the coupled
model shows very interesting dynamical behavior, where different types of solutions from
the periodic, the quasi-periodic, to the chaotic can be observed. The effect of the coupling
scheme is more remarkable in scheme-2, where the k range, which exhibits chaotic behavior,
can be observed. The coupled system model has shown that the advanced bidirectional
coupling scheme is necessary for exhibiting the route to chaos. The advanced coupling
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scheme is obtained by adding the parameter k, as Equation (31),in addition to parameter d.
The chaotic solution is observed at the very small value of parameter k.

By the PD-scheme model, the chaotic behavior of the planar repetitive arm movement
presents when the planar arm system is driven by chaotic trajectories. The system response
follows the drive system with the transient response depending on the values of the gains
Kp and Kv. The PD gain parameters are used to maintain the joint angle trajectories under
the joint angle operational area by keeping the trajectories of the orientation angle inside
its boundary during the transient response. The value of initial conditions, θgi and

.
θgi,

should be adjusted or chosen in such a way that the result of the θg trajectories are inside
the θg boundary.

Prior research on rhythmic human arm movements using the nonlinear oscillator
model did not explicitly employ the model of the human body system. The approaches
developed in this paper, which are the coupling scheme model and the synchronization
between the planar human arm system and the chaotic system representing the uncertainty
condition during the rhythmic movement, employ the kinematic differential equation of
the human arm system. Thus, it will provide a better understanding of the movement
variability of the open kinematic chain of the human body system instead of using only the
nonlinear oscillator without considering the human body system.

Two important remarks should be addressed to be successful in the numerical com-
putation to solve the developed ODE system. Firstly, the initial condition of θi and

.
θi

should be computed from the orientation angles θgi and
.
θgi because of the end-effector

hand constraint. These initial conditions cannot be chosen arbitrarily as in the common
ODE system because the end-effector path has been fixed. Secondly, the system response
should lie on the orientation angle boundary due to the joint angle limits of the human
arm. Failure to perform the first point means that the ODE solver will face computational
failure, and the trajectories will become unfeasible for tracking the end-effector path if the
orientation angle trajectories are outside the boundary, although the ODE solver seems
successful in the computation.

Using the nonlinear dynamics approach, which involves the nonlinear oscillator, to
model the human biological system, the details of the parameter values of the ODE system
are different from person to person depending on the person’s health. The values can be
obtained through experimental investigation and the estimation of the biomechanics data.
Mathematically, the developed approach explores movement variability in the form of the
orientation angle variable.

The results of the coupled system model have clearly shown that the chaotic solutions
are possible to present when the end-effector hand performs the periodic motion, i.e.,
the Lissajous path. The ODE solutions, whether they are periodic, quasi-periodic, or
chaotic, depend on the parameter value of the coupling constant. It shows that the chaotic
structures have been observed at the small coupling constant, i.e., k < 0.5. The coupling
constant represents the strength of the coupling between the planar arm system and the
environment uncertainty. This result possibly supports the Goldberg hypotheses, stating
that chaotic behavior represents the healthy state of the human body [11]. The weak
coupling strength can be considered as the healthy condition of the human musculoskeletal
system that is resilient to the environmental uncertainty associated with daily stressors.
The negative emotions that may come at anytime in daily life, such as sadness, sorrow, fear,
jealousy, and anger, will not have too much of an effect on the performance of the human
musculoskeletal system.

For the synchronization model, the orientation angle is modeled as the nonlinear
oscillator, which can synchronize with other dynamical systems. The results of the syn-
chronization model can be potentially beneficial to the study of the phenomenon related to
pathological rhythm, such as Parkinson’s disease, where patients have lost the ability to
control body movements. It is known that exceeding synchronization can lead to patho-
logical rhythms [39–43]. Further experimental study on the biomechanics of the repetitive
end-effector hand movement is necessary to support these conclusions and to further
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explore the developed approach for analyzing the issue of a healthy movement system.
The experimental phase is also part of the authors’ forthcoming research.

6. Conclusions

The results showed that chaotic behavior was possible to present when the planar arm
system was coupled with the chaotic system, i.e., the extended DVP oscillator, through a
certain scheme. The ODE system of the planar arm was established from the robotic motion
approach, and the nonlinear oscillator was employed to represent the uncertainty condition
during the rhythmic movement. Using the ODE-based model, dynamical behavior can be
clearly observed using nonlinear tools from chaos theory. An advanced coupling scheme
was necessary to exhibit the route to chaos, i.e., the scheme-2 coupled system model.
By varying the coupling constant k, the chaotic behavior has been observed at the weak
coupling constant. The synchronization phenomenon between the planar arm system
and the nonlinear oscillator has also been studied using the PD-scheme method. The
results show that the synchronization of the planar arm system with the chaotic system was
possible via the PD scheme when the orientation angle was driven by the chaotic, nonlinear
oscillator; however, as in the coupled system model, it should be noted that the system
response should lie inside the θg boundary since the human arm has joint limitations. This
goal can be achieved by adjusting the gain parameters and the initial conditions in such a
way that the system response has the orientation angle trajectories inside the θg boundary.
Movement variability was present in the planar arm system in the form of the orientation
angle variable, and by exploring this variable, chaotic behavior can be observed.
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Nomenclature

