
MOLECULAR MEDICINE REPORTS  24:  871,  2021

Abstract. Atherosclerosis is a chronic inflammatory disease 
that threatens human health and lives by causing vascular 
stenosis and plaque rupture. Various animal models have 
been employed for elucidating the pathogenesis, drug devel‑
opment and treatment validation studies for atherosclerosis. 
To the best of our knowledge, the species used for athero‑
sclerosis research include mice, rats, hamsters, rabbits, pigs, 
dogs, non‑human primates and birds, among which the most 
commonly used ones are mice and rabbits. Notably, apolipo‑
protein E knockout (KO) or low‑density lipoprotein receptor 
KO mice have been the most widely used animal models for 
atherosclerosis research since the late 20th century. Although 
the aforementioned animal models can form atherosclerotic 
lesions, they cannot completely simulate those in humans 
with respect to lesion location, lesion composition, lipoprotein 
composition and physiological structure. Hence, an appropriate 
animal model needs to be selected according to the research 
purpose. Additionally, it is necessary for atherosclerosis 
research to include quantitative analysis results of atheroscle‑
rotic lesion size and plaque composition. Laboratory animals 
can provide not only experimental tissues for in vivo studies 
but also cells needed for in vitro experiments. The present 

review first summarizes the common animal models and their 
practical applications, followed by focus on mouse and rabbit 
models and elucidating the methods to quantify atheroscle‑
rotic lesions. Finally, the methods of culturing endothelial 
cells, macrophages and smooth muscle cells were elucidated in 
detail and the experiments involved in atherosclerosis research 
were discussed.
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1. Introduction

Atherosclerosis is characterized by the hardening and 
narrowing of arterial lumen, due to fatty deposits called plaques 
that form on the inner walls of arteries (1). It is responsible for 
most cardiovascular diseases such as coronary artery disease, 
stroke and peripheral vascular disease. However, the exact 
cause of atherosclerosis remains controversial. From patholog‑
ical perspectives, atherosclerosis has been defined as a chronic 
inflammatory disease involved in endothelial cell dysfunction, 
lipid infiltration, macrophage recruitment and vascular smooth 
muscle cells migration (2). Vascular endothelial cells become 
dysfunctional under the stimulation of several factors, such as 
mechanical stress and oxidative stress (3,4). The modified lipid 
in blood enters the endothelial layer and stimulates endothelial 
cells to release chemokines and adhesion molecules, which 
recruits monocytes in blood to migrate into the intima and 
transform into macrophages (5). Macrophages phagocytose 
lipids cholesterol by CD36 or scavenger receptor. Excessive 
lipid accumulation transforms macrophage to foam cells (6). 
Necrotic foam cells aggregate to form the lipid‑rich necrotic 
core of plaques. In addition, activated macrophages release 
inflammatory factors and chemokines, which can promote 
the proliferation and migration of smooth muscle cells in the 
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media layer to intima (7). Smooth muscle cells, macrophages 
and extracellular matrix make up the fibrous cap. The lesions 
continue to develop and eventually form plaques. Vascular 
endothelial dysfunction is considered as an early marker for 
atherosclerosis (8). In humans, atherosclerosis often occurs 
in the bifurcation or bending of artery, where turbulence is 
prone to occur. This may result from continuous shear stress 
leading to vascular endothelial cell dysfunction. In addition, 
oxidative stress is also the main cause of endothelial dysfunc‑
tion (3). In turn, endothelial cell dysfunction can produce 
more reactive oxygen species (ROS) and aggravate oxida‑
tive stress (9). Oxidative stress can promote inflammation 
and increase the modified lipoproteins (10). Oxidized low 
density lipoprotein (ox LDL) has been shown to aggravate 
atherosclerosis through a variety of ways, such as aggravating 
vascular inflammation and form cell formation (11). In vivo, 
dyslipidemia, characterized by high triglyceride and lipid 
cholesterol, can aggravate inflammation and atheroscle‑
rosis (12). Activated inflammation recruits more macrophages 
to the injured blood vessel. The aggregation of macrophages 
intensified the process of lipid phagocytosis, inflammatory 
mediators release, foam cell formation and atherosclerosis 
exacerbation. Fig. 1 shows the association between lipid 
abnormality, oxidative stress, endothelial dysfunction and 
inflammation in the development of atherosclerosis. High 
levels of low‑density lipoprotein (LDL) cholesterol, as well as 
inflammation, smoking, hypertension and diabetes, have been 
shown to be risk factors of atherosclerosis (13‑17). Currently, 
atherosclerosis is mainly treated by altering lifestyle, taking 
statin medications and undergoing surgeries.

Despite considerable advances in the treatment of cardio‑
vascular diseases, it remains the leading cause of mortality and 
morbidity worldwide (18). The main challenge in atheroscle‑
rosis research is that evident clinical manifestations usually 
occur after decades, and the arterial wall changes profoundly 
during the development and progression of the disease. There 
is limited direct access to tissues from the different evolving 
stages of atherosclerosis for research because the vascular 
tissues obtained from individuals are under traumatic circum‑
stances, such as warfare or automobile accidents (19‑22). Studies 
have shown that atherosclerosis can occur in several animals, 
and this has made it possible to obtain tissues at all stages of 
atherosclerosis and cells needed for in vitro studies. Therefore, 
animal models of atherosclerosis have the potential to solve the 
problems of inherent restrictions in human research.

