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Abstract: Endometrial receptivity represents one of the leading factors affecting the successful
implantation of embryos during early pregnancy. However, the mechanism of microRNAs (miRNAs)
to establish goat endometrial receptivity remains unclear. This study was intended to identify
potential miRNAs and regulatory mechanisms associated with establishing endometrial receptivity
through integrating bioinformatics analysis and experimental verification. MiRNA expression
profiles were obtained by high-throughput sequencing, resulting in the detection of 33 differentially
expressed miRNAs (DEMs), followed by their validation through quantitative RT-PCR. Furthermore,
10 potential transcription factors (TFs) and 1316 target genes of these DEMs were obtained, and the
TF–miRNA and miRNA–mRNA interaction networks were constructed. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these miRNAs
were significantly linked to establishing endometrial receptivity. Moreover, the fluorescence in
situ hybridization (FISH) analysis, dual-luciferase report assay, and immunohistochemistry (IHC)
analysis corroborated that chi-miR-483 could directly bind to deltex E3 ubiquitin ligase 3L (DTX3L)
to reduce its expression level. In conclusion, our findings contribute to a better understanding of
molecular mechanisms regulating the endometrial receptivity of goats, and they provide a reference
for improving embryo implantation efficiency.

Keywords: chi-miR-483; DTX3L; endometrium receptivity; goat; high-throughput sequencing; im-
plantation

1. Introduction

Embryo implantation is essential for the normal development of embryos in all mam-
mals. Specifically in goat, it starts around day 15–16 of pregnancy [1]. Embryo implantation
failure could result in high embryo mortality [2], affecting the litter size and adversely
impacting livestock reproduction’s economic benefits. Endometrial receptivity represents
one of the crucial elements influencing successful embryo implantation [3]. Receptive
endometrium formation is a spatiotemporal process governed by numerous growth hor-
mones, in addition to transcription factors and cytokines, such as estrogen and proges-
terone [4–6]. During this period, endometrium architecture and function have experienced
remarkable variations, including the proliferation of endometrial stromal cells and dif-
ferentiation of endometrial epithelial cells, making the uterus receptive to attachment
and implantation by the embryo, thereby supporting the subsequent rapid embryo de-
velopment [5,7]. Furthermore, the leading reason for frequent implantation failure in
human-assisted reproductive technology is receptive endometrium dysfunction [8]. Conse-
quently, supplementary research is required to acquire a more obvious precise molecular
mechanism that regulates endometrial receptivity.
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MicroRNAs (miRNAs) are small endogenous noncoding RNAs, processed from
intergenic regions or introns of protein-coding RNAs, with a length of approximately
20–24 nucleotides [9,10]. Studies have revealed that miRNAs can target post-transcriptional
messenger RNA (mRNA) through epigenetic modification by binding to complementary
sites within 3′-untranslated regions (3′UTRs), thereby degrading or inhibiting its trans-
lation and regulating its expression [11,12]. In mammals, miRNAs play significant roles
in numerous biological processes, such as intracellular signaling, cell proliferation, apop-
tosis, metabolism, organogenesis, and embryonic development [13–16]. MiRNAs have
recently been reported to hold a critical function in regulating endometrium receptivity.
For instance, miR-200c could hamper uterine receptivity formation by targeting fucosyl-
transferase 4 (FUT4) and α1.3-fucosylation on cell surface adhesion receptor CD44 [17],
and miR-26a could regulate the expression of osteopontin (OPN), vascular endothelial
growth factor (VEGF), cyclooxygenase-2 (COX-2), and prolactin (PRL) in endometrial cells
to regulate the endometrial receptivity of dairy goats [18]. In addition, some miRNAs linked
to endometrial receptivity have been identified in cows [19]. Nevertheless, no real clear
information exists on the differences in miRNA expression in the endometrium between
pregnant and nonpregnant goats, in addition to their role in endometrial receptivity.

Herein, we selected goat endometrium samples on day 16 of pregnancy (P16) of the
same parity and nonpregnant goats on day 16 of the estrous cycle (C16). We conducted
RNA sequencing of small RNAs existing in the goats’ endometrium on day 16 of pregnancy
and nonpregnancy to identify miRNAs in the endometrium linked to endometrial receptiv-
ity. In line with our findings, an enhanced understanding of the molecular mechanisms
regulating the endometrial receptivity of goats can be realized, thereby affording references
for improving embryo implantation efficiency.

