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Cardiotoxicity is an important side effect of cytotoxic drugs and may be a risk factor of long-term morbidity for both patients during
therapy and also for staff exposed during the phases of manipulation of antiblastic drugs. The mechanism of cardiotoxicity studied
in vitro and in vivo essentially concerns the formation of free radicals leading to oxidative stress, with apoptosis of cardiac cells or
immunologic reactions, but other mechanisms may play a role in antiblastic-induced cardiotoxicity. Actually, some new cytotoxic
drugs like trastuzumab and cyclopentenyl cytosine show cardiotoxic effects. In this report we discuss the different mechanisms of
cardiotoxicity induced by antiblastic drugs assessed using animal models.

1. Introduction

Many anticancer drugs have, as side effect, the risk of
severe cardiotoxicity by a cumulative, dose-dependent toxi-
city for both patients during therapy and also for healthcare
workers during the phases of manipulation of antiblastic
drugs (Table 1). In fact, several scientific studies have shown
that in exposed workers the presence of several cardiotoxic
drugs like doxorubicin, epirubicin, cyclophosphamide, and
5-fluourouracil was often identified in urine [1, 2]. Car-
diotoxicity effects include small changes in blood pressure as
well as arrhythmias and cardiomyopathy [3]. Mechanisms of
cardiotoxicity by antiblastic drugs comprise cellular damage,

with the formation of free oxygen radicals and the induction
of immunogenic reactions with the presence of antigen
presenting cells in the heart [4]. Early and late onset cardiac
effects are reported; the first effect can be acute, subacute, or
chronically progressive [5]. Acute or subacute cardiotoxicity
effects of antiblastic drugs are rare; they occur during or
immediately following infusion and are usually transient
(e.g., electrocardiographic abnormalities such as nonspecific
ST-T changes and QT prolongation, pericarditis-myocarditis
syndrome, and ventricular dysfunction with congestive heart
failure) [6]. The late effect generally starts within one year
after the beginning of antiblastic therapy with chronic cardiac
abnormalities and can progress to overt cardiac disease.
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However a sudden atrial fibrillation was observed at the
third week of chemotherapy administration in patients with
myotonic dystrophy [7]. The clinical symptoms may include
all signs of cardiomyopathy with electrophysiologic changes,
decrease of left ventricular function, changes in exercise-
stress capacity, and overt signs of congestive heart failure
[8]. During administration of taxoids, as paclitaxel, combined
or with cisplatin, various cardiac disturbances, like brady-
and tachyarrhythmias, atrioventricular and bundle branch
blocks, and cardiac ischemia were reported [9]. Evidence
of hypotension is also described, probably correlated to
hypersensitivity reaction. A combination of doxorubicin and
paclitaxel administration in rats is correlated to an increase of
myocardial necrosis compared with those treated with DOX
alone [10].

5-Fluorouracil (5-FU) has direct toxic effects on vascular
endothelium that involves endothelial nitric oxide synthase
and leads to coronary spasms and endothelium-independent
vasoconstriction via protein kinase C [11, 12]. Cardiotoxicity
effects of 5-FU include cardiac arrhythmias, silent myocardial
ischemia, angina, congestive heart failure, and even sudden
death [13]. Various neoadjuvant chemoradiation therapies
of squamous cell carcinoma are reported in the literature.
They consisted of a combination between radiotherapy treat-
ments and mitomycin-C and 5-fluorouracil [14]. A recent
large meta-analysis shows that notwithstanding ongoing
improvements in chemotherapy treatments, anthracyclines
still represent a considerable risk of cardiotoxicity [15].

Other cytotoxic drugs that have been reported to be car-
diotoxic are capecitabine, mitoxantrone, cisplatin, and newer
drugs, like the monoclonal antibody trastuzumab or mel-
phalan, fludarabine, mitomycin, busulfan, mechlorethamine
and dacarbazine [16]. New generation of tyrosine kinase
inhibitors (TKIs), like sorafenib and sunitinib, are associated
with direct cardiotoxicity [17]. Since the antiblastic-induced
cardiotoxicity is generally irreversible, it is crucial to detect
the myocardial injury at its earliest possible stage; for this
reason several experimental studies on cell cultures or animal
models have been carried out.