Indeed, animal models of atherosclerosis, over the past 
decades, have greatly increased the understanding on this 
chronic inflammatory disease and for assessing novel phar‑
macological treatments that can prevent or slow down the 
onset of atherosclerosis. The first animal model to be used for 
atherosclerosis research was rabbit, developed by Ignatowski, 
who demonstrated lesion formation in the aortic wall of rabbits 
that were fed animal protein‑enriched diet (mainly meat, milk 
and egg yolk) (23). Since, various animal species, such as 
mice, rats, guinea pigs, hamsters, birds, dogs and non‑human 
primates, have been used as experimental models for athero‑
sclerosis (24). The following are considered as the essential 
requirements for developing animal models of atherosclerosis: 
i) Atherosclerotic lesions should be easily induced; ii) lesions 
should mimic those in humans; iii) lesions should have clinical 

sequelae; and iv) lesions should develop spontaneously after 
the consumption of a diet similar to that of humans.

The advantages and limitations of commonly used animal 
models are described briefly in Table I. Among these animal 
models, non‑human primates closely resemble the human 
model of atherosclerosis, followed by pigs or dogs, based on 
anatomy, physiology, lipoprotein profile and site of lesion 
formation; however, they are less widely used owing to 
long feeding cycles and high costs (24). Mice are the most 
commonly used species, followed by rabbits, because of the 
following advantages: Ease of maintenance and breeding; 
genetic and transgenic pliability; and the rapid formation of 
atherosclerotic lesions. With the development in research, 
an increasing number of mice and rabbit strains have been 
bred, and advanced methods have been developed to provide 
further insights into atherosclerosis (25,26). Moreover, appro‑
priate lesion analysis is necessary to decrease experimental 
variability and, thereby, increase accuracy. The present review 
discusses the characteristics of atherosclerosis in different 
mouse and rabbit models and describes lesion analysis and cell 
culture methods used in atherosclerosis‑associated research.

2. Mice

History of mice as atherosclerosis animal models. The use of 
mice for atherosclerosis research started in the late 1960s. Various 
research groups have attempted to clarify the plasma lipopro‑
tein metabolism and susceptibility to atherosclerosis in mice. 
Vesselinovitch et al (27) and Vesselinovitch and Wissler (28) 
used closed‑colony mice, called CF1, to induce atheroma in the 
aorta of the mice; however, the results were inconsistent even 
when the most atherogenic diet was used, because different 
animals showed different manifestations after being fed with 
the diet for similar duration. As the work was almost invariably 
performed on random‑bred animals, it can be assumed that a 
high genetic variability must exist between individual animals 
in any one experiment (27,28). Thompson (29) hypothesized 
that the genotype of animals is important in the development 
of atheroma by inducing atherosclerosis in inbred strain mice 
(C57BL/6) through a high‑fat/high‑cholesterol (HFHC) diet 
and found that atherosclerosis was observed in all mice after 
25 weeks of HFHC diet treatment. Thompson concluded that all 
the C57BL/6 mice showed lesions in the aortic valve region (29). 
In the past 20 years from the study by Thompson (29), mice 
have been used as a favorable system for a combined genetic 
and biochemical analysis of atherosclerosis and lipoprotein 
metabolism. In 1985, Paigen et al (30) found that C57BL/6 
mice were the most susceptible to development of diet‑induced 
atherosclerosis among the ten inbred strains examined. Based 
on this original finding, it has become a common practice to 
perform atherosclerosis studies on C57BL/6 inbred strain mice, 
and this includes studies using genetically modified (GM) mice, 
despite the fact that in several instances this required founder 
GM mice to be continually backcrossed with the C57BL/6 
strain. In the early 1990s, mouse models exhibiting very 
high cholesterol levels and relatively advanced lesions were 
created through genetic engineering, including apolipoprotein 
E knockout (KO) (ApoE‑/‑) and LDL receptor KO (LDLR‑/‑) 
mice (31‑33). Shortly afterwards, ApoE/LDLR double‑KO 
mice with more severe hyperlipidemia and atherosclerosis 
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were developed (34,35). Moreover, ApoE* 3‑Leiden trans‑
genic mice and SRB‑1‑/‑/ApoE‑/‑ mice have also been used in 
various studies (36‑38). Recently, the proprotein convertase 
subtilisin/kexin type 9 (PCSK9)‑adeno‑associated virus (AAV) 
mice have been used as a rapid, versatile and cost‑effective 
animal model for atherosclerosis research (39). The following 

section will focus on the characteristics of ApoE‑/‑, LDLR‑/‑, 
PCSK9‑AAV mice and other GM mouse models used in 
atherosclerosis research.

ApoE‑/‑ mice. The most extensively used mouse model of 
atherosclerosis is ApoE‑/‑ mice, which was developed in 1992 

Figure 1. Association between dyslipidemia, oxidative stress, endothelial dysfunction and inflammation in the progress of atherosclerosis. LDL, low‑density 
lipoprotein; ROS, reactive oxygen species; VSMC, vascular smooth muscle cell. 

Table I. Advantages and limitations of the widely used animal species for atherosclerosis research.