2. Materials and Methods
2.1. Animal and Tissue Collection

All the animals involved in this study were conducted in accordance with animal
ethics guidelines and approved by the Animal Care and Use Committee of South China
Agricultural University (permit number: SYXK-2014-0136). Six healthy and disease-free
primiparous Chuanzhong black goats (Capra hircus) were acquired from Guangdong Wen’s
Foodstuffs Group Co., Ltd. (Yunfu, China). The animals were randomly divided into the
cyclic group (n = 3) and the pregnancy group (n = 3). After estrus, two artificial insemina-
tions were performed on goats belonging to the pregnancy group. Goats were slaughtered
at the local slaughterhouse on day 16 of the estrous cycle (C16) (n = 3) or pregnancy (P16)
(n = 3). Pregnancy was confirmed by the presence of apparently normal filamentous con-
ceptuses in uterine flushing [20]. For each animal, the uterus was quickly removed and
transported to the laboratory in an icebox, and then it was opened longitudinally along
the antimesometrial side. Approximately 1 cm2 endometrial tissue and uterine section
(including myometrium and endometrium) samples were taken from the middle of each
uterine horn at the antimesometrial side of the uterus. The uterine section samples were
immediately fixed in 10% neutral-buffered formalin for 24 h followed by paraffin embed-
ding (FFPE) for histology observation, RNA fluorescence in situ hybridization (FISH),
and immunohistochemistry (IHC), and the endometrial samples were snap-frozen in liquid
nitrogen and stored at −80 ◦C for RNA extraction.

2.2. Small RNA (sRNA) Library Construction and Sequencing

Total RNA was extracted from six goat endometrium samples using Trizol reagent
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. RNA degra-
dation and contamination were monitored on 1% agarose gels. RNA purity was checked
using a NanoPhotometer® spectrophotometer (IMPLEN, Westlake Village, CA, USA) at
260 and 280 nm, and the RNA integrity number (RIN) was assessed using the RNA Nano
6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA). Approximately 3 µg of total RNA, with a RIN value above 8, was used as input
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material for the small RNA library according to the protocol of NEBNext® Multiplex Small
RNA Library Prep Set for Illumina® (NEB, Ipswich, MA, USA). Three individual libraries
under C16 condition were constructed by using three samples, followed byperforming the
single-end sequencing (50 bp) on an Illumina Hiseq 2500 platform (Illumina, San Diego,
CA, USA) at the Novogene (Beijing, China) according to the manufacturer’s recommended
protocol; the P16 library was constructed in the same way as the C16 library.

2.3. Analysis of Sequencing Data

After high-throughput small RNA sequencing was completed, a filtering step was
performed to remove reads containing poly-N (the proportion of N is greater than 10%),
with 5′ adapter contaminants, without 3′ adapter or the insert tag, containing poly A, T,
G, or C and low-quality reads (where the number of bases with a Phred value less than
or equal to 20 accounts for more than 30% of the total number of read bases) from the
raw data. Subsequently, the clean reads were mapped to the goat reference sequence by
Bowtie (v.0.12.9) [21] without mismatch to analyze their expression and distribution on
the reference. Then, the clean reads mapped to protein-coding genes, repeat sequences,
ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), and small
nucleolar RNA (snoRNA), and small RNA tags were mapped to RepeatMasker (v.4.0.3)
or Rfam database (ftp://selab.janelia.org/pub/Rfam/, accessed on 18 January 2021) [22];
alternatively, these types of data were removed. The available software tools mirDeep2
(v.2.0.0.5) [23] and srna-tools-cli (http://srna-tools.cmp.uea.ac.uk/, accessed on 18 January
2021) were used to acquire the potential miRNAs, and software tools miREvo (v.1.1) [24]
and mirDeep2 were integrated to predict the novel miRNAs.

2.4. Identification of Differentially Expressed miRNAs (DEMs)

To compare differentially expressed miRNAs in the C16 and P16 endometrium of
goats, the miRNA expression levels were normalized to calculate the expression of tran-
scripts per million (TPM). Differential expression analysis of the two sets of libraries was
performed using the DESeq R package (v.1.8.3) [25]. The p-values were adjusted using the
Benjamini–Hochberg [26] method, and a corrected p-value of 0.05 was set as the threshold
for significantly differential expression.

2.5. Potential Transcription Factors Prediction of DEMs

In order to explore potential transcription factors (TFs) of DEMs, we obtained the tran-
scription factor binding site (TFBS) data from the JASPAR database (http://jaspar.genereg.
net/, accessed on 18 January 2021) [27], and we expected the TFBSs to be preserved among
vertebrates. The sequence information of DEMs was downloaded from the National Center
for Biotechnology Information (NCBI) database, and sequences within 1 kb upstream of
the transcription start site (TSS) were selected as the miRNA promoter region to predict
the TF binding sites [28,29]. We employed TFBSTools software (v.1.20.0) to find binging
sites [30]. To reduce the rate of false-positive prediction, we set a minimum score of 80% as
a rigorous cutoff for high-quality TFBSs.

2.6. Target Gene Prediction of DEMs

The prediction of target genes of DEMs was performed using three computational
target prediction algorithms (TargetScan (v.7.0) [31], miRanda (v.3.3) [32], and RNAhybrid
(v.2.1.2) [33]). Only when the target gene was identified by all three software was it
considered to be the predicted target gene for a given miRNA. The miRNA–gene regulatory
network was constructed using Cytoscape (v.3.7.2, http://www.cytoscape.org/, accessed
on 18 January 2021) [34] to show the interactions between DEMs and target genes.