A Constant number
Ap Amplitude of c2
a Integer value
B Constant number
b Integer value
c2 Cosine of second joint angle
d Coupling parameter
Dθi Domain or the operational area of the ith joint angle
ei Error
e1 Position error
e2 Velocity error
Fi Real parameter of extended DVP oscillator



Bioengineering 2022, 9, 385 22 of 24

f (ϕ) Parametric function
g(ϕ) Parametric function
h Scale factor in synchronization approach
J Jacobian
k Coupling parameter
Kp Proportional gain
kp Vertical shift of c2
Kv Derivative gain
li ith length of the open kinematic chain
M Controller output
R Real number
r Radius
s2 Sine of second joint angle
t Time
T~ Period time
U(t) External force of single well DVP oscillator
X State variable of coupled system
xD Displacement of extended DVP oscillator
xD0 Initial position of extended DVP oscillator
.
xD0 Initial velocity of extended DVP oscillator
xm Drive trajectories of synchronization approach
(x, y) Actual end-effector position
(xc, yc) Curve center
(xe, ye) Target end-effector position
α Real parameter of extended DVP oscillator
αs Constant parameter of single well DVP oscillator
γ Real parameter of extended DVP oscillator
δ Positive real number
θg Orientation angle
θi Joint angle of ith link
θimin Minimum joint angles of ith link
θimax Maximum joint angles of ith link
θgi Initial orientation angle
κ Constant value of PD synchronization
.
θi First derivative of θi.
θgi Initial orientation angle velocity
..
θi Second derivative of θi
µ Real parameter of extended DVP oscillator
µs Constant parameter of single well DVP oscillator
ϕp Phase shift of c2
ϕ Angle of curve
χ State variables of inverse kinematics
Ω Frequency of curve
ω0 Real parameter of extended DVP oscillator
ω0s Constant parameter of single well DVP oscillator
ωi Real parameter of extended DVP oscillator
∂θg Boundary of orientation angle

Appendix A

wx = x− l3cos(θg); wy = y− l3sin(θg) (A1)

c2 =

(
wx

2 + wy
2 − l12 − l22)

2l1l2
(A2)
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The first and third joint angles are expressed as follows:

∆ = wx
2 + wy

2; s1 =
(l1 + l2c2)wy − (l2s2wx)

∆
; s1 =

(l1 + l2c2)wy − (l2s2wx)

∆
(A3)

θ1 = a tan 2(s1, c1) (A4)

θ3 = θg − θ3 − θ1 (A5)

where θ1, θ3, c1, and s1 are the first joint angles, third joint angle, cosine of θ1s, and sine of
θ1s, respectively.

Appendix B

From Equation (9), we can define c2 as a function of [Ap, kp, φp, θg]:

c2 = f
(

Ap(x, y), kp(x, y), φp(x, y), θg
)

= Ap(x, y)cos
(
θg − φp(x, y)

)
+ kp(x, y)

Derivative of c2 with reference to [Ap, kp, φp, θg ] is:

dc2

dt
=

∂c2

∂Ap

dAp

dt
+

∂c2

∂kp

dkp

dt
+

∂c2

∂φp

dφp

dt
+

∂c2

∂θg

dθg

dt
(A6)

Calculate all parts of above equation:

∂c2
∂Ap

= cos
(
θg − φp

)
; ∂c2

∂kp
= 1

∂c2
∂φp

= −Apsin
(
θg − φp

)
; ∂c2

∂θg
= Apsin

(
θg − φp

)
dAp
dt =

∂Ap
∂x

dx
dt +

∂Ap
∂y

dy
dt = l3

l1l2
x√

x2+y2
dx
dt +

l3
l1l2

x√
x2+y2

dy
dt

dkp
dt =

∂kp
∂x

dx
dt +

∂kp
∂y

dy
dt = x

l1l2
√

x2+y2
dx
dt +

y
l1l2
√

x2+y2

dy
dt

(A7)

Substitute the above equations into Equation (B1) and Equation (15) and there will
be components of x, y, and θg, which are components of partial derivatives of θ2, and
Equation (19) can be obtained.
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