Species Advantages Limitations Common application 

Mice Explicit genomic information; easy  Lipoprotein metabolism differs from  Exploring gene function; 
 gene manipulation; low cost; easy  that of humans; plaque location differs  studies on specific cell
 breeding; inbred strain from that of humans; limited animal  types; signal pathway
  samples for study; difficulty in  studies
  coronary artery research  
Rabbits Spontaneous plaque formation; express Inbred rabbits not easily obtained;  Pharmacological study
 CETP; easy breeding; allow monitoring limited gene modification; deficient 
 of lesions by ultrasound or MRI in hepatic lipase 
Non‑human Simulate human pathological process Expensive; ethical and welfare issues;  Pharmacological study; 
primates maximally; non‑invasive imaging is long modeling time social and behavioral
 possible  study
Pigs or dogs Lipid profile similar to that of humans;  Limited gene modification; expensive  Continuous observation
 plaque location close to that in humans; feeding costs of lesions
 non‑invasive imaging is possible  

CETP, cholesterol ester transfer protein; MRI, magnetic resonance imaging.
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using gene targeting technique in mouse embryonic stem (ES) 
cells to inactivate the endogenous Apoe gene (32,33). ApoE 
is a glycoprotein, with a molecular size of ~34 kDa, that 
serves as a ligand for cell‑surface lipoprotein receptors and 
clears chylomicrons and very low‑density lipoprotein (VLDL) 
remnants (40). Additionally, ApoE is involved in other func‑
tions, including cholesterol homeostasis, local redistribution of 
cholesterol within tissues, immunoregulation, dietary absorp‑
tion and biliary excretion of cholesterol (41). Deletion of the 
Apoe gene impaired the ability to clear plasma lipoproteins, 
resulting in plasma cholesterol levels to reach 400‑600 mg/dl 
mostly in the VLDL and chylomicron remnant fractions upon 
feeding a normal diet, whereas the plasma cholesterol levels 
in wild‑type mice were estimated to be 75‑110 mg/dl (42,43). 
Upon administration of a chow diet, the ApoE‑/‑ mice were 
first observed to develop foam cell lesions at 10 weeks, 
followed by fatty streaks in the proximal aorta at 12 weeks, 
intermediate lesions containing foam cells and smooth 
muscle cells at 15 weeks, and fibrous plaques at 20 weeks of 
age (43). In highly advanced lesions, fibro‑fatty nodules are a 
nidus for calcification and plaques become increasingly calci‑
fied with time (44). Moreover, a western diet (for example, 
consisting of 21% fat and 0.15% cholesterol) can accelerate the 
atherosclerotic process (45). Therefore, the western diet‑fed 
ApoE‑/‑ mice showed total plasma cholesterol concentra‑
tion reaching >1,000 mg/dl and the formation of more foam 
cell‑rich atherosclerotic lesions containing cholesterol crystals, 
necrotic cores and calcifications (46).

The western diet‑fed ApoE‑/‑ mice can develop severe 
atherosclerosis in a short duration (12‑16 weeks) and have 
become a favorable animal model for atherosclerosis research. 
Various studies on investigating the function of genes involved 
in developing atherosclerosis have been conducted on ApoE‑/‑ 
mice (47). For instance, western diet‑fed ApoE‑/‑ mice lacking 
SR‑A or CD36 demonstrated decreased lipid accumulation 
in peritoneal macrophages under in vivo conditions, and this 
effect was associated with increased areas of aortic sinus 
lesion, which is in contrast with the results of previous studies 
performed on C57BL/6 mice (48).

LDLR‑/‑ mice. LDLR‑/‑ mice are another commonly used animal 
model for atherosclerosis research. LDLR is a membrane 
receptor that mediates the endocytosis of cholesterol‑rich 
LDL and to clear LDL in the liver (49). In 1993, similar to the 
method used in ApoE‑/‑ mice generation, LDLR‑/‑ mice were 
created by homologous recombination in ES cells (31). Chow 
diet‑fed LDLR‑/‑ mice displayed modestly elevated plasma 
cholesterol levels (200‑300 mg/dl) and developed no or only 
mild atherosclerosis, even at an advanced age (50,51). In terms 
of lipoprotein particles, the levels of intermediate‑density 
lipoprotein and LDL‑sized particles were increased, whereas 
the levels of high‑density lipoprotein (HDL) and triglycerides 
remained unaffected (31,50). The western diet‑fed LDLR‑/‑ mice 
showed accumulation of larger VLDL remnants with elevated 
total plasma cholesterol concentrations of >1,000 mg/dl and 
the formation of mostly foamy lesions (52).

In 1997, researchers suggested that when the bone marrow 
from wild‑type mice and LDLR‑/‑ mice were transplanted into 
irradiated LDLR‑/‑ mice, the two groups showed similar lesions, 
indicating that LDLR expressed by bone marrow cells had no 

effect on the lesions (53,54). Thus, bone marrow transplantation 
is used as a tool to replace endogenous bone marrow‑derived 
cells in the artery wall with those of the donor origin. This 
method is applicable for studying the effect of genes in white 
blood cells, for instance, the bone marrow transplantation 
from LDLR+/+ GM mice into irradiated LDLR‑/‑ mice provided 
a background of hyperlipidemia in the study of target genes. 
Of note, in this method, LDLR‑/‑ mice are not recommended 
to be replaced by ApoE‑/‑ mice, because macrophage‑derived 
ApoE has an independent role in lesion development (55,56).