2.7. Functional Analysis of DEMs

In order to reveal the potential biological functions and principal pathways of DEMs,
Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)

ftp://selab.janelia.org/pub/Rfam/
http://srna-tools.cmp.uea.ac.uk/
http://jaspar.genereg.net/
http://jaspar.genereg.net/
http://www.cytoscape.org/
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pathway analyses were performed for the target genes of DEMs. GO terms were enriched
with Database for Annotation, Visualization and Integrated Discovery (DAVID) (https:
//david.ncifcrf.gov/, accessed on 18 January 2021) [35], which included biological process
(BP), cellular component (CC), and molecular function (MF), and KEGG pathway analysis
was performed using KEGG Orthology Based Annotation System (KOBAS) (http://kobas.
cbi.pku.edu.cn/kobas3/, accessed on 18 January 2021) [36].

2.8. Validation of miRNA Expression by Stem-Loop Quantitative RT-PCR

The miRNA-Seq results were validated using RNA samples from C16 and P16 groups
with the stem-loop qRT-PCR method [37]. A total of eight miRNAs were randomly selected
for qRT-PCR, the primer sequences of which are visible in Table S1 (Supplementary Materials).
Reverse Transcription Primers and Quantitative Universal Reverse Primers were provided
by the TransScript® miRNA First-Strand complementary DNA (cDNA) Synthesis SuperMix
Kit (TransGen Biotech, Beijing, China) according to the manufacturer’s protocols. Next,
RT-PCR was performed with SYBR® Premix Ex Taq™ (Toyobo, Shanghai, China) on an ABI
PRISM® 7500 Sequence Detection System. Goat U6 snRNA was used as an internal control,
and all reactions were done with three technical replicates [38]. The relative expression level
of miRNA was quantified relative to the expression level of U6 by using the comparative
cycle threshold (2−∆∆Ct) method.

2.9. FISH Analysis

FISH was performed to detect the location of chi-miR-483 using procedures according
to an article published previously [39]. In short, micrometer sections (4 µm thick) were
deparaffinized, digested with proteinase K, and hybridized with chi-miR-483 probes
labeled with cy3 (red); the negative control was established by replacing the probe with
Hybridization Buffer (Servicebio, Wuhan, China). Images were then taken using a positive
fluorescence microscope (Nikon, Tokyo, Japan).

2.10. Dual-Luciferase Reporter Assay

The fragments containing the putative chi-miR-483 binding sites of wildtype (WT)
deltex E3 ubiquitin ligase 3L (DTX3L) 3′UTR and mutant (Mut) were prepared to con-
struct the reporter plasmids and then cloned into the downstream of the luciferase gene in
the pGL3-REPORT luciferase vector (Beyotime Biotechnology, Shanghai, China). For lu-
ciferase reporter assay, the 293T cells were seeded onto 96-well plates with a density of
10,000 cells/well and transfected with either DTX3L 3′UTR or DTX3L Mut and then with
chi-miR-483 mimics and the NC using Lipofectamine 3000 (Invitrogen, Shanghai, China)
according to the manufacturer’s protocols. After the transfected cells were harvested
at 48 h, the firefly and Renilla luciferase activities were measured continuously using a
dual-luciferase reporter assay system (Beyotime Biotechnology, Shanghai, China). Lastly,
firefly-to-Renilla luciferase ratios were calculated for each well, and each measurement was
repeated three times in three independent experiments.

2.11. IHC Analysis

To determine the expression of DTX3L in the C16 or P16 endometrium, IHC was
performed as previously reported [40]. Briefly, sections (4 µm thick) were deparaffinized
and blocked with 5% bovine serum albumin (BSA) for 30 min, and they were subsequently
incubated with abti-DTX3L rabbit polyclonal antibody (Proteintech, Wuhan, China) at 4 ◦C
overnight. Following incubation with the secondary antibody, the sections were coun-
terstained with hematoxylin and mounted (Fisher Scientific, Shanghai, China). For each
sample, a negative control was established using purified nonrelevant immunoglobulin G
(IgG). Images were taken with a Nikon 80i microscope (Nikon, Tokyo, Japan). Subsequently,
immunohistochemical staining was analyzed by mean integrated optical density (IOD)
using ImagePro Plus 6.0 software (Media Cybernetics, Silver Spring, GA, USA).

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/kobas3/
http://kobas.cbi.pku.edu.cn/kobas3/
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2.12. Statistical Analysis

All experiments were subjected to three independent replicates. Differences in wild-
type (WT) or mutant (Mut) DTX3L 3′UTR luciferase reports and the expression level of
DTX3L protein under two conditions were compared using Student’s t-test (GraphPad
Prism version 8.0, San Diego, CA, USA). Values are presented as the mean ± the standard
error of the mean (SEM). A value of p < 0.05 was considered to be statistically significant.