Results on toxic effects of antiblastic drugs in various
species were found extremely variable. Not only does the
LD50 vary from species to species [18] but the qualita-
tive character of the pharmacodynamic action of the drug
also is equally varied [19]; therefore we can only par-
tially compare precisely the dose and the toxic effects of
antiblastic drugs between the model and the human animal
model.

The major point of attack may be either the central
nervous system or the heart. The rabbit is a representative
animal showing cardiac responses [20], while in the dog [21]
effects on central nervous system are the main response; rhe-
sus monkey produces mixed-type responses [22]. However,
despite the large number of investigations made, the results
obtained in animal models are still hard to be translated
to humans; therefore there is a critical need for continued
translational research and animal studies to improve our
understanding of the molecular mechanisms that underlie
the cardiac dysfunction of antiblastic drugs.

2. Mechanisms of Cardiotoxicity

2.1. Role of Oxidative Stress. Antiblastic drugs, as most of
xenobiotics, are generally metabolized through the NADPH-
cytochrome P450 system in order to increase their solubil-
ity in urine. In particular, doxorubicin could be substrate
of several oxidoreductases like NADH-dehydrogenase of
mitochondrial complex I and various cytoplasmic oxidore-
ductases, including xanthine oxidase. The oxidoreductive
reaction starts with a single electron transfer from NADPH
to doxorubicin forming a semiquinone radical that is com-
plexed with iron ion in a ferrous form; this complex is
responsible for the oxygen reduction, thus producing a
superoxide ion [8]. The superoxide free radicals generated
in mitochondria have cardiolipin as a preferential target.
Cardiolipin is a major phospholipid component of the inner
mitochondrial membrane and is required for the activity of
respiratory chain. It is rich in polyunsaturated fatty acids and
is particularly susceptible to peroxidative injury [23]; further-
more, evidence has been reported showing a strong affinity
of doxorubicin for cardiolipin [24]. The drug-phospholipid
complex formation leads to an inhibition of mitochondrial
enzymes involved in oxidative phosphorylation. The mito-
chondrial membrane damage can also generate the inac-
tivation of key transporters involved in ion homeostasis.
Thus, the well-known cardiotoxicity of anthracycline could
simply explain considering the fact that the cardiac tissue is
rich in mitochondria. However, other factors are involved in
anthracycline cardiotoxicity among which the relative lower
amount of antioxidant defenses of heart compared with other
tissues. It should be also considered that when the levels
of free radicals increase, the apoptotic cascade is activated
by cytochrome ¢ being released from the damaged mito-
chondria, thus triggering apoptosis. Vasquez-Vivar et al. [25]
have shown that doxorubicin binds to the reductase domain
of endothelial nitric oxide synthase causing an increase in
superoxide and a decrease in nitric oxide formation.

2.2. Role of Cytokines. Anthracyclines produce a drug-related
systemic inflammation which has been found to be mediated
by interleukins [26]. In particular, interleukin-lbeta (IL-
1beta) has been implicated in this mechanism. Doxorubicin
induces a systemic increase in IL-lbeta and other inflam-
matory cytokines, chemokines, and growth factors including
TNF-alpha, IL-6, CXCL1/Gro-alpha, CCL2/MCP-1, granulo-
cyte colony stimulating factor, and CXCL10/IP-10. Studies on
mice deficient in IL-1 receptor demonstrate that IL-1signaling
plays a role in the increase of IL-6 and GCSF induced by
doxorubicin. The IL-1beta release required the expression of
caspase-1, NLRP3, and the adaptor protein ASC indicating
that inflammation is mediated by the NLRP3 inflammasome.
The molecular mechanisms by which anthracyclines trigger
IL-1beta release are not completely understood; however
the undesirable consequences of anthracyclines due to their
inflammatory activity that complicate chemotherapy may
be reduced by suppressing the actions of IL-lbeta. It has
been also showed that the administration of anthracyclines
to mice having cancer stimulates the secretion of tumor
necrosis factor alpha (TNF-alpha) in neoplastic tissue [27].