PCSK9‑AAV mice. PCSK9‑AAV mice were a new line of 
mouse models for atherosclerosis research created by two 
groups (57,58). One of the best advantages of these mice is 
that atherosclerotic lesions can be formed by injecting AAV, 
without performing gene manipulation in animals. PCSK9 
is an enzyme encoded by the PCSK9 gene in humans on 
chromosome 1. It binds with the LDL receptor, which blocks 
the ingestion of LDL‑particles from extracellular fluid into 
cells. Following a single intravenous injection of human 
D374Y (57) or murine D377Y (58) gain‑of‑function mutant 
PCSK9, mice stably expressed Pcsk9DY mRNA in the liver. 
Compared with control mice, the total serum cholesterol 
level in PCSK9DY‑AAV transgenic mice was doubled after 
30 days to 1 year of the injection (57). The western diet‑fed 
PCSK9DY‑AAV mice showed exacerbated hyperlipidemia 
with total cholesterol levels up to 1,165 mg/dl and the forma‑
tion of lesions throughout the vasculature. Aortic root lesions 
showed advanced plaque development, with the presence of 
foam cells and smooth muscle cells in addition to macrophage 
infiltration and fibrous tissue formation (57,58). Moreover, 
lesions progressed to the fibro‑atheromatous stage, and 
vascular calcification occurred within 15‑20 weeks (59,60).

Other GM mice models. In addition to the aforementioned 
models, some emerging GM mice have been used in athero‑
sclerosis research. For example, the SR‑BI‑/‑/ApoER61(h/h) 
mice were generated by Zhang et al in 2005 (61) and were 
characterized by the development of diet‑induced occlusive 
coronary atherosclerosis and myocardial infarction, compen‑
sating for the flaw that atherosclerotic plaques in mice are 
not prone to rupture. ApoE* 3‑Leiden GM mice carrying the 
ApoE3‑Leiden gene could develop severe hypercholesterol‑
emia when fed an HFHC diet, exhibiting a more humanized 
form of lipoprotein cholesterol distribution system when 
crossbred with the human cholesterol ester transfer protein 
(CETP)‑encoding transgenic mice (62,63). CETP expression in 
ApoE3‑Leiden mice shifts the distribution of cholesterol from 
HDL to VLDL/LDL, which resembles the cholesterol profile 
of humans (64). ApoE‑/‑Fbn1C1039G+/‑ mouse is an ApoE‑/‑ mouse 
model with a mutation (C1039G+/‑) in the fibrillin‑1 (Fbn1) 
gene, which is characterized by the formation of vulnerable 
atherosclerotic plaques that are prone to rupture (65). 
Therefore, ApoE‑/‑Fbn1C1039G+/‑ mouse can be used to study the 
features of unstable human plaques (66).

As a model of atherosclerosis research, mice have several 
advantages; however, they also have some limitations that 
cannot be ignored. Firstly, lipid metabolism in mice is very 
different from that in humans. The lipids present in the plasma 
of mice are mainly HDL, whereas those in humans are mainly 
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LDL and VLDL. Moreover, natural CETP is absent in mice. 
Secondly, although atherosclerotic lesions tend to occur in 
disturbed blood flow regions in both humans and mice, the 
primary sites of lesion in mice are the aorta and carotids. 
Thirdly, mouse models rarely show evidence of lesion rupture, 
whereas in humans most of the mortality due to atherosclerosis 
results from plaque rupture.

3. Rabbits

Rabbit is the first developed and commonly used animal model 
for atherosclerosis research. The first report of diet‑induced 
atherosclerosis in rabbits was provided by Ignatowski 
in 1908 (23). A few years later, in 1913, Anitschkow and 
Chalatows fed rabbits with cholesterol purified from egg and 
found that rabbits with atherosclerosis exhibited cholesterol 
accumulation in their livers (67). This was the first study to 
propose the role of cholesterol alone in inducing atheroscle‑
rosis. Subsequently, increasing research suggested that rabbits 
are an appropriate model for studying atherosclerosis because 
they easily develop atherosclerotic lesions when fed an HFHC 
diet, can be easily handled and require relatively inexpen‑
sive maintenance. Moreover, rabbits transport considerable 
amounts of cholesterol via ApoB‑containing particles (VLDL 
and LDL) and express CETP, which is similar to that in 
humans. When compared with mice, the larger size of rabbits 
can provide some advantages such as noninvasive arterial 
analysis, providing sufficient arterial tissues and atheroscle‑
rotic lesions for harvest and enabling implantation of stents 
for biomechanical or pharmaceutical designing and testing. 
Currently, there are three types of rabbit models commonly 
used in atherosclerosis research: i) Cholesterol‑fed rabbits; 
ii) GM rabbits; and iii) Watanabe heritable hyperlipidemic 
(WHHL) rabbits.

Cholesterol‑fed rabbits. The normal range of plasma choles‑
terol in rabbits is 30‑90 mg/dl at the age of 3‑16 months, but it 
can increase up to 1,000 mg/dl following the administration of 
0.3‑0.5% cholesterol‑enriched diet. Additionally, supplementing 
the diet with 1‑1.5% cholesterol for ~8 weeks increases the 
plasma cholesterol levels to 1,500‑3,000 mg/dl (68). Monocyte 
adhesion to intimal endothelial cells and migration of mono‑
cytes into the subintima of the aorta could be observed under 
a microscope after high‑cholesterol diet treatment. Lesion 
morphology is determined by the percentage of cholesterol 
added to the diet and the duration of the diet. Aortic lesions 
could be clearly visualized after feeding the rabbits with 
cholesterol diet for ~6 weeks (69). Additionally, coronary 
atherosclerosis was observed in cholesterol‑fed rabbits but 
was usually restricted to the left coronary arterial trunk (69). 
Depending on the duration of cholesterol diet treatment, 
plaque calcification can occur. However, there is no evidence 
of spontaneous plaque rupture in these rabbits.