3. Results
3.1. Overview of the Sequencing Data

By purifying and sequencing small RNAs from goat endometrium, a comprehensive
identification could be accomplished for changes in the expression level of miRNAs in the
endometrium of pregnant and nonpregnant goats on day 16 after insemination. After re-
moving low-quality reads and adaptor sequences, 11,966,417 and 13,227,072 raw reads
were acquired from the endometrium of C16 and P16, respectively (Table 1). To better
assess the changes in sRNAs in the endometrium of C16 and P16, the length distribution
of all sRNA reads in the two sets of libraries was surveyed. This length mostly ranged
from 21 to 23 nt, and the peak distribution of sequences was 22 nt, which accounted for
40.75% (C16) and 47.04% (P16) of reads (Figure 1A).

Table 1. Summary of high-throughput sequencing in C16 (day 16 of the estrous cycle) and P16 (day 16 of pregnancy)
endometrium of goats.

Sample Total Reads N% > 10% Low Quality 5′ Adapter
Contaminant

3′ Adapter Null or
Insert Null

With Poly
A/T/G/C Clean Reads

C16
12,151,788 18 11,569 679 151,535 21,570 11,966,417
(100.00%) (0.00%) (0.09%) (0.01%) (1.25%) (0.18%) (98.47%)

P16
13,520,599 52 15,103 1628 265,879 10,864 13,227,072

(100%) (0.00%) (0.11%) (0.01%) (1.97%) (0.08%) (97.83%)

N: A base whose base information cannot be determined; low quality: the number of bases with Phred value ≤ 20 in a single-ended read
exceeds 30% of the total number of bases in the read; with poly A/T/G/C: continuous A/T/G/C bases in reads.

From the six libraries prepared from C16 and P16 samples, a total of 11,138,194 and
12,139,519 sRNA sequences were obtained, respectively, for the two conditions. Of these
reads, 7,324,385 (65.76%) and 7,500,151 (61.78%) were recognized as known miRNAs in the
C16 or P16 library sets, respectively, while 4465 (0.04%) and 3586 (0.03%) were identified as
novel miRNAs. The remaining sequences were other RNA types, including rRNA, tRNA,
snRNA, snoRNA, exon, intron, and others (Figure 1B; Table S2, Supplementary Materials).
The expression level of miRNAs was different in the two conditions (Figure 1C). Despite
the Pearson correlation coefficients of different samples within a condition and between
conditions being close (Figure S1, Supplementary Materials), the distribution of sRNAs in
the two types of samples was different (Figure 1). The high correlation coefficients found
between results of the three samples within each condition indicate that these samples
were quite homogeneous in terms of their sRNA content.

3.2. Analysis of Differentially Expressed miRNAs in C16 and P16 Endometrial Samples

To screen the miRNAs in endometrium related to goat endometrial receptivity, the goat
endometrium of C16 and P16 was found to present 464 miRNAs, with 403 known miRNAs
and 61 novel miRNAs (Table S3, Supplementary Materials). Among the known miRNAs,
371 miRNAs were co-expressed, while 11 and 21 miRNAs were specifically expressed in
C16 and P16, respectively (Figure 2A). However, no miRNA was specifically expressed in
the novel miRNAs. The 20 most highly expressed miRNAs in C16 and P16 libraries are
listed in Table 2.
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Figure 1. Overview of the sequences generated by miRNA sequencing (miRNA-Seq). (A) Sequence
length distribution of the sequences generated by miRNA-Seq of the two sets of libraries. The length
distribution peaked at 22 nt, i.e., the desired miRNA length. Blue and red represent the results from
total sequences obtained from C16 and P16 endometrial samples, respectively. (B) Classification of
small RNA sequences obtained from individual C16 and P16 endometrial samples. (C) The density
distribution of miRNA expression. The abscissa represents the value of log10 transcripts per million
(TPM), and the ordinate represents the corresponding density.

Table 2. Top 20 miRNAs in C16 and P16 endometrium.

miRNA Average TPM in C16 miRNA Average TPM in P16

chi-miR-148a-3p 470,173 chi-miR-148a-3p 358,978
chi-miR-99a-5p 243,974 chi-miR-99a-5p 239,837
chi-miR-143-3p 46,655 chi-miR-143-3p 110,970
chi-miR-21-5p 38,853 chi-miR-26a-5p 53,046

chi-miR-26a-5p 33,294 chi-miR-21-5p 37,842
chi-miR-126-3p 19,458 chi-miR-10b-5p 20,501
chi-miR-10b-5p 15,653 chi-miR-126-3p 17,344

chi-let-7i-5p 9218 chi-let-7f-5p 12,137
chi-let-7g-5p 7995 chi-let-7g-5p 11,049
chi-let-7f-5p 7944 chi-let-7i-5p 10,918

chi-miR-199a-3p 6749 chi-let-7a-5p 7798
chi-let-7a-5p 5646 chi-miR-27b-3p 7696
chi-miR-200a 5589 chi-miR-1 7249
chi-let-7c-5p 5033 chi-miR-199a-3p 6988
chi-let-7b-5p 4965 chi-let-7c-5p 6668