The antineoplastic effects of anthracyclines could be partially
due to a local immune response that involves several distinct
subsets of T lymphocytes and dendritic cells. However, the
blockage of the TNF-alpha/TNF receptor system did not
influence the antineoplastic effects of doxorubicin against
MCA205 fibrosarcomas growing in C57BL/6 mice, F244
sarcomas developing in 129/Sv hosts, and H2N100 mammary
carcinomas in BALB/c mice. These findings show that, in
contrast to other cytokines, TNF-alpha is not required to
elicit anticancer immune responses. Aluise and coworkers
[28] demonstrate that doxorubicin oxidizes plasma APOALl
that, in turn, enhances macrophage TNF-alpha release con-
tributing to a possible TNF-alpha-mediated toxicity. Fur-
thermore they produced evidence that reducing agent 2-
mercaptoethane sulfonate blocks this mechanism suggesting
that this antioxidant could reduce systemic side effects of
doxorubicin.

Doxorubicin has been also showed to be a potent inducer
of apoptosis in both cardiomyocytes H9¢2 and osteosarcoma
tumor cells U20S; however, caspase activation and kinetics
take place with significant differences between the two cell
lines [29]. In fact, apoptosis is accompanied by relevant
changes in levels of TNF-alpha receptor in H9¢2 cardiomy-
ocytes but not in U20S cells. Moreover, treatment with
exogenous TNF-alpha strongly increases the apoptotic effect
of doxorubicin in H9¢2 cardiomyocytes but not in U20S
cells. The function of TNF receptors I and II is differently
affected by doxorubicin which induces in H9c2 cells an
increase in the death domain-containing TNFR-1 protein
levels and a decrease in the survival domain-containing
TNFR-2 protein levels. These findings demonstrate a balance
between proapoptotic and antiapoptotic signaling pathways
in the cardiomyocyte survival after TNF stimulation showing
a relevant role of TNF-alpha receptor-mediated signaling in
cardiotoxicity induced by anthracyclines.

2.3. Calcium Homeostasis. Another aspect to be considered is
the effect of anthracyclines on the role played by mitochon-
dria in calcium homeostasis [30]. In fact the drug-induced
malfunction of transporters involved in ion homeostasis can
lead to a loss of mitochondrial calcium loading capacity
which is observed in several in vitro and in vivo models
[31, 32]. Alterations in calcium transport can lead to tissue
damage impairing the cardiac contraction. In vitro exper-
iments demonstrate that doxorubicin treatment produces
an irreversible decrease in mitochondrial calcium loading
capacity. Moreover, anthracyclines could stimulate “in vitro”
the release of calcium from isolated sarcoplasmic reticulum.
In rodent models a decrease of calcium loading capacity
together with alterations in cardiac mitochondrial function
has been observed [33]. Verapamil, a calcium blocking agent,
shows a protective effect against doxorubicin cardiotoxicity
[34]. The antagonizing effect could be due to the ability of
verapamil to inhibit the intracellular calcium overload. Con-
tradictory results, however, arise from experiments showing
an increase of cardiotoxicity when doxorubicin was given in
combination with verapamil [35]. A possible explanation for
this discrepancy could be due to the capacity of verapamil
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to inhibit the function of P-glycoprotein and therefore may
increase intracellular cytotoxic drug concentrations. Other
authors found that the additive cardiotoxicity of verapamil
was due to its selective inhibition of cardiac actin gene [36],
an effect which was also demonstrated with doxorubicin
alone. Tagliaferri and coworkers [37] found side effects on
heart electric conductance following infusion of high dose
verapamil incorporated into cytotoxic chemotherapy. Several
symptoms like premature ventricular beats, and mild and
transient hypotension were observed. Hypokalemia was also
detected probably as a consequence of transient activation of
the renin-angiotensin system.