GM rabbits. GM rabbits have been reported as a model for 
studying cardiovascular diseases since 1994. To date, dozens 
of GM rabbits have been developed, including ApoE‑/‑ rabbits 
and various transgenic rabbit strains (70,71). Moreover, GM 
rabbit strains expressing nearly a dozen proteins involved 
in atherogenesis have been established in the laboratory, 

including those for human ApoAII, human ApoCIII, human 
CETP, endothelial lipase, MMP9 and human UII (72‑77). 
Thus, these models provided insights into the molecular 
mechanisms involved in lipoprotein metabolism and function 
in atherosclerosis.

WHHL rabbits. The WHHL rabbits were developed by 
Watanabe (78), Kobe University, and exhibit familial hyper‑
cholesterolemia due to LDLR deficiency. The most popular of 
these studies were those confirming the hypothesis of the LDLR 
pathway formulated by Goldstein and Brown and elucidating 
the effects of statins on lowering the blood lipid levels (79). 
Moreover, after selective breeding, the coronary plaques 
changed to thin‑cap fibroatheromas, and myocardial infarction 
developed spontaneously, which was rarely observed in other 
animal models (80). Interestingly, high‑fructose and high‑fat 
diet‑fed WHHL rabbits developed early insulin resistance 
and glucose tolerance and showed aortic lesions with a lipid 
core and calcification (81). Therefore, this model has allowed 
researchers to investigate the effect of insulin resistance on 
atherosclerotic lesion formation. However, WHHL rabbits are 
less widely used, owing to the availability of few suppliers and 
breeding difficulties.

4. Practical methods of using mice in atherosclerosis re-
search

The commonly used mice were obtained from the Jackson 
Laboratory and Charles River Laboratories. However, during 
research, more complex GM mouse models could provide 
insights into the mechanisms of atherosclerosis. A common 
method is to backcross a specific KO or transgenic mouse with 
ApoE‑/‑ or LDLR‑/‑ mice, thereby obtaining a double‑KO/trans‑
genic mouse model with a condition of hyperlipidemia for 
studying target gene function in atherosclerosis. Moreover, 
PCSK9‑AAV injection is an alternative method for obtaining 
transgenic mouse models.

With the advancements in research, tissue‑specific 
GM mice are increasingly used, most of which can be 
obtained through Cre‑loxP recombination. Cre‑loxP recom‑
bination is an approach through which the mice carrying the 
LoxP‑flanked gene are crossbred with the mice carrying the 
Cre transgene, which is driven by a specific promoter to obtain 
tissue or cell‑specific genetic manipulations. Tissue‑specific 
gene KO mice can be obtained and then crossed with ApoE‑/‑ 
or LDLR‑/‑ mice for atherosclerosis research (25).

Furthermore, choosing an appropriate diet for animal 
models is an important part, as it induces atherosclerosis. 
There is no doubt that western diet is most commonly used in 
atherosclerosis research since the 1990s. In general, a western 
diet containing 21% milk fat and 0.15% or 0.2% cholesterol 
is recommended (52), which approximately mimics the daily 
diet in western countries. Various studies have shown that 
there is a positive association between total plasma cholesterol 
levels and the extent of aortic lesion formed upon consuming 
different diets (32,82,83). The cholesterol in this diet majorly 
consists of a proatherogenic agent. According to a previous 
research, the cholesterol content in all diet fed to mouse models 
of atherosclerosis was estimated to be 1.25% at most, owing to 
the toxicity of high doses of cholesterol feed (52).
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For general atherosclerotic models, HFHC diet is provided 
for 12‑16 weeks; however, a sustained HFHC diet is likely to 
aggravate atherosclerotic lesion formation. The concentration 
of lipids present in blood, including total cholesterol, triglyc‑
erides, HDL‑cholesterol and LDL‑cholesterol, should be 
measured every 2 or 4 weeks while feeding an HFHC diet (84).

Fig. 2 elucidates the methods used for quantitative analysis 
of the pathological atherosclerotic lesions formed in mice: 
i) Aortic root cross‑section; and ii) en face analysis of the 
aorta, ‘aortic tree,’ including whole aorta, aortic arch, thoracic 
artery, abdominal artery and left/right common carotid artery. 
Aortic roots are the most common region for the quantification 
of atherosclerotic lesions, as the lesions are stably observed 
in these areas. The lesions in the aortic roots vary with the 
location and size of plaques; therefore, it is necessary to cut 
continuous sections throughout the aortic root. The detailed 
procedure has been provided by Daugherty et al, Lin et al and 
Centa et al (24,84,85). Briefly, the procedure for obtaining 
frozen sections of the embedded heart containing the aortic 
root and observing tissue staining is simple. In particular, 
7‑µm thick sections are used, and the complete aortic root 