Biomolecules 2021, 11, 472 7 of 19

Table 2. Cont.

miRNA Average TPM in C16 miRNA Average TPM in P16

chi-miR-27b-3p 4601 chi-let-7b-5p 6219
chi-miR-151-3p 4501 chi-miR-10a-5p 5917
chi-miR-200b 4439 chi-miR-151-3p 5227

chi-miR-125b-5p 3800 chi-miR-200a 5189
chi-miR-10a-5p 3327 chi-miR-200b 4371
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Figure 2. Differentially expressed miRNAs (DEMs) in goat endometrium. (A) Venn diagrams of known
miRNAs. (B) Clustering analysis of DEMs. The color scale is from−2.0 (blue, lower miRNA expression
level) to 2.0 (red, higher miRNA expression level). Each row represents one miRNA, and each column
represents one sample. (C) Volcano plots of DEMs. Each point represents one miRNA. The abscissa
represents the value of log2 fold-change; the ordinate value represents −log10 q-value.

We focused on miRNAs with q-values < 0.05, and 33 differentially expressed miRNAs
were chosen, of which, 19 miRNAs were upregulated in the P16 endometrium compared
with C16 endometrium in goats, and 14 miRNAs were downregulated (Figure 2C, Table 3).
Clustering analysis displayed the expression profile of DEMs (Figure 2B). It is worth noting
that the most differentially expressed miRNAs were chi-miR-483 and novel_131, with more
than a 100-fold decrease.
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Table 3. The differentially expressed miRNAs C16 and P16 endometrial samples.