2.4. Metabolite Theory. To overcome the cardiotoxic effect of
anthracyclines the use of antioxidants have been suggested
[38, 39], however antioxidants has proven to be useful in
delaying or preventing chronic cardiotoxicity in rodents [40]
but not in dogs [41] or sheep [42]. For patients, contradictory
results have been reported showing positive [43, 44] or no
[45] effect. Taking into account these discrepancies, a new
hypothesis has been made on the evidence that chronic car-
diomyopathy develops after conversion of doxorubicin to the
corresponding secondary alcohol metabolite doxorubicinol
[46]. This metabolite is formed after the reduction of carbonyl
group on the C-13 side chain; the reaction is probably medi-
ated by cytoplasmic oxidoreductases [47]. The secondary
alcohol metabolite production is suggested by several lines
of evidence: (i) in rodents, after anthracycline treatment, a
decline of cardiac function usually is observed when alcohol
metabolite reachs its maximum levels in the heart [48]; (ii)
overexpression of human carbonyl reductase in transgenic
mice heart produces an accelerated development of car-
diomyopathy [49]; (iii) modified anthracyclines with resis-
tance to reduction of carbonyl moiety produce a less severe
chronic cardiotoxicity in rats [50]. Due to their chemical
structures, secondary alcohol metabolites are considerably
less effective than their parent drugs at producing oxygen
radicals, probably for their reduced affinity for quinone
reductases [51]. However, secondary alcohol metabolites are
several times more potent at inactivating membrane ATPases
[52] and cytoplasmic aconitase/iron regulatory protein 1 [53].
The evidence that secondary alcohol metabolites can be
involved in chronic cardiomyopathy suggested the hypothesis
that the clinical use of anthracyclines could be improved
by reducing their conversion to secondary alcohol. This
goal could be reached in at least two ways: (i) a chemical
modification of drugs to produce less alcohol metabolites
and (ii) a development of inhibitors of reductases which are
responsible for transformation of ketone/aldehyde moiety to
alcohol. Obviously the investigations on the inhibitors have
to consider possible differences in specificity and affinity
between the reductases of humans and those of labora-
tory animals used to verify the protective efficacy of these
inhibitors.

Recently [54] an effect of glutamine against oxidative

damage due to doxorubicin has been reported. The free
radicals produced by doxorubicin result in a decrease of
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glutathione (GSH) and a depletion of superoxide dismu-
tase in cardiac muscle [55]. It seems that glutamine has a
protective role in the myocardial cell by upregulating GSH
and also by inducing the synthesis of heat shock protein
72 [56]. This protein is known to protect the myocardium
against hypoxic/ischemic injury. Furthermore, the induction
of heat shock protein 27 has been shown to be protective
against cardiac injury induced by doxorubicin [57]. Glu-
tamine also appears to be a potent inducer of myocardial
HSP 72 in an in vivo rat model. Recently evidence has
been produced indicating that glutamine can preserve the
level of high-energy phosphate in myocardial tissue and pre-
vent the stress-dependent accumulation of lactate, including
ischemia/reperfusion injury [58].

It is now well assessed that anthracyclines possess the
ability to bind covalently to DNA; the bind is strictly
dependent on the availability of formaldehyde [59]. In fact,
formaldehyde supplies the carbon required for the N-C-
N linkage necessary for the adduct formation with DNA.
The resulting adduct is further stabilized by the formation
of hydrogen bond with the complementary strand of DNA
to crosslink the DNA duplex resulting in stabilization of the
local region of DNA.

Doxorubicin is also known to intercalate itself into the
DNA, with the inhibition of both DNA and RNA polymerase,
thus blocking DNA replication and RNA transcription [60].
Recently it has been reported that doxorubicin is capable of
intercalating with not only nuclear DNA but also mitochon-
drial DNA [61].

2.5. Tyrosine Kinase Inhibitors. Recent years have seen signif-
icant progress in cancer therapy through the development of
“targeted therapies’, in particular those using TKIs directed
against certain tyrosine kinases whose abnormal activity
triggers cancer development and progression through cell
proliferation and neoangiogenesis. Multikinase inhibitors
have been widely used alone and in combination with
other drugs in cancer therapies for different tumor types
[62, 63]. Unfortunately, due to their large spectra of action,
these inhibitors are also associated with toxicity to the
heart [64, 65]. For example, sunitinib inhibits a number of
growth factor receptors regulating both tumor cell prolif-
eration/survival and tumor angiogenesis including vascular
endothelial growth factor receptors, platelet-derived growth
factor receptors « and f, c-Kit, FLT3, CSFIR, and RET
[66]. However, care should be taken when cardiotoxicity
in humans and animal models is compared. In fact it has
been reported [67] that while the TKIs pazopanib, sunitinib
and sorafenib, showed cardiotoxic effects in humans, studies
in animal model failed to show cardiac toxicities for all of
these TKIs. TKIs can be divided into two general classes: (i)
humanized monoclonal antibodies directed against the tyro-
sine kinase receptor or their ligands and (ii) small molecules
interacting with kinases inhibiting their activity. The use
of both classes of TKIs revealed a relatively high rate of
adverse cardiac events in the clinic, with systolic dysfunction
and resultant heart failure as one of the most common
and important side effects. TKIs are frequently used for the