is collected through creating 60 sections for each sample. 
Ten consecutive sections were sequentially distributed in 
the same position on 10 numbered slides, starting from the 
appearance of a complete tricuspid valve, until each slide had 
six tissue sections. Slides with the same number were used 
for statistical analysis of plaque area and plaque composition. 
The thinner the section, the easier it is to accurately observe 
components in the plaque, since the components are spatially 
distributed in the plaque, but through immunostaining, the 
distribution of the target component could be observed in a 
plane. The sections were then stained with oil red O stain to 
assess the severity of atherosclerosis. The remaining frozen 
sections of aortic roots can be used to analyze the distribu‑
tion and proportion of cells, such as smooth muscle cells and 
macrophages in plaques. The staining results of these sections 
were reported in previous studies (84,86‑88). The other 
commonly used method is to determine the size of the lesions 
in the aortic tree. This approach was introduced after the advent 
of GM animals, because the lesions in early atherosclerosis 
mice model were found only in the aortic roots. Therefore, 
this assessment method is relatively convenient. The aortic 

Figure 2. Procedure of atherosclerotic lesion quantification in mice. OCT, optimal cutting temperature; H&E, hematoxylin‑eosin; IHC, immunohistochemistry. 
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tree of mice was completely isolated, and the vessel wall was 
unraveled along the lumen. After fixation, oil red O staining, 
and imaging, the area of atherosclerotic plaque in the entire 
aortic tree was estimated using an image processing software. 
Representative images of aortic tree lesions and aortic root 
lesions are shown in Fig. 3A and B.

5. Practical methods of using rabbits in atherosclerosis re-
search

Most of the rabbits used in atherosclerosis research were 
outbred strains. Therefore, it is necessary to screen rabbits 
before the formal experiment to exclude rabbits that are 
insensitive and extremely sensitive to HFHC diets. Male 
rabbits are often selected for atherosclerosis research. The 
cholesterol content in HFHC diet‑fed mice is generally <1.0% 
to decrease the liver damage caused by cholesterol. In the 
following section, the method that was used to develop a 
rabbit model of atherosclerosis in the laboratory will be 
elucidated (70,72,89,90).

In the laboratory, 4‑month‑old male rabbits were fed a diet 
containing 0.3% cholesterol, for 16 weeks (for aorta lesion) 
or 28 weeks (for coronary lesion). During HFHC feeding, 
blood lipid levels were measured every 2 weeks. Similar to 
that in mice, the distribution of lesions in rabbit aorta is an 
important indicator for assessing whether diets have an impact 
on atherosclerosis. The practical operation process for rabbit 

aortic tree separation and atherosclerotic lesion analysis is 
shown in Fig. 4. Briefly, after the rabbits were euthanized and 
the organs (except the heart and kidney) were dissected, the 
entire aorta was separated from the heart to the iliac bifurca‑
tion, and the adipose tissues covering the aorta were removed. 
Thereafter, the intimal surface of the artery was exposed by 
making a longitudinal cut. After fixation, Sudan IV staining, 
and imaging, atherosclerotic lesions were analyzed using an 
imaging software. Representative images of atherosclerotic 
lesions in the aorta of rabbits on a normal or HFHC diet are 
shown in Fig. 5A. For histological examination, the entire aortic 
arch was serially sectioned at 1‑2 mm intervals. Representative 
samples from these sections were processed routinely and 
embedded longitudinally in paraffin. The sections (4 µm) were 
then stained with hematoxylin‑eosin (H&E) and elastic van 
Gieson (Fig. 5B) or immunohistochemistry.

6. Noninvasive imaging of animal model in atherosclerosis

More recently, researchers have paid more attention to the 
study of plaque composition and vulnerability, rather than the 
severity of stenosis of atherosclerotic plaque (91). Benefit from 
the development of imaging technology, multiple non‑invasive 
systems have been developed to detect morphology and compo‑
nent of atherosclerosis lesions, including ultrasound, computed 
tomography (CT), magnetic resonance imaging (MRI), positron 
emission computed tomography (PET). Ultrasound is a relatively 

Figure 3. Atherosclerotic lesion in mice. (A) En face oil red O staining of aorta from 8‑week‑old ApoE‑/‑ + CD or ApoE‑/‑ + WD for 12 weeks. (B) Cross‑section 
of aortic roots from 8‑week‑old ApoE‑/‑ + CD or ApoE‑/‑ + WD for 12 weeks, stained with H&E, oil red O (atherosclerosis), or MOMA2 (macrophage) antibody. 
These data are unpublished. CD, chow diet; WD, western diet; H&E, hematoxylin‑eosin.
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inexpensive, radiation‑free test that can be used to determine 
the location of lesions and the thickness of blood vessel walls. 
Ultrasound has been reported to detect atherosclerosis in mice 
and rabbits (92‑94). CT can provide quantitative assessment of 
the extent of vascular calcification (95). MRI and PET were 
the modalities used to perform molecular imaging. MRI can 
provide high‑resolution vascular morphology images that can 
distinguish the lipid‑rich necrotic core, fibrous cap, calcification 
and intraplaque hemorrhage (96,97). Targeted specific MRI 
contrast agents can be used to detect components in plaques, 
but they are insensitive. PET is a quantitative nuclear imaging 

technique that allows the visualization of radioisotopes and is 
mostly applied to investigate tissue metabolic and physiological 
state at the molecular level with high sensitivity, but PET cannot 
be used to detect plaque morphology (98). Imaging of PET must 
be combined with CT imaging (PET/CT) or magnetic reso‑
nance imaging (PET/MRI) to localize the pathophysiological 
processes to an anatomical location. 18F‑fluorodeoxyglucose 
(FDG) is the most common radioligand used in imaging studies 
of atherosclerosis (98). Hybrid PET/CT or PET/MRI has been 
reported to use in mice and rabbit atherosclerosis models to 
identify macrophages or chemokines in plaques (99‑102). 