miRNA Average Readcount
in C16

Average Readcount
in P16 log2 Fold-Change p-Value q-Value

novel_131 39.85 0.35 −6.83 1.29 × 10−12 2.18 × 10−10

chi-miR-483 152.43 1.35 −6.82 1.83 × 10−24 6.16 × 10−22

chi-miR-106a-5p 87.16 16.88 −2.37 2.71 × 10−5 9.50 × 10−4

chi-miR-188-5p 39.37 11.93 −1.72 1.12 × 10−3 2.21 × 10−2

chi-miR-135b-5p 51.37 15.79 −1.70 2.16 × 10−5 9.50 × 10−4

chi-miR-183 932.05 311.26 −1.58 9.34 × 10−6 6.13 × 10−4

chi-miR-182 1595.76 553.28 −1.53 3.13 × 10−5 9.58 × 10−4

chi-miR-181c-3p 32.80 11.56 −1.50 1.03 × 10−3 2.17 × 10−2

chi-miR-874-3p 40.21 14.78 −1.44 2.94 × 10−3 3.96 × 10−2

chi-miR-490 212.90 94.84 −1.17 2.57 × 10−3 3.94 × 10−2

chi-miR-1307-3p 454.00 218.84 −1.05 2.82 × 10−5 9.50 × 10−4

chi-miR-136-5p 1387.52 693.62 −1.00 4.80 × 10−3 4.90 × 10−2

chi-miR-543-3p 441.79 272.33 −0.70 3.46 × 10−3 4.32 × 10−2

chi-miR-107-3p 457.79 284.97 −0.68 3.46 × 10−3 4.32 × 10−2

chi-miR-135a 269.47 446.58 0.73 4.78 × 10−3 4.90 × 10−2

chi-miR-10a-5p 23116.13 45875.93 0.99 3.90 × 10−3 4.53 × 10−2

chi-miR-26b-5p 9990.30 23746.46 1.25 3.82 × 10−3 4.53 × 10−2

chi-let-7d-3p 31.10 75.94 1.29 3.38 × 10−4 9.49 × 10−3

chi-miR-16a-5p 1380.89 3376.81 1.29 4.57 × 10−3 4.90 × 10−2

chi-miR-145-3p 1364.07 3536.32 1.37 1.51× 10−3 2.68 × 10−2

chi-miR-143-3p 325393.81 862304.74 1.41 2.13 × 10−3 3.59 × 10−2

chi-miR-338-3p 30.42 81.38 1.42 9.74 × 10−4 2.17 × 10−2

chi-miR-378-3p 1175.13 3190.20 1.44 4.14 × 10−4 9.97 × 10−3

chi-miR-143-5p 1553.50 4241.32 1.45 4.04 × 10−3 4.54 × 10−2

chi-miR-145-5p 7862.77 23587.26 1.58 2.81 × 10−3 3.96 × 10−2

chi-miR-34c-5p 1040.08 3191.46 1.62 9.38 × 10−6 6.13 × 10−4

chi-miR-155-5p 297.21 916.87 1.63 4.04 × 10−4 9.97 × 10−3

chi-miR-34c-3p 19.36 71.16 1.88 1.27 × 10−3 2.38 × 10−2

chi-miR-338-5p 12.77 55.77 2.13 2.84 × 10−3 3.96 × 10−2

chi-miR-34b-3p 233.76 1032.78 2.14 1.23 × 10−9 1.38 × 10−7

chi-miR-223-3p 1.88 11.77 2.65 2.54 × 10−3 3.94 × 10−2

chi-miR-133a-3p 80.34 842.29 3.39 2.71 × 10−5 9.50 × 10−4

chi-miR-1 3678.63 56458.03 3.94 1.09 × 10−5 6.13 × 10−4

3.3. Validation of Sequencing Results by qRT-PCR

The stem-loop qRT-PCR assay was utilized to mainly detect mature miRNAs. U6
snRNA was chosen as the reference gene. Eight miRNAs were randomly selected for
qRT-PCR validation, and the primers used are listed in Table S1 (Supplementary Materials).
The validation of the eight selected miRNAs showed that, for all of them, the results of
RNA sequencing were very consistent with the results of qRT-PCR (Figure 3).
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3.4. Potential Transcription Factors Prediction for DEMs

Herein, potential transcription factors of DEMs were predicted using TFBSTools
software. In particular, we identified 253,791 sites where these 33 DEMs could bind to TFs
(Table S4, Supplementary Materials). The top 10 TFs with the most TFBSs were NR2C2
(var.2), MEIS1, NKX2–8, HOXA4, HOXB3, NFIX, HIC2, BARHL1, THAP1, and SOX18,
as presented in Figure 4A. In addition, we demonstrate the binding motif between the
10 TFs and chi-miR-483, the most significant differentially expressed miRNA (Figure 4B).

3.5. Target Gene Predictions for DEMs

In animals, miRNAs can downregulate transcript expression levels by interacting with
3′ UTRs, especially complementary sequences of 2–7 nucleotides [41]. When achieving
biological process complexity and imperfect complementarity between miRNA and target
genes, it is a daunting task to precisely anticipate its target using a single method. As a
consequence, three software tools (TargetScan, miRanda, and RNAhybrid) were employed
to predict the target genes to confirm accuracy. As a result, 1316 target genes were obtained
from the differentially expressed miRNAs, of which 32 were known miRNAs and one was
a novel miRNA (Figure 5; Table S5, Supplementary Materials). As displayed in Figure 5,
chi-miR-483 and chi-miR-874-3p could regulate abundant genes, and a gene could also be
regulated by multiple miRNAs.
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3.6. Functional Annotation of DEMs in Endometrium

Understanding the biological functions of DEMs can be accomplished by perform-
ing GO enrichment and KEGG pathway analyses on DEM target genes. GO enrichment
analysis indicated that target genes were mainly included in biological processes such
as extracellular matrix organization, nervous system development, negative regulation
of Wnt signaling pathway, negative regulation of intracellular transport, and GTPase
activity activation (Figure 6A; Table S6, Supplementary Materials). Moreover, KEGG path-
way analysis exhibited that 286 enriched signaling pathways were attained (Table S7,
Supplementary Materials). Among the top 25 signaling pathways, the Wnt signaling
pathway, Hippo signaling pathway, Notch signaling pathway, Transcription growth factor-
beta (TGF-beta) signaling pathway, Rap1 signaling pathway, and p53 signaling pathway
significantly influenced endometrium development (Figure 6B).
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3.7. Chi-miR-483 Can Directly Target the 3′-UTR of DTX3L to Reduce the Expression Level
of DTX3L

Compared with the nonpregnant goat endometrium on day 16, chi-miR-483 exhibited
the most significantly downregulated miRNA. FISH analysis was performed to determine
chi-miR-483 location in the C16 or P16 uterus. Interestingly, it was abundantly expressed in
uterine luminal epithelium, as well as glandular epithelium, of C16 and slightly expressed
in P16, consistent with our above analysis (Figure 7).