treatment of renal-cell carcinoma, gastrointestinal stromal
tumors, and other tumor types in which these drugs are still
under investigation. It seems that TKIs have as target AMPK
which is a critical kinase controlling the balance between
ATP and AMP levels [66]. Following conditions of energy
stress, AMPK may act as a metabolic switch, increasing
energy generation and inhibiting anabolic pathways. Studies
on animals treated with sunitinib suggest that together with
a potential misregulation in AMPK signaling a possible role
is played by mitochondrial dysfunction leading to alterations
in cardiac energy homeostasis. Most probably sunitinib
induces a cardiac dysfunction that could be dependent on the
simultaneous inhibition of multiple signaling pathways all of
which are necessary for the preservation of cardiac function
and which could play a pivotal role in the increased cardiac
stress such as hypertension [68].

3. Other Cardiotoxicity Mechanisms

3.1 Taxoids. Paclitaxel is formulated in a cremophor EL
vehicle to enhance the drug solubility and it is suggested that
the vehicle and not the cytotoxic drug itself is responsible
for the cardiac disturbances. However, the cardiac rhythm
disturbances are not reported with use of other drugs con-
taining cremophor EL such as cyclosporine [69, 70]. The
possible mechanism by which cremophor EL would cause
cardiotoxicity is massive histamine release. Indeed, stimula-
tion of histamine receptors in cardiac tissue in animal studies
has resulted in conduction disturbances and arrhythmias. An
alternative explanation for paclitaxel induced cardiotoxicity
could be the induction of cardiac muscle damage by affecting
subcellular organelles. Enhanced cardiac toxicity has been
found in combined therapy of paclitaxel and doxorubicin.
A similar effect has been shown for epirubicin. Docetaxel
shows no increase in cardiac toxicity when combined with
doxorubicin.

3.2. Cyclophosphamide and Ifosfamide. High dose cyclophos-
phamide is used in transplant regimens and is associated with
acute cardiotoxicity such as cardiac decompensation as well
as fatal cardiomyopathy. Acute reversible decrease in systolic
function has been described. Ifosfamide cardiotoxicity is
reported in only a single study. The pathogenesis is not fully
understood but an increase in free oxygen radicals seems to
play a role in oxazaphosphorine induced cardiotoxicity. This
increase would be mediated by elevated intracellular levels of
the actual cytotoxic metabolite phosphoramide mustard [71].

3.3. Cisplatin. Several factors have been suggested to be
involved like vascular damage, alterations in platelet aggre-
gation, and hypomagnesemia [72]. In experiments on animal
platelets, cisplatin was able to trigger platelet aggregation
and/or enhance thromboxane formation by platelets. Acti-
vation of an arachidonic pathway in platelets by cisplatin
seemed to be involved [73].

3.4. Trastuzumab. Trastuzumab is a monoclonal antibody
directed against the HER2 receptor protein on breast cancer



cells and it has been used alone or in combination with
other chemotherapeutic agents. Cardiac toxicity associated
to trastuzumab seems to be similar with the congestive heart
failure observed with anthracycline therapy [74].

4. Concluding Remarks

In the context of modern cancer chemotherapeutics, cancer
survivors are living longer and being exposed to potential
comorbidities related to noncancer side effects of such
treatments as cardiotoxicity. These same toxic effects can
also be detected in healthcare worker exposed during the
manipulation of chemotherapy because several studies have
identified the presence of drugs such as doxorubicin, epiru-
bicin, cyclophosphamide, and 5-fluorouracil in these sub-
jects. These side effects can be cause of severe morbidity
and even mortality, so knowledge about their incidence and
mechanism is important. The authors have reevaluated in
the different articles available in the scientific literature the
possible causes of cardiotoxicity due to administration of
antiblastic drugs by using animal models. In fact, animal
models have historically been unable to predict human
response to drugs and this is the basis for their widespread
use in human toxicity testing. The mechanisms of action
described in the literature are different, such as, the oxidative
stress for doxorubicin and misregulation in AMPK signaling
by TKI. These results disclose a new scenario for prevention
of heart complications.

We are now, in fact, able to identify specific early
biomarker of chemotherapy cardiotoxicity, discovered on
animal models, and to develop supportive therapies to reduce
or eliminate the appearance of these side effects in humans.
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