Figure 4. Procedure of atherosclerotic lesion quantification in rabbits. H&E, hematoxylin‑eosin; IHC, immunohistochemistry.
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Non‑invasive imaging has a great application prospect in athero‑
sclerosis. Previous research revealed that vulnerable plaques 
were characterized by increased content of macrophages and 
angiogenesis. In the future, molecular imaging techniques have 
a high potential to shed light on specific molecular/cellular 
processes and biomarkers of vulnerable plaques. Preclinical 
studies of medication and contrast agent need validation in 
animal models, thus, it is very valuable to develop applicable 
non‑invasive imaging systems for small animals.

7. In vitro study of atherosclerosis

Cell cultures are essential for studying the specific molecular 
mechanisms of diseases. The cell types that are usually 
employed in atherosclerosis research include endothelial cells, 
macrophages and smooth muscle cells. Atherosclerosis begins 
with endothelial dysfunction, which causes endothelial cells to 
release adhesion factors and chemokines (2) that recruit macro‑
phages to accumulate in the intima. Macrophages induce the 
release of growth factors and chemokines to promote smooth 
muscle cell proliferation and migration (5,7). Simultaneously, 
macrophages swallowing lipids lead to foam formation (103).

In the following section, the methods of primary cell 
culture and some applications are mentioned.

Endothelial cell. The endothelium acts as the first barrier to 
vascular protection and has multiple important physiological 
functions (104). Endothelial injury and dysfunction are 
considered initial events in the development of atherosclerotic 
lesions (2).

Human umbilical vein endothelial cells (HUVECs) are the 
most widely used model in endothelial cell‑based studies. This 
wide application is due to the easy access to fetal umbilical 
cord, convenient cell extraction operation, as the acquisition of 
abundant endothelial cells is the guarantee for the establishment 
of cell models in vitro. In addition, HUVECs have representa‑
tive physiological and pathological characteristics of adult 
endothelial cells. This model has been employed in the study of 
endothelial cell function and in elucidating the role of endothe‑
lium in the blood vessel wall response towards stretching, shear 
forces and reactive oxygen species generation (105‑107). Since 
HUVECs are derived from the fetus, differences with adult 
endothelial cells should be considered. It was reported that 
HUVECs were unable to express ABO blood group antigens, 

Figure 5. Atherosclerotic lesion in rabbit. (A) En face Sudan IV staining of aorta from rabbit fed with high cholesterol diet (0.3% cholesterol) for 16 weeks. 
(B) Paraffin sections of the aortic arch from rabbits fed with high cholesterol diet (0.3% cholesterol) for 16 weeks, stained with H&E and EVG. These data are 
unpublished. H&E, hematoxylin‑eosin; EVG, elastic van Gieson.
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which may significantly affect their surface function (108). It 
has also been reported that the sex of the fetus may affect the 
physiological function of endothelial cells (105,109).

Several protocols for HUVEC isolation have been estab‑
lished (107,110‑112). In short, the first step involved rinsing 
the umbilical cord (~10‑30 cm) with phosphate‑buffered saline 
(PBS) in a sterile environment. Thereafter, one end of the 
umbilical cord was closed with hemostatic forceps, and 0.1 or 
0.2% collagenase solution was poured from the other end. 
After the completion of perfusion, both ends of the umbilical 
cord were closed and incubated at 37˚C for 10‑20 min. After 
the completion of digestion, culture medium containing fetal 
bovine serum (FBS) was injected into the umbilical cord to 
terminate the digestion process. The endothelium was further 
eluted with 30 ml PBS, and the collected cells were centrifuged 
and counted. Finally, the cells were cultured in M199 complete 
medium supplemented with FBS and penicillin‑streptomycin 
and incubated at 37˚C in a 5% CO2 atmosphere. The most 
commonly used method for HUVEC identification is the 
immunofluorescence staining of von Willebrand factor, 
VIII factor, and CD31 (113).

Macrophage. Macrophages play crucial roles at all stages of 
atherosclerosis, from initiation of lesion formation and expan‑
sion to necrosis leading to rupture, the clinical manifestations 
of atherosclerosis, and resolution and regression of 
atherosclerotic lesions (114). Macrophages that phagocytose 
oxidized LDL are the main source of foam cells, which are 
the main components of atherosclerotic plaques (115). During 
the activation of macrophages, more growth factors and 
chemokines are released, leading to platelet aggregation at the 
site of injury, while promoting smooth muscle cell proliferation 
and migration (116).

Mouse peritoneal macrophages, bone marrow‑derived 
macrophages, mouse mononuclear macrophage cell lines 
(RAW264.7), and human monocyte cell lines (THP‑1) are 
commonly used in macrophage‑based studies.