According to the bioinformatics results of target gene prediction, chi-miR-483 was
found to regulate abundant target genes, and this can be revealed by selecting DTX3L as
the target gene, exhibiting exact matching with the chi-miR-483 seed sequence (Figure 8A).
As presented in Figure 8, compared with the mutant group, the dual-luciferase reporter as-
say system exhibited a significant reduction in luciferase/Renilla luciferase of the wildtype
miRNA mimic. However, chi-miR-483 exhibited no remarkable inhibitory impact on the
mutant DTX3L 3′UTR dual-luciferase construct (Figure 8B,C). Moreover, the IHC method
was deployed to detect the expression levels of DTX3 protein, and they were lower in the
uterine luminal epithelium and glandular epithelium of C16 than those of P16, consistent
with the specific mechanism of miRNAs (Figure 9). This confirms that chi-miR-483 can
directly bind to the DTX3L 3’UTR to reduce the expression level of DTX3L, and it could
hold a critical function in forming goat endometrial receptivity.
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Figure 7. In situ hybridization analysis of chi-miR-483 in the C16 and P16 uterus. The chi-miR-483
was abundantly expressed in the uterine luminal epithelium or glandular epithelium of C16, while it
was slightly expressed in P16. The section stained with hybridization buffer without probe was used
as the negative control (NC; (Figure S2, Supplementary Materials). Legend: LE, endometrial luminal
epithelium; GE, glandular epithelium. Scale bar = 100 µm.
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Figure 8. Chi-miR-483 targets the 3′-untranslated region (UTR) of deltex E3 ubiquitin ligase 3L (DTX3L). (A) The predicted
binding site of chi-miR-483 in the 3′UTR of DTX3L according to bioinformatics analysis. (B) Design of the luciferase reporter.
WT, the wildtype sequence of DTX3L-3′UTR contains the chi-miR-483 binding site; Mut, the sequence of DTX3L-3′UTR
with a mutation in the chi-miR-483 binding site. (C) 293T cells were co-transfected with wildtype (WT) or mutant (Mut)
luciferase reports of DTX3L 3′UTR with chi-miR-483 mimics or negative control (NC) mimics. The luciferase reporter assay
demonstrated that chi-miR-483 significantly decreased the luciferase activity of DTX3L WT in 293T cells. Data are shown as
the mean ± SEM values (n = 3, ** p < 0.01, Student’s t-test).
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Figure 9. Immunohistochemical analysis of DTX3L in the C16 and P16 uterus. (A) Images stained with DTX3L antibodies.
The positive signal of DTX3L was distinctly detected in the uterine luminal epithelium or glandular epithelium in P16.
The section stained with nonrelevant immunoglobulin G served as the negative control (NC). (B) Quantitative analysis
of DTX3L by measuring the average integrated optical density (IOD) in the endometrium. Asterisks indicate significant
differences (mean ± SEM) between C16 and P16 (*** p < 0.001); the p-value was determined by Student’s t-test. Legend: LE,
endometrial luminal epithelium; GE, glandular epithelium. Scale bar = 100 µm.

4. Discussion

As a vital factor, endometrium receptivity strongly affects successful embryo implan-
tation and embryonic mortality [3]. The miRNA system regulates numerous biological
processes through a single miRNA that can modulate multiple mRNAs after transcrip-
tion; alternatively, the mRNA can be targeted and regulated by multiple miRNAs [42,43].
Research has proposed that the roles of miRNAs are linked to endometrial receptivity,
embryonic development, and implantation [44,45]. Herein, we attempted to expose the
miRNA expression profile associated with receptive endometrium formation. However,
different cell types in endometrial samples may have heterogeneity. The endometrial re-
ceptivity formation caused by differentially expressed miRNAs in different cells may need
to be solved by single-cell sequencing technology in the future [46]. Moreover, only a rela-
tively small number of animals were used in this study. Expanding samples for verification
in subsequent studies will make the results more reliable.

This study demonstrated that expression levels of chi-miR-1 and chi-miR-133a-3p
mostly increased in endometrium on day 16 of pregnancy compared with nonpregnancy,
while the expression level of novel-131 and chi-miR-483 mostly decreased. Studies have
indicated that reducing the expression level of miR-483 can target the connective tissue
growth factor (CTGF) to promote endothelial–mesenchymal transition [47], cell growth, pro-
liferation, differentiation, invasion, and migration, as well as inhibit cell apoptosis [48–51].
Such a result agrees with the morphological changes of the endometrium during this
period in terms of a high level of cell proliferation, migration, and remodeling of tissue
structure, thereby attaining endometrium receptivity, leading to successful implantation of
the embryo to continue the pregnancy [7]. Moreover, the FISH analysis, dual-luciferase
report assay, and IHC analysis confirmed that chi-miR-483 could directly target the 3′-UTR
of DTX3L to reduce its expression level, and studies have corroborated that DTX3L can pro-
mote cell proliferation, migration, and invasion, as well as play a vital role in establishing
pregnancy in cattle [52,53]. This finding advocates that chi-miR-483 holds great promise in
forming endometrial receptivity.

Interestingly, previous studies stated that miR-1 and miR-133 are specifically expressed
in adult cardiac and skeletal muscle tissues without expression in other tissues [54–57].
However, we found that chi-miR-1 and chi-miR-133a-3p are overexpressed in the en-
dometrium on day 16 of pregnancy. Studies have confirmed that miR-1 and miR-133 are
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located on the same chromosomal locus and are transcribed together as a single transcript,
resulting in two independent mature miRNAs, which can accomplish diverse biological
functions by inhibiting different target genes. For example, miR-1 can promote myogen-
esis by targeting histone deacetylase 4 (HDAC4), while miR-133 can augment myoblast
proliferation by inhibiting serum response factor (SRF) [54]. Moreover, the muscle-specific
expression of miR-1/133a exhibits significance in permitting metabolic maturation, as well
as proper mitochondrial activity, in skeletal muscles [58]. Furthermore, the two miR-
1/133a gene clusters exhibited overlapping functions as inactivation of one or the other
cluster would only result in delicate changes in electrophysiological properties of the adult
cardiac muscles [59]. Consequently, we speculate that chi-miR-1 and chi-miR-133a-3p,
overexpressed in the goat endometrium on day 16 of pregnancy, are most likely to target
different genes to realize various physiological roles, with overlapping function between
them. Their effects could ultimately promote receptive endometrium formation; however,
additional experimental proof is required.

Previous studies revealed that miRNA expression can be regulated by transcription
factors [60] predicted to regulate these DEMs. Research has manifested that homeobox-
class (HOX-class) homeobox genes are the main candidate genes that regulate endometrial
differentiation toward embryo implantation [61]. Moreover, the HOX gene exerts its func-
tion by acting as a transcription factor and binds to regulatory region of the target gene
through its homeobox domain to activate or inhibit transcription [62]. Studies recently
demonstrated that some noncoding RNAs (ncRNAs) positioned in the HOX locus, in-
cluding long noncoding RNA (lncRNA) and miRNA, could directly regulate HOX gene
expression [63]. Therefore, transcription factors may regulate endometrium receptivity by
regulating miRNAs, but future robust research is required to confirm this role.

In analyzing differential miRNA target genes, Gene Ontology (GO) analysis affords a
convenient and straightforward approach for better understanding the biological functions
of genes [64]. Among the top 10 biological processes of GO enrichment, those that drew
our interest were extracellular matrix organization (GO: 0030198), negative regulation of
Wnt signaling pathway (GO:0030178), activation of GTPase activity (GO:0090630), and cell–
substrate adhesion (GO:0031589). As known, embryo implantation comprises extensive
tissue remodeling within the endometrium [65], and, since goat exhibits a noninvasive
type of implantation, this remodeling is highly significant to produce placental cotyle-
dons and angiogenesis [66]. Through the degradation of the extracellular matrix (ECM),
the uterine luminal epithelium experiences a dramatic transformation, producing a recep-
tive endometrium, amenable to receive embryos, proceeding embryo implantation [65,67].
GTPase was recently found to be involved in many biological processes, including the
regulation of cell growth, cell positioning, and the cytoskeleton [68,69]. Moreover, studies
have showcased that the Wnt signaling pathway is indispensable for developing early
embryos and endometrium changes before implantation. Wnt signaling could control en-
dometrial gland formation, and the ablation of specific Wnt signal components would cause
implantation failure [70,71], whereas it can also regulate endometrium decidualization [72].

Interestingly, we stated that some biological processes linked to the nervous system
were enriched, such as nervous system development (GO:0007399), gamma-aminobutyric
acid transport (GO:0015812), and negative regulation of neuron differentiation (GO:0045665).
One of the enriched genes, neurotrophin receptor kinase-3 (NTRK3), was found to inter-
act with the nerve growth factor (NGF), induce angiogenesis, cell proliferation, and cell
adhesion, and regulate gonadal development [73]. This highlights that those genes associ-
ated with nervous system development could possess distinguished regulatory functions
in other tissues, such as promoting receptive endometrium formation; however, robust
supplementary research is required to validate this hypothesis.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis is usually
employed to get more in-depth insight into interactions between a cluster of genes within
biological function scope [74]. The results of this analysis on DEM target genes revealed
that some genes might be incorporated in several pathways linked to cancer, including
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basal cell carcinoma, proteoglycans in cancer, and so on. This results from similarities in cell
invasion and angiogenesis between embryo implantation and cancer cell spread [75]. As a
consequence, a precise understanding of the endometrium acceptance mechanism could
help preclude cancer cell spread. In the top 10 pathways of KEGG analysis, the Hippo
signaling pathway is well known as a key regulator of tissue homeostasis, which can
govern the size of tissues by regulating cell proliferation, survival, and regeneration [76,77].
Furthermore, the Hippo signaling pathway could regulate the differentiation of endometrial
stromal cells in the endometrium [78].

5. Conclusions

In summary, Illumina sequencing was utilized to identify 464 unique miRNAs, com-
prising 403 previously reported and 61 novel miRNAs, from the endometrium of pregnant
and nonpregnant goats. In comparison, 33 significantly differentially expressed miRNAs
(19 upregulated and 14 downregulated) were identified. The regulatory relationship be-
tween miRNAs and upstream transcription factors, the interaction analysis of miRNAs
and their target genes, GO enrichment, and KEGG pathway analysis could provide a better
understanding of how miRNAs mediate target gene regulation in endometrium receptivity
formation. Taken together, these findings present new insights into the role of miRNAs in
regulating goat endometrium receptivity.
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