The procedure for isolating murine macrophages has been 
reported (86,117). For PM isolation, mice were injected with 
1.0 ml 3% sodium thioglycolate for 3 days before isolating 
macrophages. Peritoneal lavage was performed with 5‑8 ml 
sterile PBS or RPMI‑1640 medium. After centrifugation 
and washing with PBS, the cells were resuspended in culture 
medium. Finally, the cells were added to a culture plate in 
order to allow the macrophages to adhere to the wall, and the 
medium was changed after 2 h to obtain macrophages with 

high purity. For BMDM isolation from mice, bone marrow 
cells were harvested and cultured in medium supplemented 
with macrophage colony‑stimulating factor. After 7 days 
of culturing, contaminating non‑adherent cells were elimi‑
nated and adherent cells were harvested for further assays. 
Macrophages were then identified via immunostaining using 
F4/80 antibodies (118).

Smooth muscle cell. Smooth muscle cells constitute the media 
layer of the arteries. In atherosclerotic lesions, smooth muscle 
cells proliferate and migrate to the intima upon inflammation, 
and collagen fibers are secreted to form plaque fibrous caps (7). 
Therefore, the number and function of smooth muscle cells often 
affect the stability of atherosclerotic plaques. In an atherogenic 
environment, smooth muscle cells present in the lesion phago‑
cytose the modified lipoprotein to form smooth muscle‑derived 
foam cells, which then secrete inflammatory factors, thereby 
aggravating the inflammation of the lesion (119).

Rat and mouse primary smooth muscle cells are commonly 
used in atherosclerosis research, including cell proliferation, 
migration, calcification and phenotypic transformation studies.

The commonly used method for the isolation of rat smooth 
muscle cells is tissue transplantation (120). The procedure of 
tissue transplantation included the following steps: Isolating 
the aortic artery; separating the media from it; and cutting 
the aortic artery into small pieces, followed by incubation in 
complete medium until the cells reach confluence. The rats 
were euthanized by anesthesia, and their thoracic aorta was 
isolated. The aorta was cut in Dulbecco's modified Eagle's 
medium (high glucose) supplemented with 20% FBS, and the 
inner wall of the blood vessel was slightly scraped to destroy 
the endothelium. After carefully removing the outer membrane 
of the blood vessel, the medium layer was cut into small pieces 
of 2‑4 mm2 and spread evenly on the bottom of a cell culture 
flask. After 4 h, the tissue block was gently attached, and the 
flask was slowly inverted to cover the tissue. Thereafter, the 
culture medium was changed every 3 days, and after ~1 week, 
the culture flask was examined under a microscope. The 
smooth muscle cells were observed to grow out of the tissue 
block and cover the surrounding bottle wall. The cells were 
passaged once they reached a confluence of ~70‑80%. Smooth 
muscle cells were then identified via immunostaining with an 
anti‑α‑actin antibody.

The primary cells, cell lines, and the corresponding 
experiments commonly used for atherosclerosis research are 
shown in Table II.

Table II. Cell types commonly used in atherosclerosis research.

  Commonly 
Cell type Commonly used primary cells  used cell lines  Application

Endothelial cell Human umbilical vein endothelial cells;   Endothelial cell dysfunction; 
 human microvascular endothelial cells  inflammatory response
Macrophage Peritoneal macrophages THP1, J774a.1 Phagocytosis; proliferation; migration; 
 Bone marrow‑derived macrophages and U937 adhesion; polarization
Smooth muscle cell Vascular smooth muscle cells from rat;  A7r5 and Calcification; phenotype transformation; 
 vascular smooth muscle cells from mice MOVAS‑1 proliferation; migration
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8. Conclusion

The generation of ApoE‑/‑ and LDLR‑/‑ mice was a mile‑
stone in atherosclerosis research, because of their ease of 
gene manipulation, which expanded the scope of research 
into atherosclerosis and provided elaborate insights into 
molecular mechanisms, especially in lipid metabolism and 
inflammatory pathways. HFHC diet‑induced rabbit models 
are widely used, and WHHL rabbits showing symptoms of 
plaque rupture and myocardial infarction are excellent animal 
models for mimicking human atherosclerosis. Other animals 
used for atherosclerosis research include pigs, non‑human 
primates, rats, dogs, and quails; however, they are not widely 
used owing to high costs, ethical issues, slow modeling, and 
genetic background. As different animal models have their 
own advantages and limitations, suitable animals need to be 
chosen according to the purpose of the study. Mice are most 
commonly used to elucidate molecular mechanisms, because 
they have a clear genetic background and are easy to geneti‑
cally modify. For drug development studies, mice and rabbits 
are chosen because of their small size and requirement of 
decreasing drug dosage. In general, dogs are commonly used 
to simulate clinical surgeries because of the ease to operate 
given their large size. In brief, animal models of each species 
can only mimic some characteristics of human atheroscle‑
rosis. Therefore, a scientific problem can be verified through 
performing research at different levels (in vivo vs. in vitro) and 
in animal models of different species. With the development 
of gene editing technology, especially with the emergence of 
the clustered regularly interspaced short palindromic repeats 
(CRISPR)‑associated protein 9 system (CRISPR/Cas9) and 
somatic cell nuclear transfer, more laboratory animal strains 
may be used as study models of atherosclerosis in the future. 
For instance, ApoE‑/‑ pigs and ApoE‑/‑ dogs were produced 
using the CRISPR/Cas9 system in 2018 (121,122). Further 
research on atherosclerosis still relies on animal models; 
however, bridging the gap between basic research and clinical 
applications is an important issue for future researchers to 
consider, which can be achieved by developing a suitable 
animal model